

NI	RF	Vector	Signal	Analyzers	Help
February	2007,	372058B-01
This	help	file	contains	hardware	and	software	information	for	NI	RF
vector	signal	analyzers.	This	file	contains	an	introduction	to	fundamental
RF	vector	signal	analyzer	concepts,	guidelines	for	accurate
measurements,	and	programming	reference	information	for	LabVIEW,	C,
and	LabWindows™/CVI™.
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Conventions—formatting	and	typographical	conventions	in	this	help	file
Related	Documentation
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2006—2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)

Conventions
This	help	file	uses	the	following	conventions:

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the
File	menu,	select	the	Page	Setup	item,	and	select
Options	from	the	last	dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.

bold Bold	text	denotes	items	that	you	must	select	or	click	on
in	the	software,	such	as	menu	items	and	dialog	box
options.	Bold	text	also	denotes	parameter	names,
emphasis,	or	an	introduction	to	a	key	concept.

digitizer This	term	refers	to	the	NI	5142	digitizer	hardware
module.

downconverter This	term	refers	to	the	NI	5600	3-slot	RF	downconverter
hardware	module.

green Underlined	text	in	this	color	denotes	a	link	to	a	help
topic,	help	file,	or	Web	address.

italic Italic	text	denotes	variables	or	cross	references.	This
font	also	denotes	text	that	is	a	placeholder	for	a	word	or
value	that	you	must	supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you
should	enter	from	the	keyboard,	sections	of	code,
programming	examples,	and	syntax	examples.	This	font
is	also	used	for	the	proper	names	of	disk	drives,	paths,
directories,	programs,	subprograms,	subroutines,	device
names,	functions,	operations,	variables,	filenames,	and
extensions.

Related	Documentation
Some	NI	RF	signal	analyzer	manuals	also	are	available	as	PDFs.	You
must	have	Adobe	Reader	with	Search	and	Accessibility	5.0.5	or	later
installed	to	view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated
Web	site	at	www.adobe.com	to	download	Adobe	Reader.	Refer	to	the
National	Instruments	Product	Manuals	Library	at	ni.com/manuals	for
updated	documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:
Refer	to	this	document	for	basic	information	on	setup,	configuration,	and
operation	of	the	RF	Signal	Analyzer	hardware	and	software.

NI	RF	Vector	Signal	Analyzers	Getting	Started	Guide,	printed	and
included	in	your	NI	RF	vector	signal	analyzer	kit.	This	document	is
also	available	in	PDF	format	at	Start»Programs»National
Instruments»NI-RFSA»Documentation.
NI	RF	Signal	Analyzers	Readme,	accessible	from
Start»Programs»National	Instruments»NI-
RFSA»Documentation.	Refer	to	this	document	for	system
requirement	information,	operating	system	support	information,
installation	locations,	new	features,	and	known	issues.
Device	specifications,	printed	and	included	in	your	NI	RF	vector
signal	analyzer	kit.	This	document	is	also	accessible	in	PDF	format
online	by	searching	www.ni.com/manuals.
Spectral	Measurements	Toolkit	Help,	accessible	from
Start»Programs»National	Instruments»Spectral
Measurements»Documentation.	Refer	to	this	help	file	for
information	about	measurements	and	examples	available	for	the
RF	vector	signal	analyzer.
Spectral	Measurements	Toolkit	User	Guide,	accessible	in	PDF
format	from	Start»Programs»National	Instruments»Spectral
Measurements»Documentation.
Modulation	Toolkit	Help,	accessible	from
Start»Programs»National	Instruments»Modulation»LabVIEW
Support.	The	Modulation	Toolkit	integrates	with	SMT	and	NI-RFSA
for	modulation/demodulation	measurements	and	analysis.
NI	High-Speed	Digitizers	Help,	accessible	from

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
javascript:AcrobatLink('RFSA_GSG.pdf');
javascript:WWW(WWW_Manuals)

Start»Programs»National	Instruments»NI-
SCOPE»Documentation.	Refer	to	this	help	file	for	information
about	implementing	trigging	for	the	RF	Signal	Analyzer.

For	the	latest	NI-RFSA	development	information	and	the	latest	NI-RFSA
examples,	search	the	NI	Developer	Zone.	This	link	requires	an	internet
connection.	Visit	ni.com/manuals	for	the	most	current	revisions	of
documentation	and	for	newly	released	documentation.

javascript:WWW(WWW_Zone)
javascript:WWW(WWW_Manuals)

Fundamentals
Expand	this	book	for	more	information	about	measurement	concepts	and
terminology	used	in	this	help	file.

Guidelines	for	Making	Accurate	Measurements
This	section	provides	guidelines	for	making	accurate	measurements	with
the	RF	Signal	Analyzer	hardware	and	software.	Click	one	of	the	following
measurements	for	more	information:

General	Amplitude/Spectrum
Harmonic	Distortion
Two-Tone	Third-Order	Intermodulation	Distortion
1	dB	Gain	Compression
Noise	Figure

General	Amplitude/Spectrum	Measurement
Amplitude	dynamic	range	is	the	difference	between	the	maximum	input
level	of	a	device	and	its	minimum	detectable	signal	level.
Dynamic	range	estimates	the	ability	of	the	RF	Signal	Analyzer	to
distinguish	and	measure	the	amplitude	difference	of	two	signals.	The	RF
Signal	Analyzer	can	make	signal	measurements	over	a	frequency	range
from	9	kHz	to	2.7	GHz,	and	over	an	amplitude	dynamic	range	of	greater
than	100	dB.
Signals	of	large	amplitude	can	saturate	the	system	and	cause	spurious
effects.	These	spurs	may	be	large	enough	to	be	mistaken	for	real	signals.
Avoid	this	effect	by	properly	adjusting	the	amplitude	of	the	incoming
signal.	Achieving	proper	signal	levels	may	involve	attenuating	the	signal
before	it	gets	to	the	first	mixer,	either	by	programming	the	internal
attenuators	or	by	using	external	attenuation.
The	RF	Signal	Analyzer	must	be	properly	configured	before	making	a
measurement.	A	small	signal	can	be	buried	in	noise	if	the	resolution
bandwidth	setting	is	too	large.	To	measure	a	small	signal,	make	sure	that
the	input	attenuators	are	switched	off	and	lower	the	resolution	bandwidth
setting	to	reduce	the	noise	content.
For	signals	below	the	noise	floor	of	the	RF	Signal	Analyzer,	use	an
external	low-noise	amplifier	(LNA)	in	front	of	the	RF	Signal	Analyzer	to
raise	the	signal	level.	If	the	update	speed	is	not	fast	enough	to	resolve	a
signal	due	to	the	processing	demands	imposed	by	a	narrow	resolution
bandwidth,	an	LNA	helps	provided	it	does	not	significantly	affect	system
linearity.	For	example,	with	a	signal	level	of	​100	dBm,	set	the	resolution
bandwidth	to	1	kHz	or	less.

Harmonic	Distortion
Harmonic	distortion	is	a	measure	of	the	amount	of	power	contained	in	the
harmonics	of	a	fundamental	signal.	Harmonic	distortion	is	inherent	to
devices	and	systems	that	possess	nonlinear	characteristics​the	more
nonlinear	the	device,	the	greater	its	harmonic	distortion.
Harmonic	distortion	can	be	expressed	as	a	power	ratio	or	as	a
percentage	ratio.	Use	the	following	formula	to	express	it	as	a	power	ratio:

where	PHD	is	the	power	of	the	harmonic	distortion	in	dBc,	Pfund	is	the
fundamental	signal	power	in	dB	or	dBm,	and	Pharm	is	the	power	of	the
harmonic	of	interest	in	dB	or	dBm.
Convert	the	powers	to	voltages	to	express	harmonic	distortion	as	a
percentage	ratio:

In	some	applications,	the	harmonic	distortion	is	measured	as	a	total
percentage	harmonic	distortion	(THD).	This	measurement	involves	the
power	summation	of	all	the	harmonics	in	the	spectrum	band,	defined	in
the	following	equation:

A	typical	setup	to	perform	a	harmonic	distortion	measurement	is	shown	in
the	figure	below.	A	lowpass	or	bandpass	filter	passes	the	fundamental
signal	while	suppressing	its	harmonics.	This	setup	injects	a	very	clean
sinusoidal	signal	into	the	unit	under	test	(UUT).	Any	harmonic	content	at
the	UUT	output	is	assumed	to	be	generated	by	the	UUT	instead	of	the
source.

Typical	Harmonic	Distortion	Measurement	Setup

Understanding	the	RF	Signal	Analyzer	Harmonic	Distortion
Limits
As	with	all	analyzers,	residual	distortions	are	inherent	in	the	RF	Signal
Analyzer.	It	is	important	that	these	distortions	do	not	corrupt	your
measurement.
The	level	of	internal	distortion	is	a	function	of	the	linearity	of	the	system,
which	is	primarily	determined	at	the	input	mixer.	Increasing	input	power	at
the	mixer	increases	distortion,	so	if	the	input	signal	is	too	high,	the
internally	generated	harmonics	overwhelm	the	harmonics	of	the	original
signal.
The	specifications	for	the	second-	and	third-order	harmonic	intercept
points	provide	sufficient	information	about	the	linearity	of	the	system.	For
example,	to	measure	a	second-order	harmonic	at	–70	dBc,	the
fundamental	power	at	the	mixer	input	must	satisfy	the	following	condition:

where	IIP2	is	the	second-order	intercept	point.

If	the	input	signal	power	is	greater	than	this	value,	the	signal	must	be
attenuated	before	the	first	mixer.	There	is	an	upper	limit	on	the	amount	of
attenuation	you	can	switch	in	because	the	noise	floor	rises	by	the	same
amount	as	the	attenuation.	To	lower	the	noise	level	decrease	the
resolution	bandwidth,	but	keep	in	mind	that	there	is	also	a	practical	lower
limit	on	the	resolution	bandwidth.	Decreasing	the	resolution	bandwidth
increases	measurement	time.
The	harmonic	distortion	dynamic	range	(HDDR)	indicates	the	minimum
distortion	an	instrument	can	measure,	which	is	about	​96	dBc/Hz	for	the
RF	Signal	Analyzer.

Choosing	an	Optimal	Setting	for	the	RF	Signal	Analyzer
Because	the	level	of	harmonic	distortion	is	often	unknown,	the	optimal
attenuation	level	can	be	difficult	to	determine.	Complete	the	following
steps	to	find	the	proper	attenuation	setting	for	the	RF	Signal	Analyzer:

1.	 Set	the	attenuation	so	that	the	input	power	at	the	mixer	is	about
​30	dBm.

mixer	level	=	reference	level	–	attenuation.
2.	 Tune	to	the	harmonic	frequency	of	interest	and	then	decrease	the

resolution	bandwidth	until	the	harmonic	spur	appears.
3.	 Increase	the	attenuation	level.	If	the	harmonic	spur	decreases,

attenuate	more.
4.	 Repeat	step	3	until	the	harmonic	level	does	not	decrease	any

further.	Attenuation	does	not	lower	the	harmonics	of	the	original
signal;	it	only	lowers	the	internally	generated	harmonics.

5.	 Decrease	the	resolution	bandwidth	to	lower	the	noise	floor.
The	setting	you	obtain	is	the	optimal	attenuation	setting.

Two-Tone	Third-Order	Intermodulation
Distortion	Measurement
Two-tone	third-order	intermodulation	distortion	(IMD3)	is	the	measure	of
the	third-order	distortion	products	produced	by	a	nonlinear	device	when
two	tones	closely	spaced	in	frequency	are	fed	into	its	input.	This
distortion	product	is	usually	so	close	to	the	carrier	that	it	is	almost
impossible	to	filter	out	and	can	cause	interference	in	multichannel
communications	equipment.
If	F1	and	F2	are	the	frequencies	of	the	two	tones,	then	the	third-order
distortion	products	occur	on	both	sides	of	these	tones	at	2F2	–	F1	and
2F1	–	F2.	Assuming	that	the	power	levels	of	the	two	tones	are	equal,
IMD3	is	the	difference	between	the	power	of	the	fundamental	signals	and
the	third-order	products,	as	defined	in	the	following	equation:

where	o	refers	to	the	output	of	the	UUT,	Po3	is	the	power	level	of	one	of
the	output	third-order	products,	and	Po	is	the	power	level	of	one	of	the
fundamental	tones.
The	math	becomes	more	involved	if	the	powers	of	the	two	tones	are
different.	After	you	measure	the	IMD3,	calculate	the	UUT	output	third-
order	intercept	point	(OIP3)	using	the	following	equation:

The	input	third-order	intercept	point	(IIP3)	is	defined	as:

where	G	is	the	gain	of	the	device.	The	IIP3	number	quantifies	the	third-
order	linearity	of	a	device.	Use	the	IIP3	specification	of	the	RF	Signal
Analyzer	as	a	guide	to	optimize	its	settings	when	measuring	the	IMD3	of
an	external	device.
The	two	tones	injected	into	the	UUT	must	be	free	from	any	third-order
products.	These	two	tones	are	combined,	or	summed,	at	or	before	the
UUT	input.	If	the	two	tones	are	not	well	isolated,	they	intermodulate	with
each	other	and	cause	distortion.	A	signal	combiner	with	good	input-to-
input	isolation	is	recommended	to	minimize	distortion	of	the	input	tones.

Measurement	Setup
A	typical	IMD3	measurement	setup	is	shown	in	the	figure	below.	Lowpass
filters	are	employed	at	the	source	outputs	to	suppress	harmonics.

Typical	IMD3	Measurement	Setup

Understanding	Two-Tone	Third-Order	Intermodulation
Distortion	Limits	of	the	RF	Signal	Analyzer
The	RF	Signal	Analyzer	generates	its	own	distortion	spurs,	which	are
capable	of	swamping	the	Po3	of	the	UUT	and	giving	rise	to	an	erroneous
measurement.	Too	much	power	at	the	signal	input	of	the	RF	Signal
Analyzer	may	drive	the	system	into	a	nonlinear	region	of	operation	and
produce	very	large	distortion	products.	Choosing	an	appropriate
attenuation	setting	for	the	RF	Signal	Analyzer	minimizes	its	IMD3
contribution	to	the	measurement.	The	IMD3	improves	by	2	dB	for	every
1	dB	of	input	power	decrement.
To	measure	the	IMD3	of	a	UUT,	input	power	to	the	RF	Signal	Analyzer
mixer	must	satisfy	the	following	condition:

where	IIP3rfsa	is	the	input	third-order	intercept	point	of	the	RF	Signal
Analyzer	(about	10	dBm).	For	example,	to	accurately	measure	an	IMD3
of	80	dBc	the	input	power	to	the	mixer	must	be	less	than	​31.5	dBm.
If	the	powers	of	two-tone	signals	are	larger	than	this	optimal	level,	they
must	be	attenuated,	either	with	the	attenuators	internal	to	the	RF	Signal
Analyzer	or	with	external	attenuators.	However,	as	attenuation	raises	the
noise	floor	of	the	RF	Signal	Analyzer,	there	is	a	limit	to	how	much
attenuation	can	be	used	before	noise	overwhelms	the	distortion	spurs.	Its
spurious-free	dynamic	range	(SFDR)	specification	indicates	the	largest
IMD3	value	the	RF	Signal	Analyzer	can	accurately	measure,	assuming	0
dB	attenuation	and	input	signals	whose	powers	satisfy	the	equation
above.

Choosing	an	Optimal	Setting	for	the	RF	Signal	Analyzer
Complete	the	following	steps	to	set	optimal	attenuation	levels	for	an	IMD3
measurement	when	the	level	of	the	third-order	distortion	spur	(Po3)	is
unknown:

1.	 Set	the	attenuation	so	that	the	input	power	at	the	mixer	is	about
​30	dBm.	When	using	the	RF	Signal	Analyzer	Demo	Panel,
mixer	level	=	reference	level	–	attenuation.

2.	 Tune	to	the	third-order	distortion	product	frequency	of	interest,
either	2F2	–	F1	or	2F1	–	F2.	Then	decrease	the	resolution
bandwidth	until	a	distortion	spur	appears.

3.	 Increase	the	attenuation	level.
4.	 If	the	harmonic	spur	decreases,	repeat	step	3.
5.	 Repeat	step	4	until	the	harmonic	level	does	not	decrease	any

further.	Attenuation	does	not	lower	the	distortion	products	of	the
signal;	it	only	lowers	the	distortion	products	generated	internally	to
the	RF	Signal	Analyzer.	Decrease	the	resolution	bandwidth	to
lower	the	noise	floor.

The	setting	you	obtain	is	the	optimal	attenuation	setting.

Noise	Figure	Measurement
All	devices	have	inherent	noise.	When	noise	is	quantified,	it	is	usually
referred	to	the	device	input.	In	other	words,	all	noise	power	a	UUT
inherits	is	assumed	to	come	from	its	input.	The	noise	figure	of	a	UUT	is
the	ratio	in	dB	of	its	noise	power	to	the	noise	power	that	a	matched
resistive	load	would	deliver	at	room	temperature.	If	you	terminate	a	UUT
input	with	a	matched	resistive	load	(typically	50	Ω)	and	measure	the
noise	power	density	at	its	output	(No),	the	noise	figure	(NF)	is	given	by
the	following	equation:

where	G	is	the	power	gain	of	the	UUT,	k	≈	1.38	×10-23	is	Boltzmann​s
constant,	and	T0	≈	290°	K	is	the	room	temperature.

If	you	use	the	RF	Signal	Analyzer	to	measure	the	output	noise	of	a	UUT,
the	result	of	the	measurement	contains	not	only	UUT	noise	but	also	noise
intrinsic	to	the	RF	Signal	Analyzer.	If	the	UUT	gain	(G)	is	known,	compute
the	noise	figure	of	the	UUT	with	the	following	equation:

where	Nrfsa	is	the	noise	measured	by	the	RF	Signal	Analyzer	when	its
input	is	terminated	with	a	matched	resistive	load	and	Nm	is	the	measured
noise	with	UUT	attached.	Both	Nrfsa	and	Nm	are	given	in	Watts;	G	is	a
linear	power	gain.

Measurement	Setup
A	typical	noise	figure	measurement	setup	is	shown	in	the	following	figure.

Typical	Noise	Figure	Measurement	Setup

Measuring	Noise	Figure	with	the	RF	Signal	Analyzer
To	measure	the	noise	figure,	complete	the	following	steps:

1.	 Turn	on	the	RF	Signal	Analyzer	and	let	it	warm	up	for	20	minutes.
2.	 Turn	on	the	UUT	if	it	is	active.
3.	 Set	the	RF	Signal	Analyzer	to	the	frequency	of	interest,	and

decrease	the	resolution	bandwidth	to	about	1	kHz.
4.	 Terminate	the	RF	Signal	Analyzer	input	with	a	broadband	resistive

load.
5.	 Obtain	an	average	reading	of	the	noise	level.	Make	sure	to	take

enough	readings	to	obtain	a	good	average.
6.	 Convert	a	reading	taken	in	dBm	to	watts	and	normalize	it	to	1	Hz

by	dividing	by	the	resolution	bandwidth.	This	value	is	the	noise
floor	of	the	RF	Signal	Analyzer	at	that	frequency,	which	is	Nrfsa	in
this	document.

7.	 Remove	the	load	termination	from	the	RF	Signal	Analyzer	input.
8.	 Attach	the	output	of	the	UUT	to	the	RF	Signal	Analyzer	input.
9.	 Input	a	known	small	signal	into	the	UUT	input.	This	signal	level

should	be	less	then	10	dB	below	the	1	dB	compression	point	of
the	UUT.

10.	 Measure	the	output	signal	level	on	the	RF	Signal	Analyzer	to
determine	the	gain	(G)	of	the	UUT.

11.	 Remove	the	signal	source	and	terminate	the	UUT	input	with	a
broadband	resistive	load.

12.	 Make	another	averaged	reading	of	the	noise	with	the	UUT
attached	by	repeating	steps	5	and	6.	This	average	is	the	noise
value	for	the	UUT	and	the	RF	Signal	Analyzer	(Nm).

13.	 Substitute	your	values	into	the	equation:

as	follows	to	determine	the	UUT	noise	figure:
The	value	from	step	6	is	Nrfsa

The	value	from	step	10	is	G
The	value	from	step	12	is	Nm

NI	5661	RF	Vector	Signal	Analyzer
This	section	includes	information	useful	about	the	NI	5661	hardware,
including	module	front	panels,	theory	of	operation,	signal	paths,	block
diagrams,	and	calibration	information.	The	NI	5661	is	a	modular	RF
vector	signal	analyzer	consisting	of	two	PXI	hardware	modules:

NI	5142	—	14	bit,	100	megasample-per-second	(MS/s)	IF	digitizer
module	with	onboard	signal	processing	(OSP)
NI	5600	—	wideband	RF	downconverter	module	with	input
frequencies	between	9	kHz	and	2.7	GHz.
Note		There	is	no	physical	device	labeled	the	"NI	PXI-5661."	The
NI	5661	RF	Vector	Signal	Analyzer	is	the	instrument	comprised	of
the	two	hardware	modules	(NI	5600	and	NI	5142)	and	the	software
included	in	the	kit.	Refer	to	the	NI	RF	Vector	Signal	Analyzers
Getting	Started	Guide	for	more	information	about	installing	and
configuring	your	hardware.

The	NI	5661	has	the	following	characteristics	and	features:
9	kHz	to	2.7	GHz	frequency	range
20	MHz	real-time	bandwidth
10	MHz	oven-controlled	crystal	oscillator	(OCXO)	timebase

±20	ppb	frequency	stability
±50	ppb	frequency	accuracy

>80	dB	spurious-free	dynamic	range
+30	dBm	full	signal	input	range
Up	to	64	MS	of	onboard	waveform	memory
Software	for	performing	frequency-domain	and	IQ	measurements
Four	slots	wide	PXI/3U	Compact	PCI	form	factor

The	NI	5661	follows	industry-standard	Plug	and	Play	specifications	for
the	PXI	bus	and	seamlessly	integrates	with	compliant	systems.

Note		Refer	to	the	NI	PXI-5661	Specifications	document	included
in	the	RF	Signal	Analyzer	kit	for	complete	hardware	specifications.

NI	5661	Theory	of	Operation
The	NI	5600	downconverter	module	performs	two	primary	functions:
frequency	shifting,	or	downconversion,	and	input	signal	conditioning.
Frequency	shifting	is	performed	using	a	tunable	oscillator	in	the
superheterodyne	signal	chain.
Input	signal	conditioning	is	accomplished	using	three	stages	of	mixer
conversion	and	two	sets	of	gain	attenuators	whose	levels	are
programmable.	The	first	set	of	attenuators	can	be	set	to	minimize
distortion	and	other	spurious	signals	when	input	levels	are	high	and	to
minimize	noise	when	input	levels	are	low.	Attenuator	levels	are	set	using
the	Attenuation	property	or	the	NIRFSA_ATTR_ATTENUATION	attribute.
The	second	set	of	attenuators	is	in	the	second	intermediate	frequency
(IF)	path	before	the	third	mixer	and	ensures	an	appropriate	output	signal
level	even	if	the	first	mixer	is	intentionally	driven	into	compression.	These
attenuators	are	also	set	when	performing	linearity	measurements.	For
more	information	on	proper	attenuation	levels,	refer	to	Guidelines	for
Making	Accurate	Measurements.

Hardware	Front	Panel	Connectors	and
Indicators
These	sections	describe	the	connectors	and	LED	indicators	on	the	front
panels	of	the	NI	5661	hardware	modules.	All	inputs	and	outputs	are	AC-
coupled.
Click	a	Module	Front	Panel	for	Description

NI	5600	Front	Panel
This	section	describes	the	connectors	and	LED	indicators	on	the
hardware	front	panel	of	the	NI	5600	RF	downconverter	module.	All	inputs
and	outputs	are	AC-coupled.

Connector Use
FREQ	REF	IN Routes	an	external	frequency	reference	signal	to	which

the	NI	5600	can	lock.	This	signal	can	be	propagated	to
the	PXI	backplane	when	the	NI	5600	is	installed	in	PXI
Slot	2.

10	MHz	OUT Connect	the	lower	10	MHz	OUT	connector	to	the	CLK	IN
connector	on	the	NI	5122	module	front	panel.	Both
connectors	output	replications	of	the	downconverter
10	MHz	frequency	reference	signal,	useful	for	driving
other	devices.	Each	replication	is	180	degrees	out-of-
phase	with	the	other.	The	signal	output	at	these
connectors	is	always	on	and	cannot	be	disabled.

10	MHz	OUT

PXI	10		MHz
I/O

Bidirectional	connection	to	the	PXI	10	MHz	backplane
clock.

This	connector	can	be	used	to	drive	the	PXI	10	MHz
backplane	clock	only	when	the	NI	5600	downconverter
module	is	installed	in	PXI	Slot	2.	To	drive	the	PXI
backplane	with	the	NI	5600	onboard	frequency
reference,	connect	the	PXI	10	MHz	I/O	connector	to	the
10	MHz	OUT	connector	on	the	NI	5600
RF	downconverter	module	front	panel	as	shown	in	NI	RF
Vector	Signal	Analyzers	Getting	Started	Guide.	Refer	to
the	niRFSA	Configure	Ref	Clock	VI	or	the
niRFSA_ConfigureRefClock	function	for	more
information.

This	connector	can	be	used	to	export	the	PXI	10	MHz
backplane	clock	when	the	NI	5600	downconverter	is
installed	in	any	PXI	slot.

OUTPUT Connect	to	the	INPUT	connector	on	the	NI	5142	digitizer
module	front	panel.

Outputs	the	frequency-translated	IF	signal	for	digitization.
INPUT Connect	to	the	analog	RF	input	signal	to	be	measured	by

the	RF	Vector	Signal	Analyzer.

The	following	table	provides	LED	and	indications	information	for	the
NI	5600	RF	downconverter	module	front	panel	LEDs:

LED Indications
POWER Indicates	the	basic	hardware	power	status	of	the	NI	5600

downconverter	module.	This	LED	functions	identically	to	the
ACCESS	LED	on	the	digitizer	module	front	panel.

OFF​The	module	is	not	yet	functional,	or	has	detected	a
problem	with	a	PXI	power	rail.
GREEN​The	module	is	functional	and	receiving	power.

STATUS Indicates	the	status	of	the	NI	5600	downconverter	module
PLLs.

OFF​The	module	is	in	an	uninitialized	state,	or	the
module	PLLs	are	attempting	to	lock.
GREEN​The	module	is	in	a	ready	state;	applicable	PLLs
are	locked.

Note		Refer	to	the	NI	5661	RF	Vector	Signal	Analyzer
Specifications	document	included	in	the	NI	5661	RF	Signal
Analyzer	kit	for	more	information	on	NI	5600	connectors.

NI	5142	Front	Panel
This	section	describes	the	connectors	on	the	hardware	front	panel	of	the
NI	5142	IF	digitizer	module.	All	inputs	and	outputs	are	AC-coupled.

Connector Function
CH	0,	CH
1

Analog	input	connection;	digitizes	data	and	triggers
acquisitions

Note		For	NI	5661	operation,	NI	recommends	that
you	use	CH	0	to	connect	the	NI	5142	to	the	NI	5600
downconverter.

TRIG External	analog	trigger	connection.
CLK	IN Imports	an	external	reference	or	sample	clock	to	the

digitizer
CLK	OUT Exports	the	digitizer	reference	or	sample	clock
AUX	I/O Provides	access	to	the	external	digital	trigger	lines,	PFI	0

and	PFI	1	(with	optional	cable)

Note		Refer	to	the	NI	PXI/PCI-5142	Specifications	for	more
information	on	NI	5142	connectors.

NI	5661	Signal	Paths
A	signal	takes	the	following	path	from	the	RF	Signal	Analyzer	front	panel
to	the	PXI	controller:

1.	 A	signal	enters	the	RF	Signal	Analyzer	through	the	INPUT	front
panel	connector	of	the	NI	5600	RF	downconverter	module.

2.	 The	NI	5600	RF	downconverter	module	"zooms	in"	on	a	20	MHz
block	of	spectrum	and	frequency-translates	it	to	center	around
15	MHz.	The	translated	IF	signal	is	sent	to	the	NI	5600
downconverter	module	OUTPUT	connector.

3.	 The	IF	signal	is	passed	from	the	NI	5600	RF	downconverter
module	front	panel	OUTPUT	connector	to	the	NI	5142	IF	digitizer
module	front	panel	INPUT	connector.

4.	 The	NI	5142	IF	digitizer	module	filters	and	conditions	the	signal
and	applies	gain	and	dither.

5.	 The	A/D	Converter	(ADC)	converts	the	signal	from	analog	to
digital.

6.	 The	data	is	sent	to	onboard	memory	(the	buffer).
7.	 The	data	is	transferred	to	the	host	computer.

RF	Attenuation	and	Signal	Levels
The	RF	downconverter	module	has	five	programmable	attenuators:	three
RF	attenuators	at	the	beginning	of	its	signal	chain	and	two	IF	attenuators
near	the	end	of	the	signal	chain.	They	are	set	up	in	the	following
sequence.

Attenuator	Sequence
Attenuator Asserted	Value
RF	Attenuator	1 20	dB
RF	Attenuator	2 20	dB
RF	Attenuator	3 10	dB
IF	Attenuator	1 20	dB
IF	Attenuator	2 10	dB

Attenuators	are	either	set/asserted	or	not	set/asserted.	This	architecture
allows	a	dynamic	range	of	RF	attenuation	from	0–50	dB	and	a	dynamic
range	of	IF	attenuation	from	0–30	dB.	Overall	attenuation	within	the
signal	chain	is	the	sum	of	all	the	attenuators	set,	for	a	range	of	0–80	dB.

Reference	Level	and	Mixer	Level
Understanding	the	parts	played	by	the	reference	level	and	the	mixer	level
is	key	to	setting	the	individual	attenuators.	NI-RFSA	sets	the	RF
attenuators	first.
Let	D	be	the	difference	between	the	reference	level	and	the	mixer	level,
such	that
D	=	referenceLevel	-	mixerLevel

This	formula	correlates	directly	with	the	range	of	possible	RF	attenuator
settings.	Recall	that	the	RF	attenuators	have	a	range	of	0	-	50	dB.	The
coercions	described	above	ensure	that
mixerLevel	<	referenceLevel

and	that
referenceLevel	-	mixerLevel	≤	50	dBm.

D	is	then	directly	proportional	to	the	total	RF	attenuation,	a	value
between	0-50	dB.
The	attenuators	are	set	as	follows	(refer	to	the	Attenuator	Sequence
table	above).

RF	Attenuator	Settings
D Attenuators
0 None	are	set
10 RF	Attenuator	3
20 RF	Attenuator	1
30 RF	Attenuators	1	and	3
40 RF	Attenuators	1	and	2
50 RF	Attenuators	1,	2,	and	3

Attenuation	in	NI-RFSA
You	modify	attenuation	using	the	Attenuation	property	or	the
NIRFSA_ATTR_ATTENUATION	attribute.

Hardware	Block	Diagrams
This	section	provides	hardware	block	diagrams	for	the	NI	5142	digitizer
and	the	NI	5600	RF	downconverter.	These	two	modules	are
interconnected	to	comprise	the	NI	5661	RF	signal	analyzer.

NI	5600	RF	Downconverter	Module	Block
Diagram
The	NI	5600	RF	downconverter	module	translates	any	20	MHz-wide
band	of	incoming	signal	to	center	at	15	MHz.	Thus	the	downconverter
module	converts	any	block	of	spectrum,	up	to	20	MHz	wide	and	centered
anywhere	between	9	kHz	and	2.7	GHz,	to	an	IF	band	between	5–
25	MHz.	The	NI	5600	hardware	always	downconverts	a	20	MHz	band.
This	IF	band	is	then	passed	to	the	NI	5142	digitizer	module	for	further
processing.
The	following	figure	shows	the	NI	5600	block	diagram.

NI	PXI-5142	IF	Digitizer	Block	Diagram
The	following	figure	shows	a	detailed	block	diagram	of	the	NI	PXI-5142.

Calibration
Every	NI	5661	RF	Vector	Signal	Analyzer	is	individually	calibrated	for
accurate	frequency	response	at	the	factory	and	ships	with	a	calibration
certificate	verifying	NIST-traceable	accuracy	levels.
During	frequency-response	calibration,	the	RF	Signal	Analyzer	is	used	to
measure	a	NIST-certified	high-precision	signal.	Any	error	in	the	returned
data	is	quantified	as	a	set	of	calibration	constants.	These	calibration
constants	are	used	by	the	software	to	calculate	and	apply	correction	to
your	analysis	based	upon	the	spectrum	of	interest.	For	more	information
on	applying	calibration	correction,	refer	to	the	example	programs	installed
with	the	RF	Signal	Analyzer.
To	preserve	specified	accuracy	and	NIST	traceability,	NI	recommends
returning	both	modules	of	the	RF	Signal	Analyzer	to	the	factory	for
annual	recalibration.	The	RF	downconverter	module	and	the	IF	digitizer
module	are	calibrated	independently	of	one	another,	not	as	a	combined
system.	For	more	information	on	calibration,	contact	NI	or	visit
ni.com/calibration.

javascript:WWW(WWW_Cal)

Programming	Reference
This	section	provides	reference	and	programming	information	regarding
the	NI-RFSA	API	and	its	supported	ADEs.
Refer	to	Fundamentals	for	an	introduction	to	basic	concepts	of	the	NI-
RFSA	VIs.	Refer	to	the	LabVIEW	Reference	for	more	information	about
using	specific	LabVIEW	VIs.	Refer	to	Related	Documentation	for	more
information	about	advanced	use	of	the	NI-RFSA	VIs,	and	setup	of	the	RF
vector	signal	analyzer	hardware	and	software.

Getting	Started	with	NI-RFSA
To	successfully	build	your	application,	install	NI-RFSA.	You	also	must
install	one	of	the	following	ADEs:

LabVIEW
LabWindows/CVI
Any	C	compiler	capable	of	calling	a	32-bit	DLL

Using	NI-RFSA	in	LabVIEW
This	topic	assumes	that	you	are	using	the	National	Instruments	LabVIEW
ADE	to	manage	your	code	development	and	that	you	are	familiar	with	the
ADE.
To	develop	an	NI-RFSA	application	in	LabVIEW,	follow	these	general
steps:

1.	 Open	an	existing	or	new	LabVIEW	VI.
2.	 From	the	Function	Palette,	locate	the	NI-RFSA	VIs	at	Instrument

I/O»NI-RFSA	.
3.	 Select	the	VIs	that	you	want	to	use	and	drop	them	on	the	block

diagram	to	build	your	application.

Example	Programs	for	LabVIEW
You	can	use	the	NI	Example	Finder	to	search	or	browse	examples.	NI-
RFSA	examples	are	classified	by	keyword,	so	you	can	search	for	a
particular	device	or	measurement	function.
To	browse	the	NI-RFSA	examples	available	in	LabVIEW,	launch
LabVIEW,	click	Open»Examples,	and	navigate	to	Hardware	Input	and
Output»Modular	Instruments»NI-RFSA	.
The	NI	RF	Signal	Analyzers	Readme	includes	the	default	installation
location	of	the	NI-RFSA	LabVIEW	examples.

Using	NI-RFSA	in	LabWindows/CVI
This	topic	assumes	that	you	are	using	the	LabWindows™/CVI™	ADE	to
manage	your	code	development	and	that	you	are	familiar	with	the	ADE.
To	develop	an	NI-RFSA	application	in	LabWindows/CVI,	follow	these
general	steps:

1.	 Open	an	existing	or	new	project	file.
2.	 Load	the	NI-RFSA	function	panel	at	IVI\Drivers\niRFSA\nirfsa.fp.
3.	 Use	the	function	panel	to	navigate	the	function	hierarchy	and

generate	function	calls	with	the	proper	syntax	and	variable	values.

Example	Programs	for	LabWindows/CVI
You	can	use	the	NI	Example	Finder	to	search	or	browse	examples.	NI-
RFSA	examples	are	classified	by	keyword,	so	you	can	search	for	a
particular	device	or	measurement	function.
To	browse	the	NI-RFSA	examples	available	in	LabWindows/CVI,	launch
LabWindows/CVI,	select	Help»NI	Example	Finder,	and	navigate	to
Hardware	Input	and	Output»Modular	Instruments»NI-RFSA.
You	can	find	example	programs	installed	at	the	location	specified	in	the
NI	RF	Signal	Analyzer	Readme.

Available	Add-On	Software	for	Measurement	and
Analysis
The	ni5660	VIs	perform	data	acquisition	using	the	RF	Signal	Analyzer.	NI
provides	add-on	software	toolkits,	such	as	the	Spectral	Measurements
Toolkit	(included)	and	the	Modulation	Toolkit,	which	extend	the	capability
of	the	RF	Signal	Analyzer	to	include	frequency-	and	modulation-domain
measurements	and	analysis	of	analog-	and	digitally-modulated	IF
signals.

Note		To	enable	proper	operation	of	the	RF	Signal	Analyzer,	you
must	install	the	Spectral	Measurements	Toolkit	CD	after	installing
the	NI-RFSA	CD.

Spectral	Measurements	Toolkit
Use	the	Spectral	Measurements	Toolkit	(SMT)	VIs	and	functions	for
frequency-domain	analysis,	measurement,	and	display	of	data	acquired
using	the	RF	Signal	Analyzer.	The	SMT	can	perform	several	operations,
including	the	following:

Zoom	FFT	processing	and	spectrum	averaging
Spectral	measurements	such	as	band	power,	adjacent	channel
power,	and	peak	frequency	and	magnitude	Spectrogram	display
and	analysis
RF	Vector	Signal	Analyzer	hardware	configuration	for	frequency-
domain	measurements

Refer	to	the	Spectral	Measurements	Toolkit	documentation,	accessible
from	Start»Programs»National	Instruments»Spectral	Measurements,
for	complete	information	about	SMT	VIs	and	functions.

Modulation	Toolkit
The	Modulation	Toolkit	integrates	with	SMT	and	NI-RFSA	for
modulation/demodulation	measurements	and	analysis.	The	Modulation
Toolkit	VIs	and	functions	generate	and	analyze	analog	and	digital
modulated	IF	signals	in	FSK,	MSK,	PSK,	QAM,	AM,	FM,	and	PM
formats.	The	Modulation	Toolkit	is	capable	of	measuring	several	aspects
of	signals	generated	by	a	unit	under	test,	including	the	following:

Modulation	quality	and	modulation	index
Signal	impairments,	bit	error	rate,	and	phase	noise
Carrier	frequency	drift	and	complementary	cumulative	distribution
functions	(CCDF)	values

Refer	to	the	Modulation	Toolkit	documentation,	accessible	from
Start»Programs»National	Instruments»Modulation,	for	complete
information	about	Modulation	Toolkit	VIs	and	functions.

LabVIEW	Reference
This	section	describes	the	VIs	and	properties	included	with	NI-RFSA	that
you	can	use	to	configure	and	operate	your	NI	RF	vector	signal	analyzer.

VI	Reference
Use	the	VIs	on	the	NI-RFSA	palette	to	build	the	block	diagram.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Initialize
Creates	a	new	session	for	the	device.	This	VI	performs	the	following
initialization	actions:

Creates	a	new	instrument	driver	session	to	the	RF	signal
analyzer,	using	the	downconverter	resource	name	you	specify.
Sends	initialization	commands	to	reset	both	hardware	modules	to
a	known	state	necessary	for	NI-RFSA	operation.
Note		Before	initializing	the	NI	5661,	an	NI	5142	IF	digitizer
module	must	be	associated	with	the	NI	5600	downconverter
module	in	MAX.	After	association,	pass	the	NI	5600	device	name
to	this	VI	to	initialize	both	modules.	To	change	the	digitizer
association,	modify	the	NI	5600	Properties	page	in	MAX,	or	use
the	Initialize	With	Options	VI	to	override	the	association	in	MAX.
Refer	to	the	NI	RF	Vector	Signal	Analyzers	Getting	Started
Guide,	installed	at	Start»Programs»National	Instruments»NI-
RFSA»Documentation	for	information	on	MAX	association.

resource	name	specifies	the	resource	name	of	the	device	to
initialize.
Example

# Device	Type Syntax

1 myDAQmxDevice NI-DAQmx	device,	device	name	=
"myDAQmxDevice"

2 myLogicalName IVI	logical	name	or	virtual	instrument,
name	=	"myLogicalName"

For	NI-DAQmx	devices,	the	syntax	is	the	device	name	specified	in
MAX,	as	shown	in	Example	1.	Typical	default	names	for	NI-
DAQmx	devices	in	MAX	are	Dev1	or	PXI1Slot1.	You	can	rename
an	NI-DAQmx	device	by	right-clicking	on	the	name	in	MAX	and
entering	a	new	name.	You	can	also	pass	in	the	name	of	an	IVI
logical	name	configured	with	the	IVI	Configuration	utility.	For
additional	information,	refer	to	the	IVI	topic	in	the	Measurement	&
Automation	Explorer	Help.

Caution		NI-DAQmx	device	names	are	not	case-sensitive.
However,	all	IVI	names,	such	as	logical	names,	are	case-
sensitive.	If	you	use	an	IVI	logical	name,	make	sure	the

niRFSA	Initialize	With	Options
Creates	a	new	session	for	the	device.	This	VI	performs	the	following
initialization	actions:

Creates	a	new	instrument	driver	session	to	the	RF	signal
analyzer,	using	the	downconverter	resource	name	you	specify.
Sends	initialization	commands	to	reset	both	hardware	modules	to
a	known	state	necessary	for	NI-RFSA	operation.
Note		Before	initializing	the	NI	5661,	an	NI	5142	IF	digitizer
module	must	be	associated	with	the	NI	5600	downconverter
module	in	MAX.	After	association,	pass	the	NI	5600	device	name
to	this	VI	to	initialize	both	modules.	To	change	the	digitizer
association,	modify	the	NI	5600	Properties	page	in	MAX,	or	use
this	VI	to	override	the	association	in	MAX.	Refer	to	the	NI	RF
Vector	Signal	Analyzers	Getting	Started	Guide,	installed	at
Start»Programs»National	Instruments»NI-
RFSA»Documentation	for	information	on	MAX	association.

resource	name	specifies	the	resource	name	of	the	device	to
initialize.
Example

# Device	Type Syntax

1 myDAQmxDevice NI-DAQmx	device,	device	name	=
"myDAQmxDevice"

2 myLogicalName IVI	logical	name	or	virtual	instrument,
name	=	"myLogicalName"

For	NI-DAQmx	devices,	the	syntax	is	the	device	name	specified	in
MAX,	as	shown	in	Example	1.	Typical	default	names	for	NI-
DAQmx	devices	in	MAX	are	Dev1	or	PXI1Slot1.	You	can	rename
an	NI-DAQmx	device	by	right-clicking	on	the	name	in	MAX	and
entering	a	new	name.	You	can	also	pass	in	the	name	of	an	IVI
logical	name	configured	with	the	IVI	Configuration	utility.	For
additional	information,	refer	to	the	IVI	topic	in	the	Measurement	&
Automation	Explorer	Help.

Caution		NI-DAQmx	device	names	are	not	case-sensitive.
However,	all	IVI	names,	such	as	logical	names,	are	case-
sensitive.	If	you	use	an	IVI	logical	name,	make	sure	the

Configuration	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Configuration	palette	to	configure
operations	with	your	RF	vector	signal	analyzer.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Configure	Acquisition	Type
Configures	whether	the	session	acquires	IQ	data	or	computes	a	power
spectrum	over	the	specified	frequency	range.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
acquisition	type	configures	the	type	of	acquisition.
IQ Configures	the	driver	for	IQ	acquisitions.
Spectrum Configures	the	driver	for	spectrum	acquisitions.

error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in

niRFSA	Configure	Reference	Level
Configures	the	reference	level.	The	reference	level	represents	the
maximum	expected	power	of	an	input	RF	signal.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
reference	level	specifies	the	expected	total	integrated	power	of
the	RF	input	signal	in	dBm.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or

IQ	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Configuration»IQ	palette	to
configure	the	RF	vector	signal	analyzer	for	an	IQ	acquisition.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Configure	IQ	Carrier	Frequency
Configures	the	IQ	carrier	frequency	of	the	RF	input	signal.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
carrier	frequency	specifies	the	carrier	frequency	of	the	acquired
RF	signal.	NI-RFSA	sets	the	IQ	Carrier	Frequency	property	to	this
value.	Refer	to	the	specifications	document	that	shipped	with	your
device	for	allowable	frequency	settings.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in

niRFSA	Configure	IQ	Rate
Configures	the	rate	at	which	the	device	samples	IQ	values.	Bandwidth	is
equal	to	the	coerced	IQ	rate	times	0.8.

Note		You	should	not	need	to	configure	an	IQ	rate	higher	than
25	MHz,	since	the	NI	PXI-5600	downconverter	bandwidth	is
20	MHz.	If	you	choose	to	configure	a	higher	IQ	rate,	you	may	see
aliasing	effects	at	negative	frequencies	because	the	IF	frequency
of	the	downconverter	is	at	15	MHz.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
IQ	rate	specifies	the	IQ	rate	for	the	acquisition.	The	value	is
expressed	in	S/s.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

niRFSA	Configure	Number	of	Samples
Configures	the	number	of	samples	in	a	finite	acquisition	or	configures
the	device	to	continuously	acquire	samples.	If	you	configure	the	device
for	finite	acquisition,	it	acquires	the	specified	number	of	samples	and
stops	the	acquisition.	You	can	configure	the	device	to	acquire	multiple
records	using	the	niRFSA	Configure	Number	of	Records	VI,	each	record
containing	the	number	of	samples	specified	in	this	VI.	The	default
number	of	records	to	acquire	is	1.
If	the	device	is	configured	to	continuously	acquire	samples,	it	continues
acquiring	data	until	you	call	niRFSA	Abort	to	abort	the	acquisition.	The
device	stores	data	in	onboard	memory	in	a	circular	fashion.	Once	the
device	fills	the	memory,	it	starts	overwriting	previously	acquired	data
from	the	beginning	of	the	memory	buffer.	Retrieve	the	samples	using	the
niRFSA	Fetch	IQ	VI	as	they	are	being	acquired	to	avoid	data	being
overwritten	before	you	can	retrieve	it.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
number	of	samples	is	finite	specifies	whether	to	configure	the
device	to	acquire	a	finite	number	of	samples	or	to	acquire	samples
continuously.
samples	per	record	specifies	the	number	of	samples	per	record	if
number	of	samples	is	finite	is	set	to	TRUE.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

niRFSA	Configure	Number	of	Records
Configures	the	number	of	records	in	a	finite	acquisition	or	configures	the
device	to	continuously	acquire	records.	Notice	that	you	can	only
configure	the	device	to	acquire	multiple	records	if	number	of	samples
is	finite	is	set	to	TRUE.
If	you	configure	the	device	to	acquire	records	continuously,	it	continues
acquiring	records	until	you	call	niRFSA	Abort	to	abort	the	acquisition.
The	device	stores	records	in	onboard	memory	in	a	circular	fashion.
Once	the	device	fills	the	memory,	it	starts	overwriting	previously
acquired	records	from	the	beginning	of	the	memory	buffer.	Fetch	the
records	as	they	are	being	acquired	to	avoid	data	being	overwritten
before	you	can	retrieve	it.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
number	of	records	is	finite	set	to	TRUE	to	configure	the	device
to	stop	after	acquiring	the	specified	number	of	records.	Set	to
FALSE	to	acquire	records	continuously	until	you	abort	the
acquisition.
number	of	records	specifies	the	number	of	records	to	acquire	if
number	of	records	is	finite	is	set	to	TRUE.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the

Spectrum	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Configuration»Spectrum	palette
to	configure	the	RF	vector	signal	analyzer	for	a	spectrum	acquisition.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Configure	Spectrum	Frequency
Configures	the	hardware	for	a	spectrum	frequency	acquisition.

Note		If	you	configure	the	spectrum	span	(stop	frequency	-
start	frequency)	to	a	value	larger	than	20	MHz,	RFSA	performs
multiple	acquisitions	and	combines	them	into	a	spectrum	of	the
size	you	requested.

Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

niRFSA	Configure	Spectrum	Frequency	Center	Span
Configures	the	span	and	center	frequency	of	a	spectrum	acquisition.	An
acquisition	consists	of	a	span	of	data	surrounding	the	center	frequency.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
frequency	specifies	the	center	frequency	in	a	spectrum
acquisition.	The	value	is	expressed	in	Hertz.
span	specifies	the	span	of	a	spectrum	acquisition.	The	value	is
expressed	in	Hertz.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

niRFSA	Configure	Spectrum	Frequency	Start	Stop
Configures	the	start	and	stop	frequency	of	a	spectrum	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
start	frequency	specifies	the	lower	band	of	a	span	of	frequencies.
stop	frequency	specifies	the	upper	band	of	a	span	of
frequencies.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or

niRFSA	Configure	Resolution	Bandwidth
Configures	the	resolution	bandwidth	of	a	spectrum	acquisition.	The
resolution	bandwidth	controls	the	width	of	the	frequency	bins	in	the
power	spectrum	computed	by	NI-RFSA.	A	larger	value	for	resolution
bandwidth	means	the	frequency	bins	are	wider,	and	hence	you	get
fewer	bins	or	spectral	lines.
By	default,	the	resolution	bandwidth	value	corresponds	to	the	3	dB
bandwidth	of	the	window	type	NI-RFSA	uses	to	compute	the	spectrum.
To	specify	the	frequency	bin	width	directly,	change	the	resolution
bandwidth	type	attribute	to	bin	width.	Refer	to	the	Resolution	Bandwidth
Type	property	for	more	information.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
resolution	bandwidth	(Hz)	specifies	the	resolution	bandwidth	of	a
spectrum	acquisition.	The	value	is	expressed	in	hertz.	Configure
the	type	of	resolution	bandwidth	with	the	Resolution	Bandwidth
Type	property.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error

Trigger	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Configuration»Trigger	palette	to
configure	the	triggers	for	an	RF	vector	signal	analyzer	acquisition.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Configure	Trigger
Configures	the	Start,	Reference,	and	Advance	triggers.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

niRFSA	Disable	Ref	Trigger
Configures	the	device	to	not	wait	for	a	Reference	trigger	to	mark	a
reference	point	within	a	record.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Configure	Digital	Edge	Ref	Trigger
Configures	the	device	to	wait	for	a	digital	edge	Reference	trigger	to
mark	a	reference	point	within	the	record.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
source	specifies	the	source	of	the	digital	edge	for	the	Reference
trigger.
PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
pretrigger	samples	specifies	the	number	of	samples	to	store	for
each	record	that	were	acquired	in	the	time	period	immediately
before	the	trigger	occurred.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.

niRFSA	Configure	Software	Edge	Ref	Trigger
Configures	the	device	to	wait	for	a	software	Reference	trigger	to	mark	a
reference	point	within	the	record.	The	device	will	wait	until	you	call	the
niRFSA	Send	Software	Edge	Trigger	VI	to	assert	the	trigger.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
pretrigger	samples	specifies	the	number	of	samples	to	store	for
each	record	that	were	acquired	in	the	time	period	immediately
before	the	trigger	occurred.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.

niRFSA	Configure	IQ	Power	Edge	Ref	Trigger
Configures	the	device	to	wait	for	the	complex	power	of	the	IQ	data	to
cross	the	specified	threshold	to	mark	a	reference	point	within	the	record.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
source	specifies	the	source	of	the	RF	signal	for	the	power	edge
Reference	trigger.	The	only	supported	value	is	"0."
slope	specifies	whether	the	device	will	detect	a	rising	or	falling
edge	on	the	trigger	signal.
level	specifies	the	threshold	above	or	below	which	the	device	will
trigger.
pretrigger	samples	specifies	the	number	of	samples	to	store	for
each	record	that	were	acquired	in	the	time	period	immediately
before	the	trigger	occurred.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI

niRFSA	Disable	Start	Trigger
Configures	the	device	to	not	wait	for	a	Start	trigger	at	the	beginning	of
the	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Configure	Digital	Edge	Start	Trigger
Configures	the	device	to	wait	for	a	digital	edge	Start	trigger	at	the
beginning	of	the	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
source	specifies	the	source	of	the	digital	edge	for	the	Start	trigger.
PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument

niRFSA	Configure	Software	Edge	Start	Trigger
Configures	the	device	to	wait	for	a	software	Start	trigger	at	the
beginning	of	the	acquisition.	The	device	will	wait	until	you	call	the
niRFSA	Send	Software	Edge	Trigger	VI	to	assert	the	trigger.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Configure	Digital	Edge	Advance	Trigger
Configures	the	device	to	wait	for	a	digital	edge	Advance	trigger	between
records.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
source	specifies	the	source	of	the	digital	edge	for	the	Advance
trigger.
PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

edge	specifies	the	edge	to	detect.	You	can	choose	Rising	Edge
or	Falling	Edge.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

niRFSA	Configure	Software	Edge	Advance	Trigger
Configures	the	device	to	wait	for	a	software	Advance	trigger	between
records.	The	device	waits	until	you	call	the	niRFSA	Send	Software	Edge
Trigger	VI	to	assert	the	trigger.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Disable	Advance	Trigger
Configures	the	device	to	not	wait	for	an	Advance	trigger	between
records	of	a	multirecord	acquisition.

error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Send	Software	Edge	Trigger
Sends	a	trigger	to	the	device	when	you	use	the	niRFSA	Configure
Trigger	VI	to	choose	a	software	version	of	the	trigger	and	the	device	is
waiting	for	the	trigger	to	be	sent.	This	VI	also	can	be	used	to	override	a
hardware	trigger.
This	VI	returns	an	error	in	the	following	situations:

You	configure	an	invalid	trigger
You	are	in	spectrum	mode
You	have	not	previously	called	the	niRFSA	Initiate	VI.

NI-Scope	handles	other	errors.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
trigger	specifies	the	software	signal	to	send.	You	can	send	a
Start,	Reference,	Advance,	or	Arm	Reference	trigger.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

niRFSA	Export	Signal
Routes	signals	(triggers,	clocks,	and	events)	to	the	specified	output
terminal.
Details

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
signal	specifies	the	type	of	signal	to	route.	You	can	choose	to
export	the	Start,	Reference,	and	Advance	triggers	and	the	Ready
for	Start,	Ready	for	Advance,	Ready	for	Ref,	End	of	Record,	and
Done	events.
output	terminal	specifies	the	terminal	where	the	signal	will	be
exported.	You	can	choose	not	to	export	any	signal.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.

Details
If	you	export	a	signal	with	this	VI	and	commit	the	session,	the	signal	is
routed	to	the	output	terminal	you	specify.	If	you	then	reconfigure	the
signal	to	have	a	different	output	terminal,	the	previous	output	terminal	is
tristated	when	the	session	is	next	committed.	If	you	change	the	output
terminal	to	Do	Not	Export	and	commit,	the	previous	output	terminal	is
tristated.
Any	signals,	except	for	PXI	trigger	lines,	that	are	exported	within	a
session	persist	after	the	session	closes	to	prevent	signal	glitches
between	sessions.	PXI	trigger	lines	are	always	set	to	tristate	when	a
session	is	closed.	If	you	wish	to	have	the	terminal	that	the	signal	was
exported	to	tristated	when	the	session	closes,	first	change	the	output
terminal	for	the	exported	signal	to	Do	Not	Export	and	commit	the
session	again	before	closing	it.
You	can	also	tristate	all	PFI	lines	by	setting	the	reset	device	parameter
in	the	niRFSA	Initialize	VI	or	by	using	the	niRFSA	Reset	VI.

Clock	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Configuration»Clock	palette	to
configure	the	clock	signals	for	an	RF	vector	signal	analyzer	acquisition.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Configure	Ref	Clock
Configures	the	NI-RFSA	device	reference	clock.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
source	specifies	the	reference	clock	source.
OnboardClock Lock	the	NI-RFSA	device	to	the	NI	PXI-5600

onboard	clock.
RefIn Lock	the	NI-RFSA	device	to	the	external	REF	IN

connector	on	the	NI	PXI-5600.
PXI_Clk10 Lock	the	NI-RFSA	device	to	the	PXI	backplane

clock	using	the	NI	PXI-5600.	You	must	connect
the	PXI	10	MHz	connector	to	the	REF	IN
connector	on	the	NI	PXI-5600	front	panel	to	use
this	option.

clock	rate	specifies	the	reference	clock	rate,	expressed	in	Hertz.
The	default	value	is	10	MHz,	which	is	the	only	currently	supported
value.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.

niRFSA	Configure	PXI	Chassis	Clk10
Specifies	the	signal	to	drive	the	10	MHz	reference	clock	on	the	PXI
backplane.	This	option	can	only	be	configured	when	the	NI	PXI-5600	is
in	Slot	2	of	the	PXI	chassis.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
PXI	Clk10	source	specifies	the	signal	to	drive	the	10	MHz
reference	clock	on	the	PXI	backplane.	This	option	can	only	be
configured	when	the	NI	PXI-5600	is	in	Slot	2	of	the	PXI	chassis.
None The	device	does	not	drive	the	PXI	10	MHz

backplane	reference	clock.
OnboardClock The	device	drives	the	PXI	10	MHz	backplane

reference	clock	with	the	NI	PXI-5600	onboard
clock.	You	must	connect	the	10	MHz	OUT
connector	to	the	PXI	10	MHz	I/O	on	the	NI	PXI
5600	front	panel	to	use	this	option.

RefIn The	device	drives	the	PXI	10	MHz	backplane
reference	clock	with	the	reference	source
attached	to	the	NI	PXI-5600	REF	IN	connector.
You	must	connect	the	10	MHz	OUT	connector	to
the	PXI	10	MHz	I/O	on	the	NI	PXI	5600	front
panel	to	use	this	option.

error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument

Acquisition	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Acquisition	palette	to	control
acquisition	operations	with	your	RF	vector	signal	analyzer.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Read	Power	Spectrum	(Cluster)
Initiates	a	spectrum	acquisition	and	returns	power	spectrum	data.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
power	spectrum	returns	power	spectrum	data.

f0	returns	the	start	frequency	of	the	spectrum,	expressed	in
Hertz.
df	returns	the	frequency	interval	between	data	points	in	the
spectrum,	expressed	in	Hertz
data	returns	the	acquired	data	as	a	cluster.

t0	returns	the	trigger	(start)	time	of	the	acquired	signal.
dt	returns	the	time	interval	between	data	points	in	the
acquired	signal.	The	IQ	data	sampling	rate	is	the
reciprocal	of	this	value.

niRFSA	Read	IQ
Initiates	an	acquisition	and	fetches	a	single	IQ	data	record.	Do	not	use
this	VI	if	you	have	configured	the	device	to	continuously	acquire	data
samples	or	to	acquire	multiple	records.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

niRFSA	Read	IQ	(Complex	WDT	1Rec	1Chan)
Returns	the	IQ	data	as	a	complex	waveform	data	type	(WDT).

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.
timestamp	type	specifies	the	time	format	of	the	data.
Relative When	converted	to	a	DBL	value,	the	timestamp

corresponds	to	the	difference	in	seconds	between	the
first	sample	returned	and	the	Reference	trigger
location.

Absolute The	timestamp	corresponds	to	the	date	and	time	of	the
acquisition	of	the	first	sample	returned.

error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	baseband	(downconverted)	time-domain	data	for
demodulation.
error	out	contains	error	information.	If	error	in	indicates	that	an

niRFSA	Read	IQ	(Complex	Cluster	1Rec	1Chan)
Returns	the	IQ	data	as	a	complex	cluster.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	acquired	waveform.

t0	returns	the	trigger	(start)	time	of	the	acquired	signal.	The
timestamp	corresponds	to	the	difference	in	seconds	between
the	first	sample	returned	and	the	Reference	trigger	location.
dt	returns	the	time	interval	between	data	points	in	the
acquired	signal.	The	IQ	data	sampling	rate	is	the	reciprocal
of	this	value.
Y	returns	the	complex-valued	time	domain	data	array.	The
real	and	imaginary	parts	of	this	complex	data	array
correspond	to	the	in-phase	(I)	and	quadrature-phase	(Q)
data,	respectively.	To	calculate	the	instantaneous	power	of	a

niRFSA	Initiate
Starts	an	IQ	acquisition.	You	may	use	this	function	in	conjunction	with
the	niRFSA	Fetch	IQ	VI	to	retrieve	acquired	IQ	data,	or	use	the	niRFSA
Read	IQ	VI	to	both	initiate	the	acquisition	and	retrieve	IQ	data	at	one
time.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Fetch	IQ
Transfers	acquired	waveform	data	from	device	memory	to	PC	memory.
The	data	was	acquired	to	onboard	memory	previously	by	the	hardware
after	it	was	initiated.	If	the	number	of	samples	specified	in	samples	to
read	is	not	available	after	the	time	duration	specified	in	timeout,	this	VI
returns	no	data	with	a	timeout	error.
This	VI	is	not	necessary	if	you	use	the	niRFSA	Read	IQ	VI,	as	the	fetch
is	performed	as	part	of	that	function.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

niRFSA	Fetch	IQ	(Complex	WDT	1Rec	1Chan)
Fetches	IQ	data	from	a	single	record	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
timestamp	type	specifies	the	time	format	of	the	data.
Relative When	converted	to	a	DBL	value,	the	timestamp

corresponds	to	the	difference	in	seconds	between	the
first	sample	returned	and	the	Reference	trigger
location.

Absolute The	timestamp	corresponds	to	the	date	and	time	of	the
acquisition	of	the	first	sample	returned.

record	to	fetch	specifies	the	record	to	retrieve.	Record	numbers
are	zero-indexed.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument

niRFSA	Fetch	IQ	(Complex	Cluster	1Rec	1Chan)
Fetches	IQ	data	from	a	single	record	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
record	to	fetch	specifies	the	record	to	retrieve.	Record	numbers
are	zero-indexed.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	acquired	data	as	a	cluster.

t0	returns	the	trigger	(start)	time	of	the	acquired	signal.	The
timestamp	corresponds	to	the	difference	in	seconds	between
the	first	sample	returned	and	the	Reference	trigger	location.
dt	returns	the	time	interval	between	data	points	in	the

niRFSA	Fetch	IQ	(1D	I16)
Fetches	binary	IQ	data	from	a	single	record	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
record	to	fetch	specifies	the	record	to	retrieve.	Record	numbers
are	zero-indexed.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	acquired	complex	waveform.	The	array	is
composed	of	interleaved	I	and	Q	samples,	where	the	order	of	the
array	is	as	shown:

Array[0]	=	I0

niRFSA	Fetch	IQ	(1D	Complex	WDT	NRec	1Chan)
Fetches	IQ	data	from	a	single	record	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
timestamp	type	specifies	the	time	format	of	the	data.
Relative When	converted	to	a	DBL	value,	the	timestamp

corresponds	to	the	difference	in	seconds	between	the
first	sample	returned	and	the	Reference	trigger
location.

Absolute The	timestamp	corresponds	to	the	date	and	time	of	the
acquisition	of	the	first	sample	returned.

number	of	records	specifies	the	number	of	records	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetches	all	records	in	an
acquisition	starting	with	the	record	specified	by	starting	record.
Record	numbers	are	zero-indexed.
starting	record	specifies	the	first	record	to	retrieve.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in

niRFSA	Fetch	IQ	(1D	Complex	Cluster	NRec	1Chan)
Fetches	IQ	data	from	multiple	records	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
number	of	records	specifies	the	number	of	records	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetches	all	records	in	an
acquisition	starting	with	the	record	specified	by	starting	record.
Record	numbers	are	zero-indexed.
starting	record	specifies	the	first	record	to	retrieve.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	acquired	data	as	a	cluster.

niRFSA	Fetch	IQ	(2D	I16)
Fetches	binary	IQ	data	from	multiple	records	in	an	acquisition.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
samples	to	read	specifies	the	number	of	samples	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetch	all	samples.
timeout	specifies	in	seconds	the	time	allotted	for	the	function	to
complete	before	returning	a	timeout	error.	A	value	of	-1	specifies
the	VI	waits	until	all	data	is	available.	A	value	of	0	specifies	the	VI
returns	available	data	immediately.
number	of	records	specifies	the	number	of	records	to	fetch.	A
value	of	-1	specifies	that	NI-RFSA	fetches	all	records	in	an
acquisition	starting	with	the	record	specified	by	starting	record.
Record	numbers	are	zero-indexed.
starting	record	specifies	the	first	record	to	retrieve.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
data	returns	the	acquired	complex	waveform	per	record.	Each
record	occupies	a	row	of	the	2D	array.	A	record	is	composed	of

niRFSA	Abort
Stops	an	acquisition	previously	started	with	the	niRFSA	Initiate	VI.
Unless	you	want	to	stop	an	acquisition	before	it	is	complete	or	you	are
continuously	acquiring	data,	calling	this	VI	is	optional.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Close
Closes	the	session	to	the	device.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

Utility	Subpalette
Use	the	VIs	located	on	the	NI-RFSA»Utility	palette	to	access	utility
features	of	NI-RFSA.
Click	the	icons	for	VI	and	function	descriptions.

niRFSA	Check	Acquisition	Status
Checks	the	status	of	the	acquisition.	Use	this	VI	to	check	for	any	errors
that	may	occur	during	signal	acquisition	or	to	check	whether	the	device
has	completed	the	acquisition	operation.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
done?	returns	TRUE	when	signal	acquisition	is	complete.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or

niRFSA	Commit
Commits	settings	to	hardware.	Calling	this	VI	is	optional.	Settings	are
automatically	committed	to	hardware	when	you	call	the	niRFSA	Initiate,
niRFSA	Read	IQ,	or	niRFSA	Read	Power	Spectrum	(Cluster)	VI.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Reset
Resets	the	device	to	a	known	initialization	state.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Perform	Thermal	Correction
Measurements	are	affected	by	changes	in	temperature.	NI-RFSA
internally	acquires	the	temperature	every	time	you	initiate	an	acquisition.
If	you	are	performing	a	very	long	continuous	acquisition,	National
Instruments	recommends	calling	this	VI	once	every	10	minutes	in	a
stable	temperature	environment	to	periodically	update	temperature
calibration.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in

niRFSA	Get	IQ	Components
Separates	a	complex	IQ	array	into	an	I	array	and	a	corresponding	Q
array.	This	utility	can	be	used	to	conveniently	graph	I	or	Q	or	to	perform
operations	that	apply	to	one	or	the	other	component.
Use	the	pull-down	menu	to	select	an	instance	of	this	VI.

Select	an	instance

niRFSA	Get	IQ	Components	(Complex	Cluster)
Returns	the	I	and	Q	data	as	a	complex	cluster.

data	specifies	the	complex	waveform	to	split	into	I	and	Q
components.

t0	specifies	the	trigger	(start)	time	of	the	acquired	signal.
dt	specifies	the	time	interval	between	data	points	in	the
acquired	signal.	The	IQ	data	sampling	rate	is	the	reciprocal
of	this	value.
Y	specifies	the	complex-valued	time	domain	data	array.	The
real	and	imaginary	parts	of	this	complex	data	array
correspond	to	the	in-phase	(I)	and	quadrature-phase	(Q)
data,	respectively.	To	calculate	the	instantaneous	power	of	a
sampled	IQ	point,	use	the	equation	(I	2	+	Q	2)/2R,	where	R	is
the	input	impedance	in	ohms.	For	NI	RF	signal	analyzers,	R
=	50	ohms.

error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

I	returns	the	I	component	of	the	data.
Q	returns	the	Q	component	of	the	data.
number	of	samples	returns	the	number	of	samples	in	the	input
waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

niRFSA	Get	IQ	Components	(Complex	WDT)
Returns	the	I	and	Q	data	as	a	waveform	data	type.

data	specifies	the	complex	waveform	to	split	into	I	and	Q
components.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

I	returns	the	I	component	of	the	data.
Q	returns	the	Q	component	of	the	data.
number	of	samples	returns	the	number	of	samples	in	the	input
waveform.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

niRFSA	Get	Fetch	Backlog
Returns	the	number	of	points	acquired	that	have	not	been	fetched	yet..

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
record	number	specifies	the	record	from	which	to	read	the
backlog
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a
warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.

backlog	returns	the	number	of	samples	available	to	read	for	the
requested	record.
instrument	handle	out	passes	a	reference	to	your	instrument

niRFSA	Self	Test
Performs	a	self-test	on	the	NI-RFSA	device	and	returns	the	test	result.
This	VI	performs	a	simple	series	of	tests	ensuring	the	NI-RFSA	device	is
powered	up	and	responding.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
self	test	result	returns	the	value	from	the	device	self-test.	Zero
means	success.
self	test	message	returns	the	self-test	response	string	from	the
NI-RFSA	device.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a

niRFSA	Revision	Query
Returns	the	revision	numbers	of	the	NI-RFSA	driver.

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
instrument	driver	revision	returns	the	instrument	driver	software
revision	numbers	in	the	form	of	a	string.	The	value	of	the	Specific
Driver	Revision	property	is	returned.
firmware	revision	returns	the	instrument	firmware	revision
numbers	in	the	form	of	a	string.	The	value	of	the	Instrument
Firmware	Revision	property	is	returned.
error	out	contains	error	information.	If	error	in	indicates	that	an
error	occurred	before	this	VI	ran,	error	out	contains	the	same	error
information.	Otherwise,	it	describes	the	error	status	that	this	VI
produces.

status	is	TRUE	(X)	if	an	error	occurred	or	FALSE
(checkmark)	to	indicate	a	warning	or	that	no	error	occurred.
code	the	error	or	warning	code.	If	status	is	TRUE,	code	is	a
non-zero	error	code.	If	status	is	FALSE,	code	is	0	or	a

niRFSA	Get	Spectral	Info	for	SMT
Returns	a	cluster	containing	information	about	the	power	spectrum	NI-
RFSA	computes	that	is	needed	by	the	Spectral	Measurements	Toolkit
(SMT).

instrument	handle	identifies	your	instrument	session.	instrument
handle	is	obtained	from	the	niRFSA	Initialize	or	the	niRFSA
Initialize	With	Options	VIs	and	identifies	a	particular	instrument
session.
error	in	(no	error)	describes	error	conditions	that	occur	before
this	VI	runs.

status	is	TRUE	(X)	if	an	error	occurred	before	this	VI	ran	or
FALSE	(checkmark)	to	indicate	a	warning	or	that	no	error
occurred	before	this	VI	ran.	The	default	is	FALSE.
code	is	the	error	or	warning	code.	The	default	is	0.	If	status
is	TRUE,	code	is	a	negative	error	code.	If	status	is	FALSE,
code	is	0	or	a	warning	code.
source	describes	the	origin	of	the	error	or	warning	and	is,	in
most	cases,	the	name	of	the	VI	that	produced	the	error	or
warning.	The	default	is	an	empty	string.

instrument	handle	out	passes	a	reference	to	your	instrument
session	to	the	next	VI.	instrument	handle	is	obtained	from	the
niRFSA	Initialize	or	the	niRFSA	Initialize	With	Options	VIs	and
identifies	a	particular	instrument	session.
spectral	info	returns	properties	of	the	computed	spectrum	such
as	spectrum	type,	spectrum	scale	(linear	or	dB),	the	window	type
used	by	the	VI	to	compute	the	spectrum,	window	size,	and	FFT
size.	Connect	this	parameter	to	subsequent	VIs	that	contain	the
spectral	info	parameter.	Do	not	modify	the	values.

spectrum	type
linear/dB	specifies	whether	the	spectrum	scale	is	linear	or	in
dB.
window	specifies	the	time-domain	window	the	VI	uses.
window	size
FFT	size

error	out	contains	error	information.	If	error	in	indicates	that	an

niRFSA	Property	Node
The	niRFSA	Property	Node	is	used	to	set	or	get	properties.

Some	NI-RFSA	properties	are	channel	based.	When	a	property	is
channel	based,	you	must	specify	an	active	channel	before	setting	or
getting	properties.

NI-RFSA	Express	(IQ)
Configures	and	acquires	data	from	National	Instruments	RF	signal
analyzers	using	NI-RFSA	in	IQ	mode.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

Dialog	Box	Options
Parameter Description
Configuration Contains	the	following	options:

Device—Specifies	the	RF	signal	analyzer	used.
This	ring	control	lists	all	NI	RF	signal	analyzers
installed	on	this	computer	that	can	be	used	by	this
Express	VI.	If	you	relaunch	the	VI	and	the
selected	RF	signal	analyzer	is	dimmed,	it	is	no
longer	available.
Carrier	frequency	(Hz)—Specifies	the	carrier
frequency	of	the	acquired	RF	signal.
Reference	level	(dBm)—Specifies	the	maximum
expected	power	of	the	RF	signal	to	be	acquired.
Attenuation—Specifies	whether	the	attenuation	is
automatically	determined	or	user-specified.

Attenuation	(dB)—Specifies	the
downconverter's	overall	attenuation	of	the
input	RF	signal.

IQ	rate	(Samples/s)—Specifies	the	IQ	rate	of	the
waveform.
Acquire—Specifies	whether	to	acquire	a	finite
number	of	samples	or	to	acquire	samples
continuously	until	the	acquisition	is	stopped.
IQ	samples—For	a	finite	acquisition,	specifies	the
number	of	samples	to	be	acquired.	For	a
continuous	acquisition,	specifies	the	number	of
samples	to	be	fetched	every	time	the	data	is	read.

Trigger Contains	the	following	options:
Reference	trigger	type—Specifies	the	reference
trigger	type	for	the	acquisition.
Pretrigger	samples—Specifies	the	number	of
pretrigger	samples	the	device	must	receive	before
the	Reference	trigger	is	acknowledged.
Of	the	total	number	of	samples	acquired,	the
number	of	samples	configured	as	Pretrigger

samples	are	acquired	immediately	prior	to	the
trigger.	The	remaining	samples	are	acquired
immediately	after	the	trigger.
Reference	trigger	source—Specifies	the	trigger
source.	The	RF	signal	analyzer	waits	for	the
specified	trigger	to	start	the	acquisition.
Edge—Specifies	whether	to	trigger	on	a	rising	or
falling	edge	of	the	trigger	signal.
Level	(dBm)—Specifies	the	trigger	threshold	for
the	IQ	power	edge	trigger.
Minimum	quiet	time	(s)—Configures	the
minimum	time	the	signal	must	be	above	or	below
the	trigger	level	before	the	IQ	Power	Edge	trigger
is	armed.	If	Slope	is	set	to	Rising,	the	signal	must
be	below	the	trigger	level	for	the	specified	time.	If
Slope	is	set	to	Falling,	the	signal	must	be	above
the	trigger	level	for	the	specified	time.	Set	this
control	when	triggering	on	burst	signals	to	avoid
triggering	in	the	middle	of	a	burst.
Max	time	(s)—Specifies	how	long	to	allow	for	the
acquisition	to	complete	before	reporting	a	timeout
error.

Advanced Contains	the	following	options:
Reference	clock	source—Specifies	the	source	of
the	reference	clock	signal.	Only	certain
combinations	of	Reference	clock	source	and	PXI
Chassis	Clk10	source	are	valid.
PXI	chassis	Clk10	source—Specifies	the	signal
driven	to	the	10	MHz	reference	clock	on	the	PXI
backplane.	Only	certain	combinations	of
Reference	clock	source	and	PXI	Chassis	Clk10
source	are	valid.
Use	relative	initial	time—Specifies	if	the
timestamp	value	of	the	waveform	is	absolute	or
relative	to	the	trigger	point.
Digitizer	sample	clock	source—Specifies	the

digitizer	sample	clock	source.	Select	one	of	the
following	options:

Onboard	clock—Uses	the	onboard	sample
clock	of	the	digitizer.
External—Coerce	IQ	rate—Uses	an
external	sample	clock.	Select	this	option	if
your	external	clock	has	fixed	rates.	The	IQ
rate	is	coerced	based	upon	the	rate	of	the
external	clock.
External—Coerce	external	clock—Uses	an
external	sample	clock.	Select	this	option	if
your	external	clock	has	a	flexible	rate.	The
clock	rate	is	calculated	from	the	IQ	rate	and
the	external	clock	should	be	set	accordingly.

External	clock	rate	(Hz)—This	parameter	is
defined	as	one	of	the	following:

When	Digitizer	sample	clock	source	is	set
to	External—Coerce	IQ	Rate,	specifies	the
external	clock	rate.	The	IQ	rate	is	coerced
based	upon	this	value.
When	Digitizer	sample	clock	source	is	set
to	External—Coerce	external	clock,	displays
the	external	clock	rate,	which	is	calculated
from	the	IQ	rate.	The	external	clock	should
be	set	to	this	value.

Output	data	type—Specifies	the	data	type	of	the
acquired	waveform.

Graph	view Specifies	how	the	acquired	waveform	is	displayed	on	the
graph.	Select	from	the	following	options:

I	vs.	Time
Q	vs.	Time
Power	vs.	Time

Autoscale
graph

Specifies	whether	to	autoscale	the	Y	scale	of	the	graph.
Checked—The	Y	scale	of	the	graph	is	autoscaled	every
time	the	graph	is	updated.
Unchecked—The	Y	scale	of	the	graph	remains

unchanged	when	the	graph	is	updated.

Block	Diagram	Inputs
Parameter Description
close Determines	whether	the	instrument	session	remains	open

when	the	VI	finishes	execution.	Use	this	parameter	for	loop
optimization	by	setting	it	to	FALSE	on	all	iterations	except
the	last.	The	default	is	TRUE.
Note:	This	input	is	not	intended	for	sharing	the	session
between	Express	VIs.	If	a	loop	contains	multiple	Express	VIs
that	use	the	same	device,	you	must	wire	in	TRUE	for	this
input.

max	time Specifies	the	timeout	value	for	the	Express	VI.
error	in Describes	error	conditions	that	occur	before	this	Express	VI

runs.

Block	Diagram	Outputs
Parameter Description
data Contains	the	data	acquired	by	the	device.
error	out Contains	error	information.	If	error	in	indicates	that	an	error

occurred	before	this	Express	VI	runs,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error
status	that	this	Express	VI	produces.

NI-RFSA	Express	(Spectrum)
Configures	and	acquires	data	from	National	Instruments	RF	signal
analyzers	using	NI-RFSA	in	Spectrum	mode.

Dialog	Box	Options
Block	Diagram	Inputs
Block	Diagram	Outputs

Dialog	Box	Options
Parameter Description
Configuration Contains	the	following	options:

Device—Specifies	the	RF	signal	analyzer	used.
This	ring	control	lists	all	NI	RF	signal	analyzers
installed	on	this	computer	that	can	be	used	by	this
Express	VI.	If	you	relaunch	the	VI	and	the
selected	RF	signal	analyzer	is	dimmed,	it	is	no
longer	available.
Resolution	bandwidth	(Hz)—Specifies	the
resolution	bandwidth	of	the	spectrum.	Resolution
bandwidth	controls	the	width	of	the	frequency	bins
in	the	power	spectrum	computed	by	NI-RFSA.	A
larger	value	means	the	frequency	bins	are	wider,
thus	you	get	fewer	bins	or	spectral	lines.
Resolution	bandwidth	is	calculated	as	the	3	dB
bandwidth	of	the	window	frequency	response.
Units—Specifies	the	units	of	the	acquired
spectrum.
Reference	level	(dBm)—Specifies	the	maximum
expected	power	of	the	RF	signal	to	be	acquired.
Attenuation—Specifies	whether	the	attenuation	is
automatically	determined	or	user-specified.

Attenuation	(dB)—Specifies	the
downconverter's	overall	attenuation	of	the
input	RF	signal.

Specification	method—Specifies	whether	the
acquisition	frequencies	are	defined	in	terms	of	a
start	and	stop	frequency	or	a	center	frequency	and
span.
Start	frequency	(Hz)—Specifies	the	start
frequency	of	the	acquired	RF	signal.	The
acquisition	consists	of	a	span	of	data	from	the
start	frequency	to	the	stop	frequency.
Stop	frequency	(Hz)—Specifies	the	stop

frequency	of	the	acquired	RF	signal.	The
acquisition	consists	of	a	span	of	data	from	the
start	frequency	to	the	stop	frequency.
Center	frequency	(Hz)—Specifies	the	center
frequency	of	the	acquired	RF	signal.	The
acquisition	consists	of	a	span	of	data	surrounding
the	center	frequency.
Span	(Hz)—Specifies	the	span	of	the	acquired	RF
signal.	The	acquisition	consists	of	a	span	of	data
surrounding	the	center	frequency.

Timing Contains	the	following	options:
Reference	clock	source—Specifies	the	source	of
the	reference	clock	signal.
PXI	Chassis	Clk10	source—Specifies	the	signal
driven	to	the	10	MHz	reference	clock	on	the	PXI
backplane.	Only	certain	combinations	of
Reference	clock	source	and	PXI	Chassis	Clk10
source	are	valid.

Advanced
Spectrum

Contains	the	following	options:
Averaging	mode—Specifies	the	averaging	mode.
Select	from	RMS,	Vector,	Peak	Hold,	or	None.
Number	of	averages—Specifies	the	number	of
acquisitions	to	average.
Window	type—Specifies	the	FFT	window	type.

Autoscale
graph

Specifies	whether	to	autoscale	the	Y	scale	of	the	graph.
Checked—The	Y	scale	of	the	graph	is	autoscaled	every
time	the	graph	is	updated.
Unchecked—The	Y	scale	of	the	graph	remains
unchanged	when	the	graph	is	updated.

Block	Diagram	Inputs
Parameter Description
close Determines	whether	the	instrument	session	remains	open

when	the	VI	finishes	execution.	Use	this	parameter	for	loop
optimization	by	setting	it	to	FALSE	on	all	iterations	except
the	last.	The	default	is	TRUE.
Note:	This	input	is	not	intended	for	sharing	the	session
between	Express	VIs.	If	a	loop	contains	multiple	Express	VIs
that	use	the	same	device,	you	must	wire	in	TRUE	for	this
input.

error	in Describes	error	conditions	that	occur	before	this	Express	VI
runs.

Block	Diagram	Outputs
Parameter Description
data Contains	the	data	acquired	by	the	device.
spectral
info

Contains	properties	of	the	acquired	spectrum.	This	output	is
used	by	VIs	in	the	Spectral	Measurements	Toolkit.

error	out Contains	error	information.	If	error	in	indicates	that	an	error
occurred	before	this	Express	VI	runs,	error	out	contains	the
same	error	information.	Otherwise,	it	describes	the	error
status	that	this	Express	VI	produces.

Acquisition	Type
Short	Name:	AcquisitionType
Configures	whether	the	session	acquires	IQ	data	or	computes	a	power
spectrum	over	the	specified	frequency	range.

IQ	(100) Configures	the	driver	for	IQ	acquisitions.
Spectrum	(101) Configures	the	driver	for	spectrum	acquisitions.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Acquisition	Type

Vertical:Reference	Level	(dBm)
Short	Name:	ReferenceLevel
Specifies	the	reference	level.	The	value	is	expressed	in	dBm.	The
reference	level	represents	the	maximum	expected	power	of	an	input	RF
signal.	Reference	level,	attenuation,	and	mixer	level	are	related	by	the
following	relationship:

attenuation	=	reference	level	–	mixer	level
mixer	level	<	reference	level
reference	level	–	mixer	level	<=	50	dB

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI niRFSA	Configure	Reference	Level

Vertical:Attenuation	(dB)
Short	Name:	Attenuation
Specifies	the	downconverter	module	attenuation	setting	in	dB.
Calculate	the	attenuation	setting	using	desired	Reference	Level	and
Mixer	Level	settings,	according	to	the	following	formula:

attenuation	=	reference	level	–	mixer	level
For	example,	when	using	a	reference	level	of	0	dBm	(default)	with
moderate	distortion	and	low	noise,	specify	an	attenuation	value	of	20	dB,
as	shown	by	the	following	calculation:

attenuation	=	(0	dB	reference	level)	–	(–20	dB	mixer	level)

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Vertical:Mixer	Level	(dBm)
Short	Name:	Mixer	Level
Specifies	the	mixer	level.	The	value	is	expressed	in	dBm.	The	mixer	level
represents	the	attenuation	to	apply	to	the	input	RF	signal	as	it	reaches
the	first	mixer	in	the	signal	chain.	NI-RFSA	automatically	selects	an
optimal	mixer	level	value	given	the	reference	level	if	you	do	not	configure
this	property.	Reference	level,	attenuation,	and	mixer	level	are	related	by
the	following	relationship:

attenuation	=	reference	level	–	mixer	level
mixer	level	<	reference	level
reference	level	–	mixer	level	<=	50	dB

The	following	table	shows	the	relationship	between	mixer	level	and	noise
and	distortion.

Mixer	Level Noise	and	Distortion	Effects
–20	dB Moderate	distortion,	low	noise
–30	dB Best	compromise	between	distortion	and	noise
–40	dB Low	distortion,	high	noise

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Acquisition:IQ:IQ	Carrier	Frequency
Short	Name:	IQ.Carrier	Frequency
Specifies	the	expected	carrier	frequency	of	the	incoming	signal	for
demodulation.	The	RF	signal	analyzer	tunes	to	this	frequency.	This	value
may	be	coerced	based	on	hardware	settings	and	downconversion
specifications.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Acquisition:IQ:IQ	Rate	(S/s)
Short	Name:	IQ.Rate
Specifies	the	IQ	rate	for	the	acquisition.	The	value	is	expressed	in	S/s.

Notes		Bandwidth	is	equal	to	the	coerced	IQ	rate	times	0.8.

You	should	not	need	to	configure	an	IQ	rate	higher	than	25	MHz,
since	the	NI	PXI-5600	downconverter	bandwidth	is	20	MHz.	If	you
choose	to	configure	a	higher	IQ	rate,	you	may	see	aliasing	effects
at	negative	frequencies	because	the	IF	frequency	of	the
downconverter	is	at	15	MHz.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Acquisition:IQ:Number	Of	Samples	Is	Finite
Short	Name:	IQ.NumSampsIsFinite
Specifies	whether	to	configure	the	device	to	acquire	a	finite	number	of
samples	or	to	acquire	samples	continuously.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI niRFSA	Configure	Number	of	Samples

Acquisition:IQ:Number	Of	Samples
Short	Name:	IQ.NumSamps
Configures	the	number	of	samples.

Remarks

Data	Type ViInt64
Permissions R/W
High-Level	VI None

Acquisition:IQ:Number	Of	Records	Is	Finite
Short	Name:	IQ.NumRecordsIsFinite
Configures	the	device	to	stop	after	acquiring	the	specified	number	of
records.	Set	to	FALSE	to	acquire	records	continuously	until	you	abort	the
acquisition.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Acquisition:IQ:Number	Of	Records
Short	Name:	IQ.NumRecords
Specifies	the	number	of	records	to	acquire	if	the	Number	of	Records	Is
Finite	property	is	set	to	TRUE.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt64
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Center	Frequency
Short	Name:	Spectrum.CenterFrequency
Specifies	the	center	frequency	in	a	spectrum	acquisition.	The	value	is
expressed	in	hertz.	An	acquisition	consists	of	a	span	of	data	surrounding
the	center	frequency.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI niRFSA	Configure	Spectrum	Frequency

Acquisition:Spectrum:Span
Short	Name:	Spectrum.Span
Specifies	the	frequency	range	of	the	computed	spectrum.	If	you	specify	a
center	frequency	of	1	GHz	and	span	of	100	MHz,	the	spectrum	ranges
from	950	MHz	to	1050	MHz	after	zoom	processing.	This	value	may	be
coerced	based	on	hardware	settings	and	downconversion	specifications.

Note		If	you	configure	the	spectrum	span	(stop	frequency	–	start
frequency)	to	a	value	larger	than	20	MHz,	RFSA	performs	multiple
acquisitions	and	combines	them	into	a	spectrum	of	the	size	you
requested.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI niRFSA	Configure	Spectrum	Frequency

Acquisition:Spectrum:Power	Spectrum	Units
Short	Name:	Spectrum.Units
Specifies	the	units	of	the	spectrum.

dBm	(200) Units	are	dB	with	reference	to	1	mW.
Volts	Squared	(201) Units	are	in	V2	RMS.
dBmV	(202) Units	are	dB	with	reference	to	1	millivolt.
dBuV	(203) Units	are	dB	with	reference	to	1	microvolt.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Resolution	Bandwidth
(Hz)
Short	Name:	Spectrum.ResolutionBandwidth
Specifies	the	resolution	along	the	X	axis	of	the	spectrum.	NI-RFSA	uses
the	resolution	bandwidth	value	to	determine	the	acquisition	size.	If	the
Number	of	Spectral	Lines	property	is	specified,	that	value	takes
precedence	over	this	value.	If	both	properties	are	set	to	–1,	the	spectrum
uses	a	default	of	400	spectral	lines.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Resolution	Bandwidth
Type
Short	Name:	Spectrum.ResolutionBandwidthType
Specifies	the	definition	of	the	Resolution	Bandwidth	property.

3dB
(300)

Defines	the	RBW	in	terms	of	the	3	dB	bandwidth	of	the	window
specified	by	the	FFT	Window	Type	property.

6dB
(301)

Defines	the	resolution	bandwidth	in	terms	of	the	6	dB	bandwidth
of	the	window	specified	by	the	FFT	Window	Type	property.

Bin
Width
(302)

Defines	the	resolution	bandwidth	in	terms	of	the	display
resolution,	which	is	the	ratio	of	the	sampling	frequency	to	the
number	of	samples	that	you	acquire.

ENBW
(303)

Defines	the	resolution	bandwidth	in	terms	of	the	Equivalent
Noise	Bandwidth	(ENBW)	of	the	window	specified	by	the	FFT
Window	Type	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Number	Of	Spectral	Lines
Short	Name:	Spectrum.NumSpectralLines
Configures	the	number	of	spectral	lines	expected	with	the	current	power
spectrum	configuration.	If	you	do	not	configure	this	property,	NI-RFSA
selects	an	appropriate	value	based	on	the	Resolution	Bandwidth
property.	If	you	configure	this	property,	NI-RFSA	coerces	the	Resolution
Bandwidth	value	based	on	the	number	of	spectral	lines	requested	and
the	acquisition	span.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Averaging	Mode
Short	Name:	Spectrum.AveragingMode
Specifies	the	averaging	mode	for	the	spectrum	acquisition.

None
(400)

Configures	the	driver	to	perform	no	averaging	on	acquisitions.

RMS
(401)

Configures	the	driver	for	RMS	averaging.	RMS	averaging
reduces	signal	fluctuations	but	not	the	noise	floor.	RMS
averaging	averages	the	energy	or	power	of	the	signal,	which
prevents	noise	floor	reduction	and	gives	averaged	rms	quantities
of	single-channel	measurements	zero	phase.	RMS	averaging	for
dual-channel	measurements	preserves	important	phase
information.

Vector
(402)

Configures	the	driver	for	vector	averaging.	Vector	averaging
reduces	noise	from	synchronous	signals.	Vector	averaging
computes	the	average	of	complex	quantities	directly,	which
means	that	it	allows	separate	averaging	for	real	and	imaginary
parts.	Complex	averaging	such	as	vector	averaging	reduces
noise	and	usually	requires	a	trigger	to	improve	block-to-block
phase	coherence.

Peak
Hold
(403)

Configures	the	driver	for	peak	hold	averaging.	Peak	hold
averaging	retains	the	RMS	peak	levels	of	the	averaged
quantities.	The	peak	hold	averaging	process	performs	peak	hold
at	each	frequency	bin	separately	to	retain	peak	rms	levels	from
one	FFT	record	to	the	next.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:Number	Of	Averages
Short	Name:	Spectrum.NumAverages
Specifies	the	number	of	averages	to	complete	for	linear	weighting.	The
averaging	process	returns	the	final	result	after	the	number	of	averages	is
complete.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:FFT	Window	Type
Short	Name:	Spectrum.FFTWindowType
Specifies	the	time-domain	window	type.

Uniform	(500)
Hanning	(501)
Hamming	(502)
Blackman-Harris	(503)
Exact	Blackman	(504)
Blackman	(505)
Flat	Top	(506)
4-term	Blackman	Harris	(507)
7-term	Blackman	Harris	(508)
Low	Side	Lobe	(509)

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Spectrum:FFT	Window	Size
Short	Name:	Spectrum.FFTWindowSize
Returns	the	size	of	the	window	used	in	the	Fast	Fourier	Transform.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
High-Level	VI None

Acquisition:Spectrum:FFT	Size
Short	Name:	Spectrum.FFTSize
Returns	the	size	of	the	Fast	Fourier	Transform.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
High-Level	VI None

Acquisition:Fetch:Fetch	Relative	To
Short	Name:	FetchRelativeTo
Specifies	the	absolute	location	within	the	acquired	record	from	which	to
begin	fetching.

Most	recent
sample	(700)

Specifies	that	fetching	occur	relative	to	the	most	recently
acquired	data.	The	Fetch	Offset	property	must	be
negative.

First
sample	(701)

Specifies	that	fetching	occurs	at	the	first	sample
acquired	by	the	device.	If	the	device	wraps	its	buffer,
then	the	first	sample	is	no	longer	available.	In	this	case,
NI-RFSA	returns	an	error	if	the	fetch	offset	is	in	the
overwritten	data.

Reference
trigger	(702)

Specifies	that	fetching	occur	relative	to	the	Reference
trigger.	This	value	behaves	like	First	Sample	if	no
Reference	trigger	is	configured.

First
pretrigger
sample	(703)

Specifies	that	fetching	occur	relative	to	the	first	pretrigger
sample	acquired.	This	value	behaves	like	First	Sample
if	no	Reference	trigger	is	configured.

Current	read
position	(704)

Specifies	that	fetching	occur	after	the	last	fetched
sample.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
High-Level	VI None

Acquisition:Fetch:Fetch	Offset
Short	Name:	FetchOffset
Specifies	the	offset	relative	to	the	position	specified	by	the	Fetch	Relative
To	property	from	which	to	start	fetching	data.	Offset	can	be	a	positive	or
negative	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Acquisition:Fetch:Records	Done
Short	Name:	RecordsDone
Returns	the	number	of	records	the	RF	signal	analyzer	has	acquired.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions RO
High-Level	VI None

Clocking:Ref	Clock	Source
Short	Name:	RefClockSrc
Specifies	the	reference	clock	source.

OnboardClock Lock	the	NI-RFSA	device	to	the	NI	PXI-5600	onboard
clock.

RefIn Lock	the	NI-RFSA	device	to	the	external	REF	IN
connector	on	the	NI	PXI-5600.	You	must	install	the	NI	PXI-
5600	in	Slot	2	of	your	PXI	chassis	to	use	this	option.

PXI_Clk10 Lock	the	NI-RFSA	device	to	the	PXI	backplane	clock
using	the	NI	PXI-5600.	You	must	connect	the	PXI	10	MHz
connector	to	the	REF	IN	connector	on	the	NI	PXI-5600
front	panel	to	use	this	option.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	Ref	Clock

Clocking:Ref	Clock	Rate
Short	Name:	RefClockRate
Specifies	the	rate	of	the	reference	clock.	The	value	is	expressed	in	hertz.
NI-RFSA	only	supports	a	reference	clock	rate	of	10	MHz.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI niRFSA	Configure	Ref	Clock

Clocking:Digitizer	Sample	Clock	Timebase
Source
Short	Name:	DigitizerSampClkTimebaseSrc
Specifies	the	source	of	the	Sample	clock	timebase,	which	is	the	timebase
used	to	control	waveform	sampling.

OnboardClock The	digitizer	will	use	its	onboard	clock	as	the	Sample
clock	timebase.

ClkIn The	digitizer	will	use	the	signal	present	on	the	CLK	IN
connector	as	the	Sample	clock	timebase.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI None

Clocking:Digitizer	Sample	Clock	Timebase	Rate
Short	Name:	DigitizerSampClkTimebaseRate
Specifies	the	frequency,	in	hertz,	of	the	external	clock	used	as	the
timebase	source	if	the	Digitizer	Sample	Clock	Timebase	Source	is	an
external	source.
If	timebase	rate	is	set	to	a	value	below	60	MHz,	signals	at	frequencies
just	above	the	20	MHz	passband	of	the	downconverter	may	be	aliased
back	into	the	passband.	This	aliasing	occurs	because	the	IF	frequency	of
the	downconverter	is	at	15	MHz,	and	the	upper	end	of	the	passband	is	at
25	MHz.	At	sampling	rates	below	60	MHz,	the	Nyquist	frequency	is	close
to	the	end	of	the	passband	and	creates	aliases	that	are	not	effectively
filtered	by	the	downconverter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Clocking:PXI	Chassis	Clk10	Source
Short	Name:	PXIChassisClk10Src
Specifies	the	signal	to	drive	the	10	MHz	reference	clock	on	the	PXI
backplane.	This	option	can	only	be	configured	when	the	NI	PXI-5600	is	in
Slot	2	of	the	PXI	chassis.

None The	device	does	not	drive	the	PXI	10	MHz	backplane
reference	clock.

OnboardClock The	device	drives	the	PXI	10	MHz	backplane	reference
clock	with	the	NI	PXI-5600	onboard	clock.	You	must
connect	the	10	MHz	OUT	connector	to	the	PXI	10	MHz
I/O	on	the	NI	PXI	5600	front	panel	to	use	this	option.

RefIn The	device	drives	the	PXI	10	MHz	backplane	reference
clock	with	the	reference	source	attached	to	the	NI	PXI-
5600	REF	IN	connector.	You	must	connect	the	10	MHz
OUT	connector	to	the	PXI	10	MHz	I/O	on	the	NI	PXI	5600
front	panel	to	use	this	option.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	PXI	Chassis	Clk10

Triggers:Start:Type
Short	Name:	StartTrig.Type
Specifies	whether	you	want	the	Start	trigger	to	be	a	digital	edge	or
software	trigger.

None
(600)

No	Start	trigger	is	configured.

Digital
Edge
(601)

The	Start	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Start	Trigger	Digital	Edge	Source	property.

Software
(604)

The	Start	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niRFSA	Send	Software	Edge	Trigger	VI	with	and	selecting
Start	Trigger	as	the	trigger	parameter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Start:Digital	Edge:Source
Short	Name:	StartTrig.DigEdge.Src
Specifies	the	source	terminal	for	the	digital	edge	Start	trigger.	This
property	is	used	only	when	the	Start	Trigger	Type	property	is	set	to
Digital	Edge.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Start:Digital	Edge:Edge
Short	Name:	StartTrig.DigEdge.Edge
Specifies	the	active	edge	for	the	Start	trigger.	This	property	is	used	only
when	the	Start	Trigger	Type	property	is	set	to	Digital	Edge.

Rising	Edge	(900) The	trigger	asserts	on	the	rising	edge	of	the	signal.
Falling	Edge	(901) The	trigger	asserts	on	the	falling	edge	of	the	signal

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Start:Export:Output	Terminal
Short	Name:	ExportedStartTrig.OutputTerm
Specifies	the	destination	terminal	for	the	exported	Start	trigger.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Triggers:Ref:Type
Short	Name:	RefTrig.Type
Specifies	whether	you	want	the	Reference	trigger	to	be	a	digital	edge,	IQ
power	edge,	or	software	trigger.

None
(600)

No	Reference	trigger	is	configured.

Digital
Edge
(601)

The	Reference	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Reference	Trigger	Digital	Edge	Source	property.

IQ
Power
Edge
(603)

The	Reference	trigger	is	asserted	when	the	signal	is	changing
past	the	level	specified	with	the	slope	(rising	or	falling)
configured	with	the	IQ	Power	Edge	Slope	property.

Software
(604)

The	Reference	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niRFSA	Send	Software	Edge	Trigger	VI	with	and	selecting
Reference	Trigger	as	the	trigger	parameter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:Pretrigger	Samples
Short	Name:	RefTrig.PretrigSamples
Specifies	the	number	of	pretrigger	samples,	the	samples	acquired	before
the	Reference	trigger	is	received,	to	be	acquired	per	record.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:Digital	Edge:Source
Short	Name:	RefTrig.DigEdge.Src
Specifies	the	source	terminal	for	the	digital	edge	Reference	trigger.	This
property	is	used	only	when	the	Reference	Trigger	Type	property	is	set	to
Digital	Edge.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:Digital	Edge:Edge
Short	Name:	RefTrig.DigEdge.Edge
Specify	the	active	edge	for	the	Reference	trigger.	This	property	is	used
only	when	the	Ref	Trigger	Type	property	is	set	to	Digital	Edge.

Rising	Edge	(900) The	trigger	asserts	on	the	rising	edge	of	the	signal.
Falling	Edge	(901) The	trigger	asserts	on	the	falling	edge	of	the	signal.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:IQ	Power	Edge:Source
Short	Name:	RefTrig.IQPwrEdge.Src
Specifies	the	channel	from	which	the	device	will	monitor	the	trigger.	The
only	valid	input	for	this	attribute	is	"0"	at	this	time.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:IQ	Power	Edge:Level
Short	Name:	RefTrig.IQPwrEdge.Lvl
Specifies	the	power	level	in	dBm	at	which	the	device	will	trigger.	The
device	asserts	the	trigger	when	the	signal	exceeds	the	level	specified	by
the	value	of	this	property.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:IQ	Power	Edge:Slope
Short	Name:	RefTrig.IQPwrEdge.Slope
Specifies	whether	the	device	asserts	the	trigger	when	the	signal	power	is
rising	or	falling.	When	the	trigger	is	configured	for	IQ	power	edge	the
device	asserts	the	trigger	when	the	power	exceeds	the	specified	level
with	the	slope	you	specify.

Rising	Slope	(1000) The	trigger	asserts	when	the	signal	power	is	rising.
Falling	Slope
(1001)

The	trigger	asserts	when	the	signal	power	is
falling.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Ref:IQ	Power	Edge:Minimum	Quiet
Time
Short	Name:	RefTrig.IQPwrEdge.MinQuietTime
Specifies	a	time	duration	for	which	the	signal	must	be	quiet	before	the
device	arms	the	trigger.	The	signal	is	quiet	when	it	is	below	the	trigger
level	if	the	trigger	slope,	specified	by	the	Ref	Trigger	IQ	Power	Edge
Slope	property,	is	set	to	Rising	Slope	or	above	the	trigger	level	if	the
trigger	slope	is	set	to	Falling	Slope.
By	default	this	value	is	set	to	0,	which	means	the	device	does	not	wait	for
a	quiet	time	before	arming	the	trigger.	This	property	is	useful	to	trigger
the	acquisition	on	signals	containing	repeated	bursts,	but	for	which	each
burst	may	have	large	changes	in	signal	power	within	itself.	By	configuring
the	minimum	quiet	time	to	the	time	between	bursts,	you	can	ensure	that
the	trigger	occurs	at	the	beginning	of	a	burst	rather	than	in	signal	power
change	within	a	burst.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Triggers:Ref:Export:Output	Terminal
Short	Name:	ExportedRefTrig.OutputTerm
Specifies	the	destination	terminal	for	the	exported	Reference	trigger.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Triggers:Ref:Advanced:Ref	To	Ref	Trigger
Holdoff	(s)
Short	Name:	RefToRefHoldoff
Specifies	the	minimum	time	in	seconds	that	must	elapse	after	the
Reference	trigger	for	one	record	is	received	before	the	device	will
recognize	the	Reference	trigger	for	the	next	record.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Triggers:Ref:Advanced:Start	To	Ref	Trigger
Holdoff	(s)
Short	Name:	StartToRefHoldoff
Specifies	the	minimum	time	in	seconds	that	must	elapse	after	the	Start
trigger	is	received	before	the	device	recognizes	a	Reference	trigger.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions R/W
High-Level	VI None

Triggers:Advance:Type
Short	Name:	AdvanceTrig.Type
Specifies	whether	you	want	the	Advance	trigger	to	be	a	digital	edge	or
pattern	match	trigger.

None
(600)

No	Advance	trigger	is	configured.

Digital
Edge
(601)

The	Advance	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
Digital	Edge	Advance	Trigger	Source	property.

Software
(604)

The	Advance	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niRFSA	Send	Software	Edge	Trigger	VI	with	and	selecting
Start	Trigger	as	the	trigger	parameter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Advance:Digital	Edge:Source
Short	Name:	AdvanceTrig.DigEdge.Src
Specifies	the	source	terminal	for	the	Advance	trigger.	This	property	is
used	only	when	Advance	Trigger	Type	is	set	to	Digital	Edge.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Configure	Trigger

Triggers:Advance:Export:Output	Terminal
Short	Name:	ExportedAdvanceTrig.OutputTerm
Specifies	the	destination	terminal	for	the	exported	Advance	trigger.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Triggers:Arm	Ref:Type
Short	Name:	ArmRefTrig.Type
Specifies	whether	you	want	the	Arm	Reference	trigger	to	be	a	digital
edge	or	software	trigger.

None
(600)

No	Arm	Reference	trigger	is	configured.

Digital
Edge
(601)

The	Arm	Reference	trigger	is	not	asserted	until	a	digital	edge
is	detected.	The	source	of	the	digital	edge	is	specified	with	the
Arm	Ref	Trigger	Digital	Edge	Source	property.

Software
(604)

The	Arm	Reference	trigger	is	not	asserted	until	a	software
trigger	occurs.	You	can	assert	the	software	trigger	by	calling
the	niRFSA	Send	Software	Edge	Trigger	VI	with	and	selecting
Arm	Ref	Trigger	as	the	trigger	parameter.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViInt32
Permissions R/W
High-Level	VI None

Triggers:ArmRef:Digital	Edge:Source
Short	Name:	ArmRefTrig.DigEdge.Src
Specifies	the	source	terminal	for	the	digital	edge	Arm	Reference	trigger.
This	property	is	used	only	when	the	Arm	Ref	Trigger	Type	property	is	set
to	Digital	Edge.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI None

Events:Ready	For	Start:Output	Terminal
Short	Name:	RdyForStartEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Ready	for	Start	event.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Events:Ready	For	Advance:Output	Terminal
Short	Name:	RdyForAdvanceEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Ready	for	Advance	event.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Events:Ready	For	Ref:Output	Terminal
Short	Name:	RdyForRefEvent.OutputTerm
Specifies	the	destination	terminal	for	the	Ready	for	Reference	event.

"" The	signal	is	not	exported.
PFI0 The	signal	is	exported	to	PFI	0.
PFI1 The	signal	is	exported	to	PFI	1.
PXI_Trig0 The	signal	is	exported	to	PXI	trigger	line	0.
PXI_Trig1 The	signal	is	exported	to	PXI	trigger	line	1.
PXI_Trig2 The	signal	is	exported	to	PXI	trigger	line	2.
PXI_Trig3 The	signal	is	exported	to	PXI	trigger	line	3.
PXI_Trig4 The	signal	is	exported	to	PXI	trigger	line	4.
PXI_Trig5 The	signal	is	exported	to	PXI	trigger	line	5.
PXI_Trig6 The	signal	is	exported	to	PXI	trigger	line	6.
PXI_Trig6 The	signal	is	exported	to	PXI	trigger	line	7.
PXI_STAR The	signal	is	exported	to	the	PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Events:End	Of	Record:Output	Terminal
Short	Name:	EndOfRecEvent.OutputTerm
Specifies	the	destination	terminal	for	the	End	of	Record	event.

"" The	signal	is	not	exported.
PFI0 PFI	0	on	the	front	panel	SMB	jack	connector.
PFI1 PFI	1	on	the	front	panel	DDC	connector.
PXI_Trig0 PXI	trigger	line	0.
PXI_Trig1 PXI	trigger	line	1.
PXI_Trig2 PXI	trigger	line	2.
PXI_Trig3 PXI	trigger	line	3.
PXI_Trig4 PXI	trigger	line	4.
PXI_Trig5 PXI	trigger	line	5.
PXI_Trig6 PXI	trigger	line	6.
PXI_Trig6 PXI	trigger	line	7.
PXI_STAR PXI	star	trigger	line.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions R/W
High-Level	VI niRFSA	Export	Signal

Advanced:Digital	IF	Equalization	Enabled
Short	Name:	DigitalIFEqualizationEnabled
Toggles	use	of	the	digital	equalization	filter	for	the	NI	5600.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Device	Characteristics:Serial	Number
Short	Name:	SerialNum

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Device	Characteristics:Device	Temperature	(ºC)
Short	Name:	DeviceTemp
Returns	the	current	temperature	of	the	NI	5600	downconverter	module.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViReal64
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Cache
Short	Name:	Cache
Specifies	whether	to	cache	the	value	of	properties.	When	caching	is
enabled,	NI-RFSA	tracks	the	current	NI-RFSA	device	settings	and	avoids
sending	redundant	commands	to	the	device.
NI-RFSA	can	always	cache	or	never	cache	particular	properties,
regardless	of	the	setting	of	this	property.
Use	the	niRFSA	Initialize	With	Options	VI	to	override	the	default	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Interchange
Check
Short	Name:	Interchange	Check
Specifies	whether	to	perform	interchangeability	checking	and	retrieve
interchangeability	warnings.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Driver
Setup
Short	Name:	Revision
The	DriverSetup	string	is	used	to	set	the	initial	values	for	attributes	that
are	specific	to	NI-RFSA.

The	format	of	the	Driver	Setup	string	is:

Tag:	Value

Tag	is	the	name	of	the	DriverSetup	string	attribute.	Value	is	the	value	set
to	the	attribute.	To	set	multiple	attributes,	separate	their	assignments	with
a	semicolon.
The	DriverSetup	string	can	include	the	following	tags:

Digitizer—Specifies	the	resource	name	of	the	digitizer	to	use	for	this
session.	If	this	DriverSetup	tag	is	not	specified,	the	resource	name	for	the
downconverter	associated	in	MAX	is	used,	for	example,
DriverSetup=Digitizer:pxi1slot4
Refer	to	niRFSA	Initialize	With	Options	for	additional	information	about
the	optionsString	parameter.	Refer	to	the	NI	RF	Vector	Signal	Analyzers
Getting	Started	Guide	for	information	on	MAX	setup.
Default	Value:	""	(empty	string)

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Query
Instrument	Status
Short	Name:	Query	Instrument	Status
Specifies	whether	NI-RFSA	queries	the	NI-RFSA	device	status	after	each
operation.	Querying	the	device	status	is	useful	for	debugging.	After	you
validate	your	program,	you	can	set	this	property	to	FALSE	to	disable
status	checking	and	maximize	performance.
NI-RFSA	can	choose	to	ignore	status	checking	for	particular	properties,
regardless	of	the	setting	of	this	property.
Note:	Use	the	niRFSA	Initialize	with	Options	VI	to	override	this	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Range
Check
Short	Name:	RangeCheck
Specifies	whether	to	validate	attribute	values	and	function	parameters.	If
enabled,	NI-RFSA	validates	the	parameter	values	that	you	pass	to	NI-
RFSA	functions.	Range	checking	parameters	is	very	useful	for
debugging.	After	you	validate	your	program,	you	can	set	this	attribute	to
FALSE	to	disable	range	checking	and	maximize	performance.

Note		Use	the	niRFSA	Initialize	With	Options	VI	to	override	this
value.

Defined	Values:
TRUE NI-RFSA	validates	attribute	values	and	function	parameters.	This

is	the	default	value.
FALSE NI-RFSA	does	not	validate	attribute	values	and	function

parameters.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Record
Value	Coercions
Short	Name:	Record	Value	Coercions
Specifies	whether	the	IVI	engine	keeps	a	list	of	the	value	coercions	it
makes	for	integer	and	real	type	properties.

Note		Record	Value	Coercions	is	not	supported.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions R/W
High-Level	VI None

Inherent	IVI	Attributes:User	Options:Simulate
Short	Name:	Simulate
Specifies	whether	NI-RFSA	simulates	I/O	operations.	This	is	useful	for
debugging	applications	without	using	hardware.	Once	a	session	is
opened,	you	cannot	change	the	simulation	state.	Use	the	niRFSA
Initialize	with	Options	VI	to	enable	simulation.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViBoolean
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Driver
Identification:Description
Short	Name:	Description
A	string	that	contains	a	brief	description	of	NI-RFSA.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Driver
Identification:Driver	Prefix
Short	Name:	Driver	Prefix
A	string	that	contains	the	prefix	for	NI-RFSA.	The	name	of	each	user-
callable	function	in	NI-RFSA	starts	with	this	prefix.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Driver
Identification:Driver	Vendor
Short	Name:	Driver	Vendor
A	string	that	contains	the	name	of	the	vendor	that	supplies	NI-RFSA.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Driver
Identification:Revision
Short	Name:	Revision
A	string	that	contains	additional	version	information	about	NI-RFSA.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Driver
Capabilities:Supported	Instrument	Models
Short	Name:	Supported	Instrument	Models
Contains	a	model	code	of	the	NI-RFSA	device.	For	drivers	that	support
more	than	one	device,	this	property	contains	a	comma-separated	list	of
supported	devices.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Instrument
Identification:Manufacturer
Short	Name:	Manufacturer
A	string	that	contains	the	name	of	the	manufacturer	for	the	NI-RFSA
device	you	are	currently	using.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Instrument
Identification:Model
Short	Name:	Model
A	string	that	contains	the	model	number	or	name	of	the	NI-RFSA	device
you	are	currently	using.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Instrument
Identification:Firmware	Revision
Short	Name:	Firmware	Revision
A	string	that	contains	the	firmware	revision	information	for	the	NI-RFSA
device	you	are	currently	using.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Advanced	Session
Information:Logical	Name
Short	Name:	Logical	Name
Contains	the	logical	name	you	specified	when	opening	the	current	IVI
session.	You	may	pass	a	logical	name	to	the	niRFSA	Initialize	or	niRFSA
Initialize	with	Options	VIs.	The	IVI	Configuration	Utility	must	contain	an
entry	for	the	logical	name.	The	logical	name	entry	refers	to	a	driver
session	section	in	the	IVI	Configuration	file.	The	driver	session	section
specifies	a	physical	device	and	initial	user	options.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

Inherent	IVI	Attributes:Advanced	Session
Information:Resource	Descriptor
Short	Name:	Resource	Descriptor
Indicates	the	resource	descriptor	NI-RFSA	uses	to	identify	the	physical
device.	If	you	initialize	NI-RFSA	with	a	logical	name,	this	property
contains	the	resource	name	that	corresponds	to	the	entry	in	the	IVI
Configuration	Utility.
If	you	initialize	NI-RFSA	with	the	resource	name,	this	property	contains
that	value.

Remarks
The	following	table	lists	the	characteristics	of	this	property.

Data	Type ViString
Permissions RO
High-Level	VI None

niRFSA_init
ViStatus	=	niRFSA_init	(ViRsrc	resourceName,	ViBoolean	IDQuery,
ViBoolean	reset,	ViSession*	vi);

Purpose
Creates	a	new	session	for	the	device.	This	function	performs	the
following	initialization	actions:

Creates	a	new	instrument	driver	session	to	the	RF	signal	analyzer,
using	the	downconverter	resource	name	you	specify.
Sends	initialization	commands	to	reset	both	hardware	modules	to
a	known	state	necessary	for	NI-RFSA	operation.
Note		Before	initializing	the	NI	5661,	an	NI	5142	IF	digitizer
module	must	be	associated	with	the	NI	5600	downconverter
module	in	MAX.	After	association,	pass	the	NI	5600	device	name
to	this	VI	to	initialize	both	modules.	To	change	the	digitizer
association,	modify	the	NI	5600	Properties	page	in	MAX,	or	use
this	function	to	override	the	association	in	MAX.	Refer	to	the	NI	RF
Vector	Signal	Analyzers	Getting	Started	Guide,	installed	at
Start»Programs»National	Instruments»NI-
RFSA»Documentation	for	information	on	MAX	association.

Parameters
Input
Name Type Description
resourceName ViRsrc Specifies	the	resource	name	of	the	device	to

initialize.

Example
# Device	Type Syntax

1 myDAQmxDevice NI-DAQmx	device,
device	name	=
"myDAQmxDevice"

2 myLogicalName IVI	logical	name	or
virtual	instrument,
name	=
"myLogicalName"

For	NI-DAQmx	devices,	the	syntax	is	the	device
name	specified	in	MAX,	as	shown	in	Example	1.
Typical	default	names	for	NI-DAQmx	devices	in
MAX	are	Dev1	or	PXI1Slot1.	You	can	rename
an	NI-DAQmx	device	by	right-clicking	on	the
name	in	MAX	and	entering	a	new	name.	You
can	also	pass	in	the	name	of	an	IVI	logical
name	configured	with	the	IVI	Configuration
utility.	For	additional	information,	refer	to	the	IVI
topic	in	the	Measurement	&	Automation
Explorer	Help.

Caution		
NI-DAQmx	device	names	are	not	case-
sensitive.	However,	all	IVI	names,	such
as	logical	names,	are	case-sensitive.	If
you	use	an	IVI	logical	name,	make	sure
the	name	is	identical	to	the	name	shown
in	the	IVI	Configuration	Utility.

IDQuery ViBoolean Specifies	whether	NI-RFSA	performs	an	ID

query.
reset ViBoolean Specifies	whether	you	want	the	to	reset	the	NI-

RFSA	device	during	the	initialization	procedure.
TRUE	means	that	the	device	is	reset;	FALSE
means	that	the	device	is	not	reset.	FALSE	is	the
default	value.

Output
Name Type Description
vi ViSession Identifies	your	instrument	session.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_InitWithOptions
ViStatus	=	niRFSA_InitWithOptions(ViRsrc	resourceName,	ViBoolean
IDQuery,	ViBoolean	reset,	ViConstString	optionString,	ViSession*	newVi);

Purpose
Creates	a	new	session	for	the	device.	This	function	performs	the
following	initialization	actions:
Creates	a	new	instrument	driver	session	to	the	RF	signal	analyzer,

using	the	downconverter	resource	name	you	specify.
Sends	initialization	commands	to	reset	both	hardware	modules	to	a

known	state	necessary	for	NI-RFSA	operation.
Note		Before	initializing	the	NI	5661,	an	NI	5142	IF	digitizer
module	must	be	associated	with	the	NI	5600	downconverter
module	in	MAX.	After	association,	pass	the	NI	5600	device	name
to	this	VI	to	initialize	both	modules.	To	change	the	digitizer
association,	modify	the	NI	5600	Properties	page	in	MAX,	or	use
the	niRFSA_InitWithOptions	function	to	override	the	association	in
MAX.	Refer	to	the	NI	RF	Vector	Signal	Analyzers	Getting	Started
Guide,	installed	at	Start»Programs»National	Instruments»NI-
RFSA»Documentation	for	information	on	MAX	association.

Parameters
Input
Name Type Description
resourceName ViRsrc Specifies	the	resource	name	of	the	device	to	initialize.

Example
# Device	Type

1 myDAQmxDevice NI-DAQmx	device,	device	name	=
"myDAQmxDevice"

2 myLogicalName IVI	logical	name	or	virtual	instrument,	name	=
"myLogicalName"

For	NI-DAQmx	devices,	the	syntax	is	the	device	name	specified	in	MAX,	as
shown	in	Example	1.	Typical	default	names	for	NI-DAQmx	devices	in	MAX	are
Dev1	or	PXI1Slot1.	You	can	rename	an	NI-DAQmx	device	by	right-clicking	on
the	name	in	MAX	and	entering	a	new	name.	You	can	also	pass	in	the	name	of
an	IVI	logical	name	configured	with	the	IVI	Configuration	utility.	For	additional
information,	refer	to	the	IVI	topic	in	the	Measurement	&	Automation	Explorer
Help.

Caution		
NI-DAQmx	device	names	are	not	case-sensitive.	However,	all	IVI
names,	such	as	logical	names,	are	case-sensitive.	If	you	use	an	IVI
logical	name,	make	sure	the	name	is	
IVI	Configuration	Utility.

IDQuery ViBoolean Specifies	whether	NI-RFSA	performs	an	ID	query.
reset ViBoolean Specifies	whether	you	want	the	to	reset	the	NI-RFSA	device	during	the

initialization	procedure.	TRUE	means	that	the	device	is	reset;	FALSE	means
that	the	device	is	not	reset.	FALSE	is	the	default	value.

optionString ViConstString Sets	the	initial	value	of	certain	attributes	for	the	session.	The	following	table
lists	the	attributes	and	the	name	you	pass	in	this	parameter	to	identify	the
attribute.

Name Attribute
RangeCheck NIRFSG_ATTR_RANGE_CHECK

QueryInstrStatus NIRFSG_ATTR_QUERY_INSTRUMENT_STATUS
Cache NIRFSG_ATTR_CACHE
RecordCoercions NIRFSG_ATTR_RECORD_COERCIONS
DriverSetup NIRFSG_ATTR_DRIVER_SETUP

The	format	of	this	string	is,	"AttributeName=Value
name	of	the	attribute	and	Value	is	the	value	to	which	the	attribute	will	be	set.
To	set	multiple	attributes,	separate	their	assignments	with	a	comma.

Example	Option	String:
"RangeCheck=1,QueryInstrStatus=0,Cache=1,DriverSetup=Digitizer:pxi1slot4"

Output
Name Type Description
vi ViSession Identifies	your	instrument	session.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureAcquisitionType
ViStatus	=	niRFSA_ConfigureAcquisitionType(ViSession	vi,	ViInt32
acquisitionType);

Purpose
Configures	whether	the	session	acquires	IQ	data	or	computes	a	power
spectrum	over	the	specified	frequency	range.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

acquisitionType ViInt32 Configures	the	type	of	acquisition.

IQ Configures	the	driver	for	IQ
acquisitions.

Spectrum Configures	the	driver	for
spectrum	acquisitions.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureReferenceLevel
ViStatus	=	niRFSA_ConfigureReferenceLevel(ViSession	vi,
ViConstString	channelList,	ViReal64	referenceLevel);

Purpose
Configures	the	reference	level.	The	reference	level	represents	the
maximum	expected	power	of	an	input	RF	signal.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use
""	or	VI_NULL	to	specify	all	channels.

referenceLevel ViReal64 Specifies	the	expected	total	integrated
power	of	the	RF	input	signal	in	dBm.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureIQCarrierFrequency
ViStatus	=	niRFSA_ConfigureIQCarrierFrequency(ViSession	vi,
ViConstString	channelList,	ViReal64	carrierFrequency);

Purpose
This	function	configures	the	carrier	frequency	of	the	RF	vector	signal
analyzer	hardware	during	an	IQ	acquisition.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument
session.

channelList ViConstString Identifies	channels	to	apply	settings.
Use	""	or	VI_NULL	to	specify	all
channels.

carrierFrequency ViReal64 Specifies	the	expected	carrier
frequency	of	the	incoming	signal	for
demodulation.	The	RF	vector	signal
analyzer	tunes	to	this	frequency.	This
value	may	be	coerced	based	on
hardware	settings	and	downconversion
specifications.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureIQRate
ViStatus	=	niRFSA_ConfigureIQRate(ViSession	vi,	ViConstString
channelList,	ViReal64	iqRate);

Purpose
Configures	the	rate	at	which	the	device	samples	IQ	values.	Bandwidth	is
equal	to	the	coerced	iqRate	times	0.8.

Note		You	should	not	need	to	configure	an	IQ	rate	higher	than
25	MHz,	since	the	NI	PXI-5600	downconverter	bandwidth	is
20	MHz.	If	you	choose	to	configure	a	higher	IQ	rate,	you	may	see
aliasing	effects	at	negative	frequencies	because	the	IF	frequency
of	the	downconverter	is	at	15	MHz.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""
or	VI_NULL	to	specify	all	channels.

iqRate ViReal64 Specifies	the	IQ	rate	for	the	acquisition.	The
value	is	expressed	in	S/s.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureNumberOfSamples
ViStatus	=	niRFSA_ConfigureNumberOfSamples(ViSession	vi,
ViConstString	channelList,	ViBoolean	numberOfSamplesIsFinite,	ViInt64
samplesPerRecord);

Purpose
Configures	the	number	of	samples	in	a	finite	acquisition	or	configures	the
device	to	continuously	acquire	samples.	If	you	configure	the	device	for
finite	acquisition,	it	acquires	the	specified	number	of	samples	and	stops
the	acquisition.	You	can	configure	the	device	to	acquire	multiple	records
using	the	niRFSA_ConfigureNumberOfRecords	function,	each	record
containing	the	number	of	samples	specified	in	this	function.	The	default
number	of	records	to	acquire	is	1.
If	the	device	is	configured	to	continuously	acquire	samples,	it	continues
acquiring	data	until	you	abort	the	acquisition.	The	device	stores	data	in
onboard	memory	in	a	circular	fashion.	Once	the	device	fills	the	memory,	it
starts	overwriting	previously	acquired	data	from	the	beginning	of	the
memory	buffer.	Retrieve	the	samples	using	the	niRFSA	fetch	IQ	functions
as	they	are	being	acquired	to	avoid	data	being	overwritten	before	you
can	retrieve	it.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from
the	niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply
settings.	Use	""	or	VI_NULL	to
specify	all	channels.

numberOfSamplesIsFinite ViBoolean Specifies	whether	to	configure
the	device	to	acquire	a	finite
number	of	samples	or	to
acquire	samples	continuously.
VI_TRUE	indicates	that	the
device	acquires	a	finite
number	of	samples,	while
VI_FALSE	indicates	that	the
device	continuously	acquires
samples.

samplesPerRecord ViInt64 Specifies	the	number	of
samples	per	record	if
numberOfsamplesIsFinite	is
set	to	VI_TRUE.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureNumberOfRecords
ViStatus	=	niRFSA_ConfigureNumberOfRecords(ViSession	vi,
ViConstString	channelList,	ViBoolean	numberOfRecordsIsFinite,	ViInt64
numberOfRecords);

Purpose
Configures	the	number	of	records	in	a	finite	acquisition	or	configures	the
device	to	continuously	acquire	records.	Notice	that	you	can	only
configure	the	device	to	acquire	multiple	records	if
numberOfSamplesIsFinite	is	set	to	VI_TRUE.
If	you	configure	the	device	to	acquire	records	continuously,	it	continues
acquiring	records	until	you	abort	the	acquisition.	The	device	stores
records	in	onboard	memory	in	a	circular	fashion.	Once	the	device	fills	the
memory,	it	starts	overwriting	previously	acquired	records	from	the
beginning	of	the	memory	buffer.	Fetch	the	records	as	they	are	being
acquired	to	avoid	data	being	overwritten	before	you	can	retrieve	it.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from
the	niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply
settings.	Use	""	or	VI_NULL	to
specify	all	channels.

numberOfRecordsIsFinite ViBoolean Set	to	VI_TRUE	to	configure
the	device	to	stop	after
acquiring	the	specified	number
of	records.	Set	to	VI_FALSE	to
acquire	records	continuously
until	you	abort	the	acquisition.

numberOfRecords ViInt64 Specifies	the	number	of
records	to	acquire	if	number	of
records	is	finite	is	set	to
VI_TRUE.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureSpectrumFrequencyCenterSpan
ViStatus	=	niRFSA_ConfigureSpectrumFrequencyCenterSpan(
ViSession	vi,	ViConstString	channelList,	ViReal64	centerFrequency,
ViReal64	span);

Purpose
Configures	the	span	and	center	frequency	of	a	spectrum	acquisition.	An
acquisition	consists	of	a	span	of	data	surrounding	the	center	frequency.

Note		If	you	configure	the	spectrum	span	(stop	frequency	–	start
frequency)	to	a	value	larger	than	20	MHz,	RFSA	performs	multiple
acquisitions	and	combines	them	into	a	spectrum	of	the	size	you
requested.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument
session.

channelList ViConstString Identifies	channels	to	apply	settings.
Use	""	or	VI_NULL	to	specify	all
channels.

centerFrequency ViReal64 Specifies	the	center	frequency	in	a
spectrum	acquisition.	The	value	is
expressed	in	Hertz.

span ViReal64 Specifies	the	span	of	a	spectrum
acquisition.	The	value	is	expressed	in
Hertz.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureSpectrumFrequencyStartStop
ViStatus	=	niRFSA_ConfigureSpectrumFrequencyStartStop(ViSession
vi,	ViConstString	channelList,	ViReal64	startFrequency,	ViReal64
stopFrequency);

Purpose
Configures	the	start	and	stop	frequency	of	a	spectrum	acquisition.

Note		If	you	configure	the	spectrum	span	(stopFrequency	–
startFrequency)	to	a	value	larger	than	20	MHz,	RFSA	performs
multiple	acquisitions	and	combines	them	into	a	spectrum	of	the
size	you	requested.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use
""	or	VI_NULL	to	specify	all	channels.

startFrequency ViReal64 Specifies	the	lower	band	of	a	span	of
frequencies.

stopFrequency ViReal64 Specifies	the	upper	band	of	a	span	of
frequencies.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.	The	status

code	either	indicates	success	or	describes	an	error	or
warning	condition.	You	examine	the	status	code	from
each	call	to	an	instrument	driver	function	to	determine	if
an	error	occurred.

To	obtain	a	text	description	of	the	status	code,	call	the
niRFSA_error_message	function.	To	obtain	additional
information	about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the	error
information	from	the	driver,	call	the	niRFSA_ClearError
function.

The	general	meaning	of	the	status	code	is	as	follows:

Value Meaning
0 Success
Positive	Values Warnings
Negative	Values Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureResolutionBandwidth
ViStatus	=	niRFSA_ConfigureResolutionBandwidth(ViSession	vi,
ViConstString	channelList,	ViReal64	resolutionBandwidth);

Purpose
Configures	the	resolution	bandwidth	of	a	spectrum	acquisition.	The
resolution	bandwidth	controls	the	width	of	the	frequency	bins	in	the	power
spectrum	computed	by	NI-RFSA.	A	larger	value	for	resolution	bandwidth
means	the	frequency	bins	are	wider,	and	hence	you	get	fewer	bins	or
spectral	lines.
By	default,	the	resolution	bandwidth	value	corresponds	to	the	3	dB
bandwidth	of	the	window	type	NI-RFSA	uses	to	compute	the	spectrum.
To	specify	the	frequency	bin	width	directly,	change	the	resolution
bandwidth	type	attribute	to	bin	width.	Refer	to	the
NIRFSA_ATTR_RESOLUTION_BANDWIDTH_TYPE	attribute	for	more
information.

javascript:LaunchHelp('nirfsa.chm::/NIRFSA_ATTR_RESOLUTION_BANDWIDTH_TYPE.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""	or
VI_NULL	to	specify	all	channels.

resolutionBandwidth ViReal64 Specifies	the	resolution	bandwidth	of	a	spectrum
acquisition.	The	value	is	expressed	in	Hertz.
Configure	the	type	of	resolution	bandwidth	with	the
NIRFSA_ATTR_RESOLUTION_BANDWIDTH_TYPE
attribute.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')
javascript:LaunchHelp('nirfsa.chm::/NIRFSA_ATTR_RESOLUTION_BANDWIDTH_TYPE.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureDigitalEdgeStartTrigger
ViStatus	=	niRFSA_ConfigureDigitalEdgeStartTrigger(ViSession	vi,
ViConstString	source,	ViInt32	edge);

Purpose
Configures	the	device	to	wait	for	a	digital	edge	Start	trigger	at	the
beginning	of	the	acquisition.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained

from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and	identifies	a
particular	instrument	session.

source ViConstString Specifies	the	source	of	the	digital	edge	for	the
Start	trigger.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger

line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger

line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger

line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger

line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger

line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger

line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger

line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger

line	7.
PXI_STAR The	trigger	is	received	on	the	PXI

star	trigger	line.

edge ViInt32 Specifies	the	edge	to	detect.	You	can	choose
Rising	Edge	or	Falling	Edge.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureSoftwareEdgeStartTrigger
ViStatus	=	niRFSA_ConfigureSoftwareEdgeStartTrigger(ViSession	vi);

Purpose
Configures	the	device	to	wait	for	a	software	Start	trigger	at	the	beginning
of	the	acquisition.	The	device	waits	until	you	call	the
niRFSA_SendSoftwareEdgeTrigger	function	to	assert	the	trigger.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_SendSoftwareEdgeTrigger.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_DisableStartTrigger
ViStatus	=	niRFSA_DisableStartTrigger(ViSession	vi);

Purpose
Configures	the	device	to	not	wait	for	a	Start	trigger	at	the	beginning	of	the
acquisition.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureDigitalEdgeRefTrigger
ViStatus	=	niRFSA_ConfigureDigitalEdgeRefTrigger(ViSession	vi,
ViConstString	source,	ViInt32	edge,	ViInt64	pretriggerSamples);

Purpose
Configures	the	device	to	wait	for	a	digital	edge	Reference	trigger	to	mark
a	reference	point	within	the	record.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi

is	obtained	from	the	niRFSA_init	or
the	niRFSA_initWithOptions	functions
and	identifies	a	particular	instrument
session.

source ViConstString Specifies	the	source	of	the	digital
edge	for	the	Reference	trigger.

PFI0 The	trigger	is	received	on
PFI	0.

PFI1 The	trigger	is	received	on
PFI	1.

PXI_Trig0 The	trigger	is	received	on
PXI	trigger	line	0.

PXI_Trig1 The	trigger	is	received	on
PXI	trigger	line	1.

PXI_Trig2 The	trigger	is	received	on
PXI	trigger	line	2.

PXI_Trig3 The	trigger	is	received	on
PXI	trigger	line	3.

PXI_Trig4 The	trigger	is	received	on
PXI	trigger	line	4.

PXI_Trig5 The	trigger	is	received	on
PXI	trigger	line	5.

PXI_Trig6 The	trigger	is	received	on
PXI	trigger	line	6.

PXI_Trig7 The	trigger	is	received	on
PXI	trigger	line	7.

PXI_STAR The	trigger	is	received	on
the	PXI	star	trigger	line.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

edge ViInt32 Specifies	the	edge	to	detect.	You	can
choose	Rising	Edge	or	Falling
Edge.

pretriggerSamples ViInt64 Specifies	the	number	of	samples	to
store	for	each	record	that	were
acquired	in	the	time	period
immediately	before	the	trigger
occurred.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureIQPowerEdgeRefTrigger
ViStatus	=	niRFSA_ConfigureIQPowerEdgeRefTrigger(ViSession	vi,
ViConstString	source,	ViReal64	level,	ViInt32	slope,	ViInt64
pretriggerSamples);

Purpose
Configures	the	device	to	wait	for	the	complex	power	of	the	IQ	data	to
cross	the	specified	threshold	to	mark	a	reference	point	within	the	record.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi

is	obtained	from	the	niRFSA_init	or
the	niRFSA_initWithOptions	functions
and	identifies	a	particular	instrument
session.

source ViConstString Specifies	the	source	of	the	RF	signal
for	the	power	edge	Reference	trigger.
The	only	supported	value	is	"0."

level ViReal64 Specifies	the	threshold	above	or
below	which	the	device	will	trigger.

slope ViInt32 Specifies	whether	the	device	detects
a	rising	or	falling	slope	on	the	trigger
signal.

pretriggerSamples ViInt64 Specifies	the	number	of	samples	to
store	for	each	record	that	were
acquired	in	the	time	period
immediately	before	the	trigger
occurred.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureSoftwareEdgeRefTrigger
ViStatus	=	niRFSA_ConfigureSoftwareEdgeRefTrigger(ViSession	vi,
ViInt64	pretriggerSamples);

Purpose
Configures	the	device	to	wait	for	a	software	Reference	trigger	to	mark	a
reference	point	within	the	record.	The	device	waits	until	you	call	the
niRFSA_SendSoftwareEdgeTrigger	function	to	assert	the	trigger.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_SendSoftwareEdgeTrigger.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

pretriggerSamples ViInt64 Specifies	the	number	of	samples	to	store
for	each	record	that	were	acquired	in	the
time	period	immediately	before	the	trigger
occurred.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_DisableRefTrigger
ViStatus	=	niRFSA_DisableRefTrigger(ViSession	vi);

Purpose
Configures	the	device	to	not	wait	for	a	Reference	trigger	to	mark	a
reference	point	within	a	record.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureDigitalEdgeAdvanceTrigger
ViStatus	=	niRFSA_ConfigureDigitalEdgeAdvanceTrigger(ViSession	vi,
ViConstString	source,	ViInt32	edge);

Purpose
Configures	the	device	to	wait	for	a	digital	edge	Advance	trigger	between
records.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained

from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and	identifies	a
particular	instrument	session.

source ViConstString Specifies	the	source	of	the	digital	edge	for	the
Advance	trigger.
PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger

line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger

line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger

line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger

line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger

line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger

line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger

line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger

line	7.
PXI_STAR The	trigger	is	received	on	the	PXI

star	trigger	line.

edge ViInt32 Specifies	the	edge	to	detect.	You	can	choose
Rising	Edge	or	Falling	Edge.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureSoftwareEdgeAdvanceTrigger
ViStatus	=	niRFSA_ConfigureSoftwareEdgeAdvanceTrigger(ViSession
vi);

Purpose
Configures	the	device	to	wait	for	a	software	Advance	trigger	between
records.	The	device	waits	until	you	call	the
niRFSA_SendSoftwareEdgeTrigger	function	to	assert	the	trigger.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_SendSoftwareEdgeTrigger.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_DisableAdvanceTrigger
ViStatus	=	niRFSA_DisableAdvanceTrigger(ViSession	vi);

Purpose
Configures	the	device	to	not	wait	for	an	Advance	trigger	between	records
of	a	multirecord	acquisition.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SendSoftwareEdgeTrigger
ViStatus	=	niRFSA_SendSoftwareEdgeTrigger(ViSession	vi,	ViInt32
trigger,	ViConstString	triggerIdentifier);

Purpose
Sends	a	trigger	to	the	device	when	you	configure	a	software	version	of	a
supported	trigger	and	the	device	is	waiting	for	the	trigger	to	be	sent.	This
function	also	can	be	used	to	override	a	hardware	trigger.
This	function	returns	an	error	in	the	following	situations:

You	configure	an	invalid	trigger
You	are	in	spectrum	mode
You	have	not	previously	called	the	niRFSA_Initiate	function.

NI-Scope	handles	other	errors.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_Initiate.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

trigger ViInt32 Specifies	the	software	signal	to	send.
You	can	send	a	Start,	Reference,
Advance,	or	Arm	Reference	trigger.

triggerIdentifier ViConstString Specifies	a	particular	instance	of	a
trigger.	This	parameter	currently	is	not
supported.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ExportSignal
ViStatus	=	niRFSA_ExportSignal(ViSession	vi,	ViInt32	signal,
ViConstString	signalIdentifier,	ViConstString	outputTerminal);

Purpose
Routes	signals	to	the	specified	output	terminal.
If	you	export	a	signal	with	this	VI	and	commit	the	session,	the	signal	is
routed	to	the	output	terminal	you	specify.	If	you	then	reconfigure	the
signal	to	have	a	different	output	terminal,	the	previous	output	terminal	is
tristated	when	the	session	is	next	committed.	If	you	change	the
outputTerminal	to	NIRFSA_VAL_DO_NOT_EXPORT	and	commit,	the
previous	output	terminal	is	tristated.
Any	signals,	except	for	PXI	trigger	lines,	that	are	exported	within	a
session	persist	after	the	session	closes	to	prevent	signal	glitches
between	sessions.	PXI	trigger	lines	are	always	set	to	tristate	when	a
session	is	closed.	If	you	wish	to	have	the	terminal	that	the	signal	was
exported	to	tristated	when	the	session	closes,	first	change	the
outputTerminal	for	the	exported	signal	to
NIRFSA_VAL_DO_NOT_EXPORT	and	commit	the	session	again	before
closing	it.
You	can	also	tristate	all	PFI	lines	by	setting	the	resetDevice	parameter	in
the	niRFSA_Initialize	function	or	by	using	the	niRFSA_reset	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_reset.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

signal ViInt32 Specifies	the	type	of	signal	to	route.	You
can	choose	to	export	the	Start,
Reference,	and	Advance	triggers	and	the
Ready	for	Start,	Ready	for	Advance,
Ready	for	Ref,	End	of	Record,	and	Done
events.

signalIdentifier ViConstString Specifies	a	particular	instance	of	a
trigger.	This	parameter	currently	is	not
supported.

outputTerminal ViConstString Specifies	the	terminal	where	the	signal
will	be	exported.	You	can	choose	not	to
export	any	signal.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigureRefClock
ViStatus	=	niRFSA_ConfigureRefClock(ViSession	vi,	ViConstString
clockSource,	ViReal64	refClockRate);

Purpose
Configures	the	NI-RFSA	device	reference	clock.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

refClockSource ViConstString Specifies	the	reference	clock	source.

OnboardClock Lock	the	NI-RFSA
device	to	the	NI	PXI-
5600	onboard	clock.

RefIn Lock	the	NI-RFSA
device	to	the	external
REF	IN	connector	on
the	NI	PXI-5600.

PXI_Clk10 Lock	the	NI-RFSA
device	to	the	PXI
backplane	clock	using
the	NI	PXI-5600.	You
must	connect	the	PXI
10	MHz	connector	to
the	REF	IN	connector
on	the	NI	PXI-5600
front	panel	to	use	this
option.

refClockRate ViReal64 Specifies	the	reference	clock	rate,
expressed	in	Hertz.	The	default	value	is
10	MHz,	which	is	the	only	currently
supported	value.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ConfigurePXIChassisClk10
ViStatus	=	niRFSA_ConfigurePXIChassisClk10(ViSession	vi,
ViConstString	pxiClk10Source);

Purpose
Specifies	the	signal	to	drive	the	10	MHz	reference	clock	on	the	PXI
backplane.	This	option	can	only	be	configured	when	the	NI	PXI-5600	is	in
Slot	2	of	the	PXI	chassis.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument
session.

PXIClk10Source ViConstString Specifies	the	signal	to	drive	the	10	MHz
reference	clock	on	the	PXI	backplane.
This	option	can	only	be	configured
when	the	NI	PXI-5600	is	in	Slot	2	of	the
PXI	chassis.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViInt32
ViStatus	=	niRFSA_SetAttributeViInt32	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViInt32	value);

Purpose
Sets	the	value	of	a	ViInt32	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViInt64
ViStatus	=	niRFSA_SetAttributeViInt64	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViInt64	value);

Purpose
Sets	the	value	of	a	ViInt64	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViReal64
ViStatus	=	niRFSA_SetAttributeViReal64	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViReal64	value);

Purpose
Sets	the	value	of	a	ViReal64	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViString
ViStatus	=	niRFSA_SetAttributeViString	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViString	value);

Purpose
Sets	the	value	of	a	ViString	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViBoolean
ViStatus	=	niRFSA_SetAttributeViBoolean	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViBoolean	value);

Purpose
Sets	the	value	of	a	ViBoolean	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_SetAttributeViSession
ViStatus	=	niRFSA_SetAttributeViSession	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViSession	value);

Purpose
Sets	the	value	of	a	ViSession	attribute.
You	can	use	this	low-level	function	to	set	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid
or	is	different	than	the	value	you	specify.

NI-RFSA	contains	high-level	functions	that	set	most	of	the	instrument
attributes.	It	is	best	to	use	the	high-level	driver	functions	as	much	as
possible.	They	handle	order	dependencies	and	multithread	locking	for
you.	In	addition,	they	perform	status	checking	only	after	setting	all	of	the
attributes.	In	contrast,	when	you	set	multiple	attributes	using	the
SetAttribute	functions,	the	functions	check	the	instrument	status	after
each	call.
Also,	when	state	caching	is	enabled,	the	high-level	functions	that
configure	multiple	attributes	perform	instrument	I/O	only	for	the	attributes
whose	value	you	change.	Thus,	you	can	safely	call	the	high-level
functions	without	the	penalty	of	redundant	instrument	I/O.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
attributeValue ViInt32 Pass	the	value	to	which	you	want	to	set

the	attribute.
Note		Some	of	the	values	might	not
be	valid	depending	on	the	current
settings	of	the	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetAttributeViInt32
ViStatus	=	niRFSA_GetAttributeViInt32	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViInt32	*value);

Purpose
Queries	the	value	of	a	ViInt32	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetAttributeViInt64
ViStatus	=	niRFSA_GetAttributeViInt64	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViInt64	*value);

Purpose
Queries	the	value	of	a	ViInt64	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetAttributeViReal64
ViStatus	=	niRFSA_GetAttributeViReal64	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViReal64	*value);

Purpose
Queries	the	value	of	a	ViReal64	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetAttributeViString
ViStatus	=	niRFSA_GetAttributeViString	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViString	*value);

Purpose
Queries	the	value	of	a	ViString	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

You	must	provide	a	ViString	(ViChar	array)	to	serve	as	a	buffer	for	the
value.	You	pass	the	number	of	bytes	in	the	buffer	as	the	bufferSize
parameter.	If	the	current	value	of	the	attribute,	including	the	terminating
NULL	byte,	is	larger	than	the	size	you	indicate	in	the	bufferSize
parameter,	the	function	copies	buffer	size	minus	1		bytes	into	the	buffer,
places	an	ASCII	NULL	byte	at	the	end	of	the	buffer,	and	returns	the	buffer
size	you	must	pass	to	get	the	entire	value.	For	example,	if	the	value	is
"123456"	and	the	buffer	size	is	4,	the	function	places	"123"	into	the	buffer
and	returns	7.
If	you	want	to	call	this	function	just	to	get	the	required	buffer	size,	you	can
pass	0	for	the	bufferSize	and	VI_NULL	for	the	attributeValue	buffer.
If	you	want	the	function	to	fill	in	the	buffer	regardless	of	the	number	of
bytes	in	the	value,	pass	a	negative	number	for	the	buffer	size	parameter.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
bufferSize ViInt32 Pass	the	number	of	bytes	in	the	ViChar

buffer	you	specify	for	the	attribute	value
parameter.

If	you	pass	a	negative	number,	the
function	copies	the	value	to	the	buffer
regardless	of	the	number	of	bytes	in	the
value.

If	you	pass	0,	you	can	pass	VI_NULL	for
the	attribute	value	buffer	parameter.

Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
statusOrRequiredSize ViStatus Returns	the	status	code	of

this	operation.	The	status
code	either	indicates
success	or	describes	an
error	or	warning	condition.
You	examine	the	status
code	from	each	call	to	an
instrument	driver	function	to
determine	if	an	error
occurred.

To	obtain	a	text	description
of	the	status	code,	call	the
niRFSA_error_message
function.	To	obtain
additional	information	about
the	error	condition,	call	the
niRFSA_GetError	function.
To	clear	the	error
information	from	the	driver,
call	the	niRFSA_ClearError
function.

The	general	meaning	of	the
status	code	is	as	follows:

Value

Meaning

0 Success

Positive	Values Warnings

Negative	Values Errors

niRFSA_GetAttributeViBoolean
ViStatus	=	niRFSA_GetAttributeViBoolean	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViBoolean	*value);

Purpose
Queries	the	value	of	a	ViBoolean	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetAttributeViSession
ViStatus	=	niRFSA_GetAttributeViSession	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId,	ViSession	*value);

Purpose
Queries	the	value	of	a	ViSession	attribute.
You	can	use	this	low-level	function	to	get	the	values	of	inherent	IVI
attributes,	class-defined	attributes,	and	instrument-specific	attributes.	If
the	attribute	represents	an	instrument	state,	this	function	performs
instrument	I/O	in	the	following	cases:

State	caching	is	disabled	for	the	entire	session	or	for	the	particular
attribute.
State	caching	is	enabled,	and	the	currently	cached	value	is	invalid.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.
Output
Name Type Description
attributeValue ViInt32* Returns	the	current	value	of	the	attribute.

Pass	the	address	of	a	ViInt32	variable.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ResetAttribute
ViStatus	=	niRFSA_ResetAttribute	(ViSession	vi,	ViConstString
channelName,	ViAttr	attributeId);

Purpose
Resets	the	attribute	to	its	default	value.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelName ViConstString If	the	attribute	is	channel	based,	this
parameter	specifies	the	channel	to	which
the	attribute	applies.	If	the	attribute	is	not
channel	based,	set	this	parameter	to	""
(empty	string)	or	VI_NULL.

attributeID ViAttr Pass	the	ID	of	an	attribute.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_Initiate
ViStatus	=	niRFSA_Initiate(ViSession	vi);

Purpose
Starts	an	IQ	acquisition.	You	may	use	this	function	in	conjunction	with	the
NI-RFSA	fetch	IQ	functions	to	retrieve	acquired	IQ	data,	or	use	the	NI-
RFSA	read	IQ	functions	to	both	initiate	the	acquisition	and	retrieve	IQ
data	at	one	time.

Parameters
Input
Name Type Description
vi ViSession Passes	a	reference	to	your	instrument	session	to	the

next	function.	vi	is	obtained	from	the	niRFSA_init	or
the	niRFSA_initWithOptions	functions	and	identifies	a
particular	instrument	session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_FetchIQSingleRecordComplexI16
ViStatus	=	niRFSA_FetchIQSingleRecordComplexI16(ViSession	vi,
ViConstString	channelList,	ViInt64	recordNumber,	ViInt64
numberOfSamples,	ViReal64	timeout,	NIComplexI16*	data,
niRFSA_wfmInfo*	wfmInfo);

Purpose
Fetches	binary	IQ	data	from	a	single	record	in	an	acquisition.	The	fetch
transfers	acquired	waveform	data	from	device	memory	to	PC	memory.
The	data	was	acquired	to	onboard	memory	previously	by	the	hardware
after	it	was	initiated.

This	function	is	not	necessary	if	you	use	the
niRFSA_ReadIQSingleRecordComplexF64	function,	as	the	fetch	is
performed	as	part	of	that	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ReadIQSingleRecordComplexF64.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from	the
niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Specifies	channels	from	which	to
fetch	data.

recordNumber ViInt64 Specifies	the	record	to	fetch.
Record	numbers	are	zero-
indexed.

numberOfSamples ViInt64 Specifies	the	number	of	samples
to	fetch.

timeout ViReal64 Specifies	in	seconds	the	time
allotted	for	the	function	to
complete	before	returning	a
timeout	error.	A	value	of	-1
specifies	the	function	waits	until
all	data	is	available.	A	value	of	0
specifies	the	function	returns
available	data	immediately.

Output
Name Type Description
data NIComplexI16* Returns	the	acquired	waveform.
wfmInfo niRFSA_wfmInfo* Contains	the	absolute	and

relative	timestamp	for	the
operation,	the	dt,	and	the	actual
number	of	samples	read.

The	following	list	provides	more
information	about	each	of	these

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

properties:
absolute	timestamp—
specifies	the	timestamp	in
seconds	of	the	first	fetched
sample	that	is	comparable
between	records	and
acquisitions.
relative	timestamp—
returns	a	timestamp	that
corresponds	to	the
difference	in	seconds
between	the	first	sample
returned	and	the
Reference	trigger	location.
dt—returns	the	time
interval	between	data
points	in	the	acquired
signal.	The	IQ	data
sampling	rate	is	the
reciprocal	of	this	value.
actual	samples	read—
returns	an	integer
representing	the	number	of
samples	in	the	waveform.
offset—specifies	the	offset
to	scale	data	in	mx+b	form.
gain—specifies	the	gain	to
scale	data	in	mx+b	form.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_FetchIQSingleRecordComplexF64
ViStatus	=	niRFSA_FetchIQSingleRecordComplexF64(ViSession	vi,
ViConstString	channelList,	ViInt64	recordNumber,	ViInt64
numberOfSamples,	ViReal64	timeout,	NIComplexNumber*	data,
niRFSA_wfmInfo*	wfmInfo);

Purpose
Fetches	IQ	data	from	a	single	record	in	an	acquisition.	The	fetch
transfers	acquired	waveform	data	from	device	memory	to	PC	memory.
The	data	was	acquired	to	onboard	memory	previously	by	the	hardware
after	it	was	initiated.

This	function	is	not	necessary	if	you	use	the
niRFSA_ReadIQSingleRecordComplexF64	function,	as	the	fetch	is
performed	as	part	of	that	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ReadIQSingleRecordComplexF64.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from	the
niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Specifies	channels	from	which
to	fetch	data.

recordNumber ViInt64 Specifies	the	record	to	fetch.
Record	numbers	are	zero-
indexed.

numberOfSamples ViInt64 Specifies	the	number	of
samples	to	fetch.

timeout ViReal64 Specifies	in	seconds	the	time
allotted	for	the	function	to
complete	before	returning	a
timeout	error.	A	value	of	-1
specifies	the	function	waits
until	all	data	is	available.	A
value	of	0	specifies	the	function
returns	available	data
immediately.

Output
Name Type Description
data NIComplexNumber* Returns	the	acquired

waveform.
wfmInfo niRFSA_wfmInfo* Returns	the	absolute	and

relative	timestamp	for	the
operation,	the	dt,	and	the
actual	number	of	samples
read.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

The	following	list	provides
more	information	about	each	of
these	properties:

absolute	timestamp—
specifies	the	timestamp
in	seconds	of	the	first
fetched	sample	that	is
comparable	between
records	and	acquisitions.
relative	timestamp—
returns	a	timestamp	that
corresponds	to	the
difference	in	seconds
between	the	first	sample
returned	and	the
Reference	trigger
location.
dt—returns	the	time
interval	between	data
points	in	the	acquired
signal.	The	IQ	data
sampling	rate	is	the
reciprocal	of	this	value.
actual	samples	read—
returns	an	integer
representing	the	number
of	samples	in	the
waveform.
offset—specifies	the
offset	to	scale	data	in
mx+b	form.
gain—specifies	the	gain
to	scale	data	in	mx+b
form.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ReadIQSingleRecordComplexF64
ViStatus	=	niRFSA_ReadIQSingleRecordComplexF64(ViSession	vi,
ViConstString	channelList,	ViReal64	timeout,	NIComplexNumber*	data,
ViInt64	dataArraySize,	niRFSA_wfmInfo*	wfmInfo);

Purpose
Initiates	an	acquisition	and	fetches	a	single	IQ	data	record.	Do	not	use
this	function	if	you	have	configured	the	device	to	continuously	acquire
data	samples	or	to	acquire	multiple	records.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi

is	obtained	from	the	niRFSA_init	or
the	niRFSA_initWithOptions	functions
and	identifies	a	particular	instrument
session.

channelList ViConstString Specifies	channels	from	which	to
fetch	data.

timeout ViReal64 Specifies	in	seconds	the	time	allotted
for	the	function	to	complete	before
returning	a	timeout	error.	A	value	of	-1
specifies	the	function	waits	until	all
data	is	available.

dataArraySize ViInt32 Specifies	the	size	of	the	array	for	the
data	parameter.	The	array	needs	to
be	at	least	as	large	as	the	number	of
samples	configured	in	the
niRFSA_ConfigureNumberOfSamples
function.

Output
Name Type Description
data NIComplexNumber* Returns	the	acquired	waveform.
wfmInfo* niRFSA_wfmInfo Returns	additional	information	about

the	data	array.	

The	following	list	provides	more
information	about	each	of	these
properties:

absolute	timestamp—specifies
the	timestamp	in	seconds	of
the	first	fetched	sample	that	is
comparable	between	records

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ConfigureNumberOfSamples.html')

and	acquisitions.
relative	timestamp—returns	a
timestamp	that	corresponds	to
the	difference	in	seconds
between	the	first	sample
returned	and	the	Reference
trigger	location.
dt—returns	the	time	interval
between	data	points	in	the
acquired	signal.	The	IQ	data
sampling	rate	is	the	reciprocal
of	this	value.
actual	samples	read—returns
an	integer	representing	the
number	of	samples	in	the
waveform.
offset—specifies	the	offset	to
scale	data	in	mx+b	form.
gain—specifies	the	gain	to
scale	data	in	mx+b	form.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_FetchIQMultiRecordComplexI16
ViStatus	=	niRFSA_FetchIQMultiRecordComplexI16	(ViSession	vi,
ViConstString	channelList,	ViInt64	startingRecord,	ViInt64
numberOfRecords,	ViInt64	numberOfSamples,	ViReal64	timeout,
NIComplexI16*	data,	niRFSA_wfmInfo*	wfmInfo);

Purpose
Fetches	binary	IQ	data	from	multiple	records	in	an	acquisition.	Fetching
transfers	acquired	waveform	data	from	device	memory	to	PC	memory.
The	data	was	acquired	to	onboard	memory	previously	by	the	hardware
after	it	was	initiated.
This	function	is	not	necessary	if	you	use	the
niRFSA_ReadIQSingleRecordComplexF64	function,	as	the	fetch	is
performed	as	part	of	that	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ReadIQSingleRecordComplexF64.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from	the
niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Specifies	channels	from	which
to	fetch	data.

startingRecord ViInt64 Specifies	the	first	record	to
retrieve.

numberOfRecords ViInt64 Specifies	the	number	of	records
to	fetch.	A	value	of	-1	specifies
that	NI-RFSA	fetches	all	records
in	an	acquisition	starting	with
the	record	specified	by
startingRecord.	Record
numbers	are	zero-indexed.

numberOfSamples ViInt64 Specifies	the	number	of
samples	to	fetch.

timeout ViReal64 Specifies	in	seconds	the	time
allotted	for	the	function	to
complete	before	returning	a
timeout	error.	A	value	of	-1
specifies	the	function	waits	until
all	data	is	available.	A	value	of	0
specifies	the	function	returns
available	data	immediately.

Output
Name Type Description
data NIComplexI16* Returns	the	acquired	waveform

for	each	record	fetched.	The

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

waveforms	are	written
sequentially	in	the	array.
Allocate	an	array	at	least	as
large	as	numberOfSamples
times	numberOfRecords	for
this	parameter.

wfmInfo niRFSA_wfmInfo* Returns	an	array	of	structures
containing	information	about
each	record	fetched.	Each
structure	contains	the	absolute
and	relative	timestamp,	the	dt,
and	the	actual	number	of
samples	read	for	the
corresponding	record.

The	following	list	provides	more
information	about	each	of	these
properties:

absolute	timestamp—
specifies	the	timestamp	in
seconds	of	the	first
fetched	sample	that	is
comparable	between
records	and	acquisitions.
relative	timestamp—
returns	a	timestamp	that
corresponds	to	the
difference	in	seconds
between	the	first	sample
returned	and	the
Reference	trigger
location.
dt—returns	the	time
interval	between	data
points	in	the	acquired
signal.	The	IQ	data
sampling	rate	is	the
reciprocal	of	this	value.

actual	samples	read—
returns	an	integer
representing	the	number
of	samples	in	the
waveform.
offset—specifies	the
offset	to	scale	data	in
mx+b	form.
gain—specifies	the	gain
to	scale	data	in	mx+b
form.
Note		Allocate	an	array	of
structures	at	least	as
large	as
numberOfRecords	for
this	parameter.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_FetchIQMultiRecordComplexF64
ViStatus	=	niRFSA_FetchIQMultiRecordComplexF64(ViSession	vi,
ViConstString	channelList,	ViInt64	startingRecord,	ViInt64
numberOfRecords,	ViInt64	numberOfSamples,	ViReal64	timeout,
NIComplexNumber*	data,	niRFSA_wfmInfo*	wfmInfo);

Purpose
Fetches	IQ	data	from	multiple	records	in	an	acquisition.	A	fetch	transfers
acquired	waveform	data	from	device	memory	to	PC	memory.	The	data
was	acquired	to	onboard	memory	previously	by	the	hardware	after	it	was
initiated.
This	function	is	not	necessary	if	you	use	the
niRFSA_ReadIQSingleRecordComplexF64	function,	as	the	fetch	is
performed	as	part	of	that	function.

javascript:LauncHelp('nirfsa.chm::/cniRFSA_ReadIQSingleRecordComplexF64.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from	the
niRFSA_init	or	the
niRFSA_initWithOptions
functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Specifies	channels	from	which
to	fetch	data.

startingRecord ViInt64 Specifies	the	first	record	to
retrieve.

numberOfRecords ViInt64 Specifies	the	number	of
records	to	fetch.	A	value	of	-1
specifies	that	NI-RFSA	fetches
all	records	in	an	acquisition
starting	with	the	record
specified	by	startingRecord.
Record	numbers	are	zero-
indexed.

numberOfSamples ViInt64 Specifies	the	number	of
samples	per	record.

timeout ViReal64 Specifies	in	seconds	the	time
allotted	for	the	function	to
complete	before	returning	a
timeout	error.	A	value	of	-1
specifies	the	function	waits
until	all	data	is	available.	A
value	of	0	specifies	the	function
returns	available	data
immediately.

Output
Name Type Description

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

data NIComplexNumber* Returns	the	acquired	waveform
for	each	record	fetched.	The
waveforms	are	written
sequentially	in	the	array.
Allocate	an	array	at	least	as
large	as	numberOfSamples
times	numberOfRecords	for
this	parameter.

wfmInfo niRFSA_wfmInfo* Returns	an	array	of	structures
containing	information	about
each	record	fetched.	Each
structure	contains	the	absolute
and	relative	timestamp,	the	dt,
and	the	actual	number	of
samples	read	for	the
corresponding	record.

The	following	list	provides
more	information	about	each	of
these	properties:

absolute	timestamp—
specifies	the	timestamp
in	seconds	of	the	first
fetched	sample	that	is
comparable	between
records	and	acquisitions.
relative	timestamp—
returns	a	timestamp	that
corresponds	to	the
difference	in	seconds
between	the	first	sample
returned	and	the
Reference	trigger
location.
dt—returns	the	time
interval	between	data
points	in	the	acquired
signal.	The	IQ	data

sampling	rate	is	the
reciprocal	of	this	value.
actual	samples	read—
returns	an	integer
representing	the	number
of	samples	in	the
waveform.
offset—specifies	the
offset	to	scale	data	in
mx+b	form.
gain—specifies	the	gain
to	scale	data	in	mx+b
form.
Note		Allocate	an	array
of	structures	at	least	as
large	as
numberOfRecords	for
this	parameter.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_Abort
ViStatus	=	niRFSA_Abort(ViSession	vi);

Purpose
Stops	an	acquisition	previously	started	with	the	niRFSA_Initiate	function.
Unless	you	want	to	stop	an	acquisition	before	it	is	complete	or	you	are
continuously	acquiring	data,	calling	this	function	is	optional.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_Initiate.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ReadPowerSpectrumF64
ViStatus	=	niRFSA_ReadPowerSpectrumF64(ViSession	vi,
ViConstString	channelList,	ViReal64	timeout,	ViReal64
powerSpectrumData[],	ViInt32	dataArraySize,	niRFSA_spectrumInfo*
spectrumInfo);

Purpose
Initiates	a	spectrum	acquisition	and	returns	power	spectrum	data.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	

is	obtained	from	the	niRFSA_init
the	niRFSA_initWithOptions
functions	and	identifies	a	particular
instrument	session.

channelList ViConstString Specifies	channels	from	which	to
fetch	data.

timeout ViReal64 Specifies	in	seconds	the	time
allotted	for	the	function	to	complete
before	returning	a	timeout	error.	A
value	of	-1	specifies	the	function
waits	until	all	data	is	available.

dataArraySize ViInt64 Specifies	the	size	of	the	array	you
specify	for	the	powerSpectrumData
parameter.	Use	the
niRFSA_GetNumberOfSpectralLines
function	to	learn	the	array	size	you
need	to	allocate.	The	array	must	be
at	least	as	large	as	the	number	of
spectral	lines	that	NI-RFSA
computes	for	the	power	spectrum.

Output
Name Type Description
powerSpectrumData[] ViReal64 Returns	power	spectrum	data.
spectrumInfo niRFSA_spectrumInfo* Returns	additional	information	about

the	powerSpectrumData	array.
This	information	includes	the
frequency	corresponding	to	the	first
element	in	the	array,	the	frequency
increment	between	adjacent	array
elements,	and	the	number	of

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetNumberOfSpectralLines.html')

spectral	lines	the	function	returned.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetNumberOfSpectralLines
ViStatus	=	niRFSA_GetNumberOfSpectralLines(ViSession	vi,
ViConstString	channelList,	ViInt32*	numberOfSpectralLines);

Purpose
Returns	the	number	of	spectral	lines	that	NI-RFSA	will	compute	with	the
current	power	spectrum	configuration.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	

from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and	identifies	a
particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use	""	or
VI_NULL	to	specify	all	channels.

Output
Name Type Description
numberOfSpectralLines ViInt32* Returns	the	value	of	the

NIRFSA_ATTR_NUMBER_OF_SPECTRAL_LINES
attribute.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')
javascript:LaunchHelp('nirfsa.chm::/NIRFSA_ATTR_NUM_SPECTRAL_LINES.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_CheckAcquisitionStatus
ViStatus	=	niRFSA_CheckAcquisitionStatus(ViSession	vi,	ViBoolean*
isDone);

Purpose
Checks	the	status	of	the	acquisition.	Use	this	VI	to	check	for	any	errors
that	may	occur	during	signal	acquisition	or	to	check	whether	the	device
has	completed	the	acquisition	operation.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained

from	the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

Output
Name Type Description
isDone ViBoolean* Returns	VI_TRUE	when	signal	acquisition	is

complete.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_reset
ViStatus	=	niRFSA_reset(ViSession	vi);

Purpose
Resets	the	device	to	a	known	initialization	state.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_Commit
ViStatus	=	niRFSA_Commit(ViSession	vi);

Purpose
Commits	settings	to	hardware.	Calling	this	function	is	optional.	Settings
are	automatically	committed	to	hardware	when	you	call	the
niRFSA_Initiate,	or	a	read	IQ	or	read	power	spectrum	function.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_self_test
ViStatus	=	niRFSA_self_test(ViSession	vi,	ViInt16	*testResult,/*Output*/
ViChar	testMessage[]);

Purpose
Performs	a	self-test	on	the	NI-RFSA	device	and	returns	the	test	result.
This	function	performs	a	simple	series	of	tests	ensuring	the	NI-RFSA
device	is	powered	up	and	responding.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

Output
Name Type Description
testResult ViInt16* Returns	the	value	from	the	device	self-test.

Zero	means	success.
testMessage[] ViChar Returns	the	self-test	response	string	from	the

NI-RFSA	device.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_PerformThermalCorrection
ViStatus	=	niRFSA_PerformThermalCorrection(ViSession	vi);

Purpose
Measurements	are	affected	by	changes	in	temperature.	NI-RFSA
internally	acquires	the	temperature	every	time	you	initiate	an	acquisition.
If	you	are	performing	a	very	long	continuous	acquisition,	National
Instruments	recommends	calling	this	function	once	every	10	minutes	in	a
stable	temperature	environment	to	periodically	update	temperature
calibration.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetFetchBacklog
ViStatus	=	niRFSA_GetFetchBacklog(ViSession	vi,	ViConstString
channelList,	ViInt64	recordNumber,	ViInt64*	backlog);

Purpose
Returns	the	number	of	points	acquired	that	have	not	been	fetched	yet.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

channelList ViConstString Identifies	channels	to	apply	settings.	Use
""	or	VI_NULL	to	specify	all	channels.

recordNumber ViInt64 Specifies	the	record	from	which	to	read
the	backlog.

Output
Name Type Description
backlog ViInt64* Returns	the	number	of	samples	available

to	read	for	the	requested	record.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_revision_query
ViStatus	=	niRFSA_revision_query(ViSession	vi,	ViChar	driverRev[],
ViChar	instrRev[]);

Purpose
Returns	the	revision	numbers	of	the	NI-RFSA	driver.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions	functions
and	identifies	a	particular	instrument	session.

Output
Name Type Description
driverRev ViChar[] Returns	the	value	of

NIRFSA_ATTR_SPECIFIC_DRIVER_REVISION	in	the
form	of	a	string.

You	must	pass	a	ViChar	array	with	at	least	256	bytes.
instRev ViChar[] Returns	the	value	of

NIRFSA_ATTR_INSTRUMENT_FIRMWARE_REVISION
in	the	form	of	a	string.

You	must	pass	a	ViChar	array	with	at	least	256	bytes.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')
javascript:LaunchHelp('nirfsa.chm::/NIRFSA_ATTR_INSTRUMENT_FIRMWARE_REVISION.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetSpectralInfoForSMT
ViStatus	=	niRFSA_GetSpectralInfoForSMT(ViSession	vi,
SmtSpectrumInfo*	spectrumInfo);

Purpose
Returns	a	cluster	containing	information	about	the	power	spectrum	NI-
RFSA	computes	that	is	needed	by	the	Spectral	Measurements	Toolkit
(SMT).

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument
session.

Output
Name Type Description
spectrumInfo SmtSpectrumInfo* Returns	a	cluster	containing

information	about	the	power	spectrum
NI-RFSA	computes	that	is	needed	by
the	Spectral	Measurements	Toolkit
(SMT).

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_error_message
ViStatus	=	niRFSA_error_message(ViSession	vi,	ViStatus	statusCode,
ViChar	message[]);

Purpose
Converts	a	status	code	returned	by	an	NI-RFSA	function	into	a	user-
readable	string.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

errorCode ViStatus Pass	the	status	parameter	that	is	returned
from	any	NI-RFSA	function.	The	default	value
is	0	(VI_SUCCESS).

Output
Name Type Description
errorMessage ViChar[] Returns	the	user-readable	message	string

that	corresponds	to	the	status	code	you
specify.

You	must	pass	a	ViChar	array	with	at	least
256	bytes	to	this	parameter.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_GetError
ViStatus	=	niRFSA_GetError(ViSession	vi,	ViStatus	*errorCode,	ViInt32
errorDescriptionBufferSize,	ViChar	errorDescription[]);

Purpose
Retrieves	and	then	clears	the	IVI	error	information	for	the	session	or	the
current	execution	thread.

Note		If	the	errorDescriptionBufferSize	parameter	is	0,	this
function	does	not	clear	the	error	information.	By	passing	0	for	the
buffer	size,	you	can	determine	the	buffer	size	required	to	get	the
entire	error	description	string	and	then	call	this	function	again	with
a	sufficiently	large	buffer.

If	you	specify	a	valid	IVI	session	for	the	vi	parameter,	this	function
retrieves	and	then	clears	the	error	information	for	the	session.	If
you	pass	VI_NULL	for	vi,	this	function	retrieves	and	then	clears
the	error	information	for	the	current	execution	thread.	If	vi	is	an
invalid	session,	this	function	does	nothing	and	returns	an	error.
Normally,	the	error	information	describes	the	first	error	that
occurred	since	the	user	last	called	this	function	or
niRFSA_ClearError.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument

session.	vi	is	obtained	from	the
niRFSA_init	or	the
niRFSA_initWithOptions	functions
and	identifies	a	particular
instrument	session.

errorDescriptionBufferSize ViInt32 Pass	the	number	of	bytes	in	the
ViChar	array	you	specify	for	the
description	parameter.

If	the	error	description,	including
the	terminating	NULL	byte,
contains	more	bytes	than	you
indicate	in	this	parameter,	the
function	copies	buffer	size	-	1
bytes	into	the	buffer,	places	an
ASCII	NULL	byte	at	the	end	of
the	buffer,	and	returns	the	buffer
size	you	must	pass	to	get	the
entire	value.	For	example,	if	the
value	is	"123456"	and	the	buffer
size	is	4,	the	function	places
"123"	into	the	buffer	and	returns
7.	If	you	pass	a	negative	number,
the	function	copies	the	value	to
the	buffer	regardless	of	the
number	of	bytes	in	the	value.	If
you	pass	0,	you	can	pass
VI_NULL	for	the
errorDescription	parameter.

Default	Value:	None
Output

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Name Type Description
errorCode ViStatus* Returns	the	error	code	for	the

session	or	execution	thread.	If
you	pass	0	for	the
errorDescriptionBufferSize
parameter,	you	can	pass
VI_NULL	for	this	parameter.

errorDescription ViChar Returns	the	error	description	for
the	IVI	session	or	execution
thread.

If	there	is	no	description,	this
function	returns	an	empty	string.
The	buffer	must	contain	at	least
as	many	elements	as	the	value
you	specify	with	the	buffer	size
parameter.	If	the	error	description,
including	the	terminating	NULL
byte,	contains	more	bytes	than
you	indicate	with	the	buffer	size
parameter,	the	function	copies
buffer	size	-	1	bytes	into	the
buffer,	places	an	ASCII	NULL
byte	at	the	end	of	the	buffer,	and
returns	the	buffer	size	you	must
pass	to	get	the	entire	value.	For
example,	if	the	value	is	"123456"
and	the	buffer	size	is	4,	the
function	places	"123"	into	the
buffer	and	returns	7.	If	you	pass	0
for	the	buffer	size,	you	can	pass
VI_NULL	for	this	parameter.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_ClearError
ViStatus	=	niRFSA_ClearError(ViSession	vi);

Purpose
Clears	the	error	information	associated	with	the	session.	If	you	pass
VI_NULL	for	the	vi	parameter,	the	niRFSA_ClearError	function	clears	the
error	information	for	the	current	execution	thread.

Note		niRFSA_GetError	clears	the	error	information	after	it	is
retrieved.	A	call	to	niRFSA_ClearError	is	only	necessary	when	a
call	to	niRFSA_GetError	is	not	used	to	retrieve	error	information.

The	error	information	includes	a	primary	error,	secondary	error,	and	an
error	elaboration	string.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_LockSession
ViStatus	=	niRFSA_LockSession(ViSession	vi,	ViBoolean
*callerHasLock)

Purpose
Obtains	a	multithread	lock	on	the	instrument	session.	Before	doing	so,
this	function	waits	until	all	other	execution	threads	have	released	their
locks	on	the	instrument	session.
Other	threads	might	have	obtained	a	lock	on	this	session	in	the	following
ways:

Your	application	already	called	the	niRFSA_LockSession	function.
A	call	to	NI-RFSA	locked	the	session.

After	the	call	to	this	function	returns	successfully,	no	other	threads	can
access	the	instrument	session	until	you	call	the	niRFSA_UnlockSession
function.	Use	niRFSA_LockSession	and	niRFSA_UnlockSession	around
a	sequence	of	calls	to	NI-RFSA	functions	if	you	require	that	the	NI-RFSA
device	retain	its	settings	through	the	end	of	the	sequence.
You	can	safely	make	nested	calls	to	the	niRFSA_LockSession	function
within	the	same	thread.	To	completely	unlock	the	session,	balance	each
call	to	niRFSA_LockSession	with	a	call	to	niRFSA_UnlockSession.	If,
however,	you	use	the	callerHasLock	parameter	in	all	calls	to
niRFSA_LockSession	and	niRFSA_UnlockSession	within	a	function,	the
IVI	Library	locks	the	session	only	once	within	the	function	regardless	of
the	number	of	calls	you	make	to	niRFSA_LockSession.	Locking	the
session	only	once	allows	you	to	call	niRFSA_UnlockSession	just	once	at
the	end	of	the	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_UnlockSession.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

Output
Name Type Description
callerHasLock ViBoolean* This	parameter	serves	as	a	convenience.	If

you	do	not	want	to	use	this	parameter,	pass
VI_NULL.

Use	this	parameter	in	complex	functions	to
keep	track	of	whether	you	obtain	a	lock	and
therefore	need	to	unlock	the	session.	Pass
the	address	of	a	local	ViBoolean	variable.	In
the	declaration	of	the	local	variable,	initialize
it	to	VI_FALSE.	Pass	the	address	of	the
same	local	variable	to	any	other	calls	you
make	to	this	function	or
niRFSA_UnlockSession	in	the	same
function.

niRFSA_LockSession	and
niRFSA_UnlockSession	each	inspect	the
current	value	and	take	the	following	actions:

If	the	value	is	VI_TRUE,
niRFSA_LockSession	does	not	lock
the	session	again.	If	the	value	is
VI_FALSE,	niRFSA_LockSession
obtains	the	lock	and	sets	the	value	of
the	parameter	to	VI_TRUE.
If	the	value	is	VI_FALSE,
niRFSA_UnlockSession	does	not

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

attempt	to	unlock	the	session.	If	the
value	is	VI_TRUE,
niRFSA_UnlockSession	releases	the
lock	and	sets	the	value	of	the
parameter	to	VI_FALSE.

Thus,	you	can	call	niRFSA_UnlockSession
at	the	end	of	your	function	regardless	of
whether	you	actually	have	the	lock.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_UnlockSession
ViStatus	=	niRFSA_UnlockSession(ViSession	vi,	ViBoolean
*callerHasLock);

Purpose
Releases	a	lock	obtained	on	an	NI-RFSA	device	session	by	calling	the
niRFSA_LockSession	function.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_LockSession.html')

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is

obtained	from	the	niRFSA_init	or	the
niRFSA_initWithOptions	functions	and
identifies	a	particular	instrument	session.

Output
Name Type Description
callerHasLock ViBoolean* This	parameter	serves	as	a	convenience.	If

you	do	not	want	to	use	this	parameter,	pass
VI_NULL.

Use	this	parameter	in	complex	functions	to
keep	track	of	whether	you	obtain	a	lock	and
therefore	need	to	unlock	the	session.	Pass
the	address	of	a	local	ViBoolean	variable.	In
the	declaration	of	the	local	variable,	initialize
it	to	VI_FALSE.	Pass	the	address	of	the
same	local	variable	to	any	other	calls	you
make	to	this	function	or
niRFSA_UnlockSession	in	the	same
function.

niRFSA_LockSession	and
niRFSA_UnlockSession	each	inspect	the
current	value	and	take	the	following	actions:

If	the	value	is	VI_TRUE,
niRFSA_LockSession	does	not	lock
the	session	again.	If	the	value	is
VI_FALSE,	niRFSA_LockSession
obtains	the	lock	and	sets	the	value	of
the	parameter	to	VI_TRUE.
If	the	value	is	VI_FALSE,
niRFSA_UnlockSession	does	not

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

attempt	to	unlock	the	session.	If	the
value	is	VI_TRUE,
niRFSa_UnlockSession	releases	the
lock	and	sets	the	value	of	the
parameter	to	VI_FALSE.

Thus,	you	can	call	niRFSA_UnlockSession
at	the	end	of	your	function	regardless	of
whether	you	actually	have	the	lock.

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

niRFSA_close
ViStatus	=	niRFSA_close(ViSession	vi);

Purpose
Closes	the	session	to	the	device.

Parameters
Input
Name Type Description
vi ViSession Identifies	your	instrument	session.	vi	is	obtained	from

the	niRFSA_init	or	the	niRFSA_initWithOptions
functions	and	identifies	a	particular	instrument
session.

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_init.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_initWithOptions.html')

Return	Value
Name Type Description
status ViStatus Returns	the	status	code	of	this	operation.

The	status	code	either	indicates	success
or	describes	an	error	or	warning
condition.	You	examine	the	status	code
from	each	call	to	an	instrument	driver
function	to	determine	if	an	error
occurred.

To	obtain	a	text	description	of	the	status
code,	call	the	niRFSA_error_message
function.	To	obtain	additional	information
about	the	error	condition,	call	the
niRFSA_GetError	function.	To	clear	the
error	information	from	the	driver,	call	the
niRFSA_ClearError	function.

The	general	meaning	of	the	status	code
is	as	follows:

Value

Meaning

0 Success

Positive
Values

Warnings

Negative
Values

Errors

javascript:LaunchHelp('nirfsa.chm::/cniRFSA_error_message.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_GetError.html')
javascript:LaunchHelp('nirfsa.chm::/cniRFSA_ClearError.html')

NIRFSA_ATTR_CENTER_FREQUENCY
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureSpectrumFrequencyCenterSpan

Description
Specifies	the	center	frequency	in	a	spectrum	acquisition.	The	value	is
expressed	in	hertz.	An	acquisition	consists	of	a	span	of	data	surrounding
the	center	frequency.

NIRFSA_ATTR_SPAN
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureSpectrumFrequencyCenterSpan

Description
Specifies	the	frequency	range	of	the	computed	spectrum.	If	you	specify	a
center	frequency	of	1	GHz	and	span	of	100	MHz,	the	spectrum	ranges
from	950	MHz	to	1050	MHz	after	zoom	processing.	This	value	may	be
coerced	based	on	hardware	settings	and	downconversion	specifications.

Note		If	you	configure	the	spectrum	span	(stop	frequency	–	start
frequency)	to	a	value	larger	than	20	MHz,	RFSA	performs	multiple
acquisitions	and	combines	them	into	a	spectrum	of	the	size	you
requested.

NIRFSA_ATTR_REFERENCE_LEVEL
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureReferenceLevel

Description
Specifies	the	reference	level.	The	value	is	expressed	in	dBm.	The
reference	level	represents	the	maximum	expected	power	of	an	input	RF
signal.

NIRFSA_ATTR_ATTENUATION
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W None

Description
Specifies	the	downconverter	module	attenuation	setting	in	dB.
Calculate	the	attenuation	setting	using	desired
NIRFSA_ATTR_REFERENCE_LEVEL	and
NIRFSA_ATTR_MIXER_LEVEL	settings,	according	to	the	following
formula:

attenuation	=	reference	level	–	mixer	level
For	example,	when	using	a	reference	level	of	0	dBm	(default)	with
moderate	distortion	and	low	noise,	specify	an	attenuation	value	of	20	dB,
as	shown	by	the	following	calculation:

attenuation	=	(0	dB	reference	level)	–	(–20	dB	mixer	level

NIRFSA_ATTR_MIXER_LEVEL
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W None

Description
Specifies	the	mixer	level.	The	value	is	expressed	in	dBm.	The	mixer	level
represents	the	attenuation	to	apply	to	the	input	RF	signal	as	it	reaches
the	first	mixer	in	the	signal	chain.	NI-RFSA	automatically	selects	an
optimal	mixer	level	value	given	the	reference	level	if	you	do	not	configure
this	attribute.

NIRFSA_ATTR_ACQUISITION_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W niRFSA_ConfigureAcquisitionType

Description
Configures	whether	the	session	acquires	IQ	data	or	computes	a	power
spectrum	over	the	specified	frequency	range.

Defined	Values:
NIRFSA_VAL_IQ	(100) Configures	the	driver	for	IQ	acquisitions.
NIRFSA_VAL_SPECTRUM
(101)

Configures	the	driver	for	spectrum
acquisitions.

NIRFSA_ATTR_IQ_RATE
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureIQRate

Description
Specifies	the	IQ	rate	for	the	acquisition.	The	value	is	expressed	in	S/s.

Notes		Bandwidth	is	equal	to	the	coerced	IQ	rate	times	0.8.

You	should	not	need	to	configure	an	IQ	rate	higher	than	25	MHz,
since	the	NI	PXI-5600	downconverter	bandwidth	is	20	MHz.	If	you
choose	to	configure	a	higher	IQ	rate,	you	may	see	aliasing	effects
at	negative	frequencies	because	the	IF	frequency	of	the
downconverter	is	at	15	MHz.

NIRFSA_ATTR_NUM_SAMPLES_IS_FINITE
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W niRFSA_ConfigureNumberOfSamples

Description
Configures	the	device	to	stop	after	acquiring	the	specified	number	of
samples	or	to	acquire	continuously.

Defined	Values:
VI_TRUE Configures	the	device	to	stop	after	acquiring	the	specified

number	of	samples.
VI_FALSE Acquire	continuously	until	you	abort	the	acquisition.

NIRFSA_ATTR_NUM_SAMPLES
Specific	Attribute
Data
type Access High	Level	Functions

ViInt64 R/W niRFSA_ConfigureNumberOfSamples

Description
Configures	the	number	of	samples.

NIRFSA_ATTR_NUM_RECORDS_IS_FINITE
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W niRFSA_ConfigureNumberOfRecords

Description
Configures	the	device	to	stop	after	acquiring	the	specified	number	of
records	or	to	acquire	records	continuously.

Defined	Values:
VI_TRUE Configures	the	device	to	stop	after	acquiring	the	specified

number	of	records.
VI_FALSE Acquire	records	continuously	until	you	abort	the	acquisition.

NIRFSA_ATTR_NUM_RECORDS
Specific	Attribute
Data
type Access High	Level	Functions

ViInt64 R/W niRFSA_ConfigureNumberOfRecords

Description
Specifies	the	number	of	records	to	acquire	if
NIRFSA_ATTR_NUM_RECORDS_IS_FINITE	is	set	to	VI_TRUE.

NIRFSA_ATTR_POWER_SPECTRUM_UNITS
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	units	of	the	spectrum.

Defined	Values:
NIRFSA_VAL_DBM	(200) Units	are	dB	with	reference	to	1

milliwatt.
NIRFSA_VAL_VOLTS_SQUARED
(201)

Units	are	in	V2	RMS.

NIRFSA_VAL_DBMV	(202) Units	are	dB	with	reference	to	1
millivolt.

NIRFSA_VAL_DBUV	(203) Units	are	dB	with	reference	to	1
microvolt.

NIRFSA_ATTR_RESOLUTION_BANDWIDTH
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureResolutionBandwidth

Description
Specifies	the	resolution	along	the	x-axis	of	the	spectrum.	NI-RFSA	uses
the	resolution	bandwidth	value	to	determine	the	acquisition	size.	If
NIRFSA_ATTR_NUMBER_OF_SPECTRAL_LINES	is	specified,	that
value	takes	precedence	over	this	value.	If	both	attributes	are	set	to	​1,	the
spectrum	uses	a	default	of	400	spectral	lines.

NIRFSA_ATTR_RESOLUTION_BANDWIDTH_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	definition	of	NIRFSA_ATTR_RESOLUTION_BANDWIDTH.

Defined	Values:
NIRFSA_VAL_RBW_3DB	(300) Defines	the	RBW	in	terms	of	the	3	dB

bandwidth	of	the	window	specified	by
NIRFSA_ATTR_FFT_WINDOW_TYPE

NIRFSA_VAL_RBW_6DB	(301) Defines	the	resolution	bandwidth	in
terms	of	the	6	dB	bandwidth	of	the
window	specified	by
NIRFSA_ATTR_FFT_WINDOW_TYPE

NIRFSA_VAL_RBW_BIN_WIDTH
(302)

Defines	the	resolution	bandwidth	in
terms	of	the	display	resolution,	which	is
the	ratio	of	the	sampling	frequency	to
the	number	of	samples	that	you
acquire.

NIRFSA_VAL_RBW_ENBW	(303) Defines	the	resolution	bandwidth	in
terms	of	the	Equivalent	Noise
Bandwidth	(ENBW)	of	the	window
specified	by
NIRFSA_ATTR_FFT_WINDOW_TYPE

NIRFSA_ATTR_NUMBER_OF_SPECTRAL_LINES
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Configures	the	number	of	spectral	lines	expected	with	the	current	power
spectrum	configuration.	If	you	do	not	configure	this	attribute,	NI-RFSA
selects	an	appropriate	value	based	on	the
NIRFSA_ATTR_RESOLUTION_BANDWIDTH	attribute.	If	you	configure
this	attribute,	NI-RFSA	coerces	the	resolution	bandwidth	value	based	on
the	number	of	spectral	lines	requested	and	the	acquisition	span.

NIRFSA_ATTR_SPECTRUM_AVERAGING_MODE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	averaging	mode	for	the	spectrum	acquisition.

Defined	Values:
NIRFSA_VAL_NO_AVERAGING	(400) Configures	the	driver	to

perform	no	averaging	on
acquisitions.

NIRFSA_VAL_RMS_AVERAGING	(401) Configures	the	driver	for
RMS	averaging.	RMS
averaging	reduces	signal
fluctuations	but	not	the	noise
floor.	RMS	averaging
averages	the	energy	or
power	of	the	signal,	which
prevents	noise	floor
reduction	and	gives
averaged	rms	quantities	of
single-channel
measurements	zero	phase.
RMS	averaging	for	dual-
channel	measurements
preserves	important	phase
information.

NIRFSA_VAL_VECTOR_AVERAGING
(402)

Configures	the	driver	for
vector	averaging.	Vector
averaging	reduces	noise
from	synchronous	signals.
Vector	averaging	computes
the	average	of	complex
quantities	directly,	which
means	that	it	allows	separate
averaging	for	real	and
imaginary	parts.	Complex
averaging	such	as	vector
averaging	reduces	noise	and
usually	requires	a	trigger	to
improve	block-to-block	phase
coherence.

NIRFSA_VAL_PEAK_HOLD_AVERAGING
(403)

Configures	the	driver	for
peak	hold	averaging.	Peak

hold	averaging	retains	the
RMS	peak	levels	of	the
averaged	quantities.	The
peak	hold	averaging	process
performs	peak	hold	at	each
frequency	bin	separately	to
retain	peak	rms	levels	from
one	FFT	record	to	the	next.

NIRFSA_ATTR_SPECTRUM_NUM_AVERAGES
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	number	of	averages	to	complete	for	linear	weighting.	The
averaging	process	returns	the	final	result	after	the	number	of	averages	is
complete.

NIRFSA_ATTR_FFT_WINDOW_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	time-domain	window	type.

Defined	Values:
NIRFSA_VAL_UNIFORM	(500)
NIRFSA_VAL_HANNING	(501)
NIRFSA_VAL_HAMMING	(502)
NIRFSA_VAL_BLACKMAN_HARRIS	(503)
NIRFSA_VAL_EXACT_BLACKMAN	(504)
NIRFSA_VAL_BLACKMAN	(505)
NIRFSA_VAL_FLAT_TOP	(506)
NIRFSA_VAL_4_TERM_BLACKMAN_HARRIS	(507)
NIRFSA_VAL_7_TERM_BLACKMAN_HARRIS	(508)
NIRFSA_VAL_LOW_SIDE_LOBE	(509)

NIRFSA_ATTR_FFT_WINDOW_SIZE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 RO None

Description
Returns	the	size	of	the	window	used	in	the	Fast	Fourier	Transform.

NIRFSA_ATTR_FFT_SIZE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 RO None

Description
Returns	the	size	of	the	Fast	Fourier	Transform.

NIRFSA_ATTR_FETCH_RELATIVE_TO
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	the	absolute	location	within	the	acquired	record	from	which	to
begin	fetching.

Defined	Values:
NIRFSA_VAL_MOST_RECENT_SAMPLE	(700) Specifies	that	fetching	occur

relative	to	the	most	recently
acquired	data.
NIRFSA_ATTR_FETCH_OFFSET
must	be	negative.

NIRFSA_VAL_FIRST_SAMPLE	(701) Specifies	that	fetching	occurs	at
the	first	sample	acquired	by	
device.	If	the	device	wraps	its
buffer,	then	the	first	sample	is	no
longer	available.	In	this	case,	NI-
RFSA	returns	an	error	if	the	fetch
offset	is	in	the	overwritten	data.

NIRFSA_VAL_REF_TRIGGER	(702) Specifies	that	fetching	occur
relative	to	the	Reference	trigger.
This	value	behaves	like
NIRFSA_VAL_FIRST_SAMPLE
no	Reference	trigger	is
configured.

NIRFSA_VAL_FIRST_PRETRIGGER_SAMPLE	(703) Specifies	that	fetching	occur
relative	to	the	first	pretrigger
sample	acquired.	This	value
behaves	like
NIRFSA_VAL_FIRST_SAMPLE
no	Reference	trigger	is
configured.

NIRFSA_VAL_CURRENT_READ_POSITION	(704) Specifies	that	fetching	occur	after
the	last	fetched	sample.

NIRFSA_ATTR_FETCH_OFFSET
Specific	Attribute
Data
type Access High	Level	Functions

ViInt64 R/W None

Description
Specifies	the	offset	relative	to	the	position	specified	by
NIRFSA_ATTR_FETCH_RELATIVE_TO	from	which	to	start	fetching
data.	Offset	can	be	a	positive	or	negative	value.

NIRFSA_ATTR_RECORDS_DONE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 RO None

Description
Returns	the	number	of	records	the	RF	signal	analyzer	has	acquired.

NIRFSA_ATTR_REF_CLOCK_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigureRefClock

Description
Specifies	the	Reference	clock	source.

Defined	Values:
NIRFSA_VAL_ONBOARD_CLOCK_STR
("OnboardClock")

Lock	the	NI-RFSA	device	to	the
NI	PXI-5600	onboard	clock.

NIRFSA_VAL_REF_IN_STR	("RefIn") Lock	the	NI-RFSA	device	to	the
external	REF	IN	connector	on
the	NI	PXI-5600.	You	must
install	the	NI	PXI-5600	in	Slot	2
of	your	PXI	chassis	to	use	this
option.

NIRFSA_VAL_PXI_CLK10_STR
("PXI_Clk10")

Lock	the	NI-RFSA	device	to	the
PXI	backplane	clock	using	the
NI	PXI-5600.

NIRFSA_ATTR_REF_CLOCK_RATE
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureRefClock

Description
Specifies	the	rate	of	the	reference	clock.	The	value	is	expressed	in	hertz.
NI-RFSA	only	supports	a	reference	clock	rate	of	10	MHz.

NIRFSA_ATTR_DIGITIZER_SAMPLE_CLOCK_TIMEBASE_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W None

Description
Specifies	the	digitizer's	sample	clock	timebase	source.

Defined	Values:
NIRFSA_VAL_NONE_STR The	digitizer	uses	its	onboard	clock	as

the	Sample	clock	timebase	source.
NIRFSA_VAL_CLK_IN_STR The	digitizer	uses	the	signal	at	the	CLK

IN	input	terminal	as	the	Sample	clock
timebase	source.

NIRFSA_VAL_PXI_STAR_STR The	digitizer	uses	the	signal	on	the	PXI
star	trigger	line	as	the	Sample	clock
timebase	source.

NIRFSA_ATTR_DIGITIZER_SAMPLE_CLOCK_TIMEBASE_RATE
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W N/A

Description
Specifies	the	frequency,	in	hertz,	of	the	external	clock	used	as	the
timebase	source	if
NIRFSA_ATTR_DIGITIZER_SAMPLE_CLOCK_TIMEBASE_SOURCE	is
an	external	source.
If	timebase	rate	is	set	to	a	value	below	60	MHz,	signals	at	frequencies
just	above	the	20	MHz	passband	of	the	downconverter	may	be	aliased
back	into	the	passband.	This	aliasing	occurs	because	the	IF	frequency	of
the	downconverter	is	at	15	MHz,	and	the	upper	end	of	the	passband	is	at
25	MHz.	At	sampling	rates	below	60	MHz,	the	Nyquist	frequency	is	close
to	the	end	of	the	passband	and	creates	aliases	that	are	not	effectively
filtered	by	the	downconverter.

NIRFSA_ATTR_PXI_CHASSIS_CLK10_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigurePXIChassisClk10

Description
Specifies	the	signal	to	drive	the	10	MHz	reference	clock	on	the	PXI
backplane.	This	option	can	only	be	configured	when	the	NI	PXI-5600	is	in
Slot	2	of	the	PXI	chassis.

Defined	Values:
NIRFSA_VAL_NONE_STR	("None") The	device	does	not	drive	the

PXI	10	MHz	backplane
reference	clock.

NIRFSA_VAL_ONBOARD_CLOCK_STR
("OnboardClock")

The	device	drives	the	PXI
10	MHz	backplane	reference
clock	with	the	NI	PXI-5600
onboard	clock.	You	must
connect	the	10	MHz	OUT
connector	to	the	PXI	10	MHz
I/O	on	the	NI	PXI	5600	front
panel	to	use	this	option.

NIRFSA_VAL_REF_IN_STR	("RefIn") The	device	drives	the	PXI
10	MHz	backplane	reference
clock	with	the	reference	source
attached	to	the	NI	PXI-5600
REF	IN	connector.	You	must
connect	the	10	MHz	OUT
connector	to	the	PXI	10	MHz
I/O	on	the	NI	PXI	5600	front
panel	to	use	this	option.

NIRFSA_ATTR_START_TRIGGER_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	whether	you	want	the	Start	trigger	to	be	a	digital	edge	or
software	trigger.

Defined	Values:
NIRFSA_VAL_NONE	(600) No	Advance	trigger	is	configured.
NIRFSA_VAL_DIGITAL_EDGE
(601)

The	Start	trigger	is	not	asserted	until	a	digital	edge	is	detected.
The	source	of	the	digital	edge	is	specified	with
NIRFSA_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE

NIRFSA_VAL_SOFTWARE
(604)

The	Advance	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niRFSA_SendSoftwareEdgeTrigger	function	with	
NIRFSA_VAL_START_TRIGGER	as	the	trigger

NIRFSA_ATTR_DIGITAL_EDGE_START_TRIGGER_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigureDigitalEdgeStartTrigger

Description
Specifies	the	source	terminal	for	the	Start	trigger.	This	attribute	is	used
only	when	NIRFSA_ATTR_START_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

NIRFSA_ATTR_DIGITAL_EDGE_START_TRIGGER_EDGE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W niRFSA_ConfigureDigitalEdgeStartTrigger

Description
Specify	the	active	edge	for	the	Start	trigger.	This	property	is	used	only
when	NIRFSA_ATTR_START_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

NIRFSA_VAL_RISING_EDGE
(900)

The	trigger	asserts	on	the	rising	edge	of
the	signal.

NIRFSA_VAL_FALLING_EDGE
(901)

The	trigger	asserts	on	the	falling	edge	of
the	signal

NIRFSA_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Specifies	the	destination	terminal	for	the	exported	Start	trigger.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_REF_TRIGGER_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	whether	you	want	the	Reference	trigger	to	be	a	digital	edge,	IQ
power	edge,	or	software	trigger.

Defined	Values:
NIRFSA_VAL_NONE	(600) No	Reference	trigger	is	configured.
NIRFSA_VAL_DIGITAL_EDGE
(601)

The	Reference	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
NIRFSA_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
attribute.

NIRFSA_VAL_IQ_POWER_EDGE
(603)
NIRFSA_VAL_SOFTWARE	(604) The	Arm	Reference	trigger	is	not	asserted	until	a	software

trigger	occurs.	You	can	assert	the	software	trigger	by	calling
the	niRFSA_SendSoftwareEdgeTrigger
selecting	NIRFSA_VAL_REF_TRIGGER
parameter.

NIRFSA_ATTR_REF_TRIGGER_PRETRIGGER_SAMPLES
Specific	Attribute
Data
type Access High	Level	Functions

ViInt64 R/W niRFSA_ConfigureDigitalEdgeRefTrigger
niRFSA_ConfigureSoftwareEdgeRefTrigger
niRFSA_ConfigureIQPowerEdgeRefTrigger

Description
Specifies	the	number	of	pretrigger	samples,	the	samples	acquired	before
the	Reference	trigger	is	received,	to	be	acquired	per	record.

NIRFSA_ATTR_DIGITAL_EDGE_REF_TRIGGER_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigureDigitalEdgeRefTrigger

Description
Specifies	the	source	terminal	for	the	Reference	trigger.	This	attribute	is
used	only	when	NIRFSA_ATTR_REF_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

NIRFSA_ATTR_DIGITAL_EDGE_REF_TRIGGER_EDGE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W niRFSA_ConfigureDigitalEdgeRefTrigger

Description
Specify	the	active	edge	for	the	Reference	trigger.	This	property	is	used
only	when	NIRFSA_ATTR_REF_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

NIRFSA_VAL_RISING_EDGE
(900)

The	trigger	asserts	on	the	rising	edge	of
the	signal.

NIRFSA_VAL_FALLING_EDGE
(901)

The	trigger	asserts	on	the	falling	edge	of
the	signal

NIRFSA_ATTR_IQ_POWER_EDGE_REF_TRIGGER_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigureIQPowerEdgeRefTrigger

Description
Specifies	the	channel	from	which	the	device	will	monitor	the	trigger.	The
only	valid	input	for	this	attribute	is	"0"	at	this	time.

NIRFSA_ATTR_IQ_POWER_EDGE_REF_TRIGGER_LEVEL
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W niRFSA_ConfigureIQPowerEdgeRefTrigger

Description
Specifies	the	power	level	in	dBm	at	which	the	device	will	trigger.	The
device	asserts	the	trigger	when	the	signal	exceeds	the	level	specified	by
the	value	of	this	attribute.

NIRFSA_ATTR_IQ_POWER_EDGE_REF_TRIGGER_SLOPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W niRFSA_ConfigureIQPowerEdgeRefTrigger

Description
Specifies	whether	the	device	asserts	the	trigger	when	the	signal	power	is
rising	or	falling.	When	the	trigger	is	configured	for	IQ	power	edge	the
device	asserts	the	trigger	when	the	power	exceeds	the	specified	level
with	the	slope	you	specify.

Defined	Values:
NIRFSA_VAL_RISING_SLOPE
(1000)

The	trigger	asserts	when	the	signal
power	is	rising.

NIRFSA_VAL_FALLING_SLOPE
(1001)

The	trigger	asserts	when	the	signal
power	is	falling.

NIRFSA_ATTR_IQ_POWER_EDGE_REF_TRIGGER_MINIMUM_QUIET_TIME
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 R/W None

Description
Specifies	a	time	duration	for	which	the	signal	must	be	quiet	before	the
device	arms	the	trigger.	The	signal	is	quiet	when	it	is	below	the	trigger
level	if	the	trigger	slope,	specified	by
NIRFSA_ATTR_IQ_POWER_EDGE_REF_TRIGGER_SLOPE,	is	set	to
NIRFSA_VAL_RISING_SLOPE	or	above	the	trigger	level	if	the	trigger
slope	is	set	to	NIRFSA_VAL_FALLING_SLOPE.
By	default	this	value	is	set	to	0,	which	means	the	device	does	not	wait	for
a	quiet	time	before	arming	the	trigger.	This	attribute	is	useful	to	trigger	the
acquisition	on	signals	containing	repeated	bursts,	but	for	which	each
burst	may	have	large	changes	in	signal	power	within	itself.	By	configuring
the	minimum	quiet	time	to	the	time	between	bursts,	you	can	ensure	that
the	trigger	occurs	at	the	beginning	of	a	burst	rather	than	in	signal	power
change	within	a	burst.

NIRFSA_ATTR_EXPORTED_REF_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Specifies	the	destination	terminal	for	the	exported	Reference	trigger.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_START_TO_REF_TRIGGER_HOLDOFF
Specific	Attribute
Data
type Access High-Level	Functions

ViReal64 R/W None

Description
Specifies	the	minimum	time	in	seconds	that	must	elapse	after	the	Start
trigger	is	received	before	the	device	recognizes	a	Reference	trigger.
Units:	seconds

NIRFSA_ATTR_REF_TO_REF_TRIGGER_HOLDOFF
Specific	Attribute
Data
type Access High-Level	Functions

ViReal64 R/W None

Description
Specifies	the	minimum	time	in	seconds	that	must	elapse	after	the
Reference	trigger	for	one	record	is	received	before	the	device	will
recognize	the	Reference	trigger	for	the	next	record.
Units:	seconds

NIRFSA_ATTR_ADVANCE_TRIGGER_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	whether	you	want	the	Advance	trigger	to	be	a	digital	edge	or
pattern	match	trigger.

Defined	Values:
NIRFSA_VAL_NONE	(600) No	Advance	trigger	is	configured.
NIRFSA_VAL_DIGITAL_EDGE
(601)

The	Advance	trigger	is	not	asserted	until	a	digital	edge	is	detected.
The	source	of	the	digital	edge	is	specified	with
NIRFSA_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE

NIRFSA_VAL_SOFTWARE
(604)

The	Advance	trigger	is	not	asserted	until	a	software	trigger	occurs.
You	can	assert	the	software	trigger	by	calling	the
niRFSA_SendSoftwareEdgeTrigger	function	with	
NIRFSA_VAL_ADVANCE_TRIGGER	as	the	

NIRFSA_ATTR_DIGITAL_EDGE_ADVANCE_TRIGGER_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ConfigureDigitalEdgeAdvanceTrigger

Description
Specifies	the	source	terminal	for	the	Advance	trigger.	This	attribute	is
used	only	when	NIRFSA_ATTR_ADVANCE_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

NIRFSA_ATTR_EXPORTED_ADVANCE_TRIGGER_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Specifies	the	destination	terminal	for	the	exported	Advance	trigger.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_ARM_REF_TRIGGER_TYPE
Specific	Attribute
Data
type Access High	Level	Functions

ViInt32 R/W None

Description
Specifies	whether	you	want	the	Arm	Reference	trigger	to	be	a	digital
edge	or	software	trigger.

Defined	Values:
NIRFSA_VAL_NONE	(600) No	Arm	Reference	trigger	is	configured.
NIRFSA_VAL_DIGITAL_EDGE
(601)

The	Arm	Reference	trigger	is	not	asserted	until	a	digital	edge	is
detected.	The	source	of	the	digital	edge	is	specified	with	the
NIRFSA_ATTR_DIGITAL_EDGE_ARM_REF_TRIGGER_SOURCE
attribute.

NIRFSA_VAL_SOFTWARE
(604)

The	Arm	Reference	trigger	is	not	asserted	until	a	software	trigger
occurs.	You	can	assert	the	software	trigger	by	calling	the
niRFSA_SendSoftwareEdgeTrigger	function	with	
NIRFSA_VAL_ARM_REF_TRIGGER	as	the	

NIRFSA_ATTR_DIGITAL_EDGE_ARM_REF_TRIGGER_SOURCE
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W None

Description
Specifies	the	source	terminal	for	the	Arm	Reference	trigger.	This	attribute
is	used	only	when	NIRFSA_ATTR_ARM_REF_TRIGGER_TYPE	is	set	to
NIRFSA_VAL_DIGITAL_EDGE.

PFI0 The	trigger	is	received	on	PFI	0.
PFI1 The	trigger	is	received	on	PFI	1.
PXI_Trig0 The	trigger	is	received	on	PXI	trigger	line	0.
PXI_Trig1 The	trigger	is	received	on	PXI	trigger	line	1.
PXI_Trig2 The	trigger	is	received	on	PXI	trigger	line	2.
PXI_Trig3 The	trigger	is	received	on	PXI	trigger	line	3.
PXI_Trig4 The	trigger	is	received	on	PXI	trigger	line	4.
PXI_Trig5 The	trigger	is	received	on	PXI	trigger	line	5.
PXI_Trig6 The	trigger	is	received	on	PXI	trigger	line	6.
PXI_Trig7 The	trigger	is	received	on	PXI	trigger	line	7.
PXI_STAR The	trigger	is	received	on	the	PXI	star	trigger	line.

NIRFSA_ATTR_EXPORTED_READY_FOR_START_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Identifies	the	hardware	signal	line	on	which	the	digital	pulse	for	the
Ready	for	Start	event	is	generated.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_EXPORTED_READY_FOR_ADVANCE_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Identifies	the	hardware	signal	line	on	which	the	digital	pulse	for	the
Ready	for	Advance	event	is	generated.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_EXPORTED_READY_FOR_REF_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Identifies	the	hardware	signal	line	on	which	the	digital	pulse	for	the
Ready	for	Ref	event	is	generated.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_EXPORTED_END_OF_RECORD_EVENT_OUTPUT_TERMINAL
Specific	Attribute
Data
type Access High	Level	Functions

ViString R/W niRFSA_ExportSignal

Description
Identifies	the	hardware	signal	line	on	which	the	digital	pulse	for	the	End
of	Record	event	is	generated.

Defined	Values:
NIRFSA_VAL_DO_NOT_EXPORT_STR
("")

The	signal	is	not	exported.

NIRFSA_VAL_PFI0_STR	("PFI0") The	signal	is	exported	on	PFI	0.
NIRFSA_VAL_PFI1_STR	("PFI1") The	signal	is	exported	on	PFI	1.
NIRFSA_VAL_PXI_TRIG0_STR
("PXI_Trig0")

The	signal	is	exported	on	PXI
trigger	line	0.

NIRFSA_VAL_PXI_TRIG1_STR
("PXI_Trig1")

The	signal	is	exported	on	PXI
trigger	line	1.

NIRFSA_VAL_PXI_TRIG2_STR
("PXI_Trig2")

The	signal	is	exported	on	PXI
trigger	line	2.

NIRFSA_VAL_PXI_TRIG3_STR
("PXI_Trig3")

The	signal	is	exported	on	PXI
trigger	line	3.

NIRFSA_VAL_PXI_TRIG4_STR
("PXI_Trig4")

The	signal	is	exported	on	PXI
trigger	line	4.

NIRFSA_VAL_PXI_TRIG5_STR
("PXI_Trig5")

The	signal	is	exported	on	PXI
trigger	line	5.

NIRFSA_VAL_PXI_TRIG6_STR
("PXI_Trig6")

The	signal	is	exported	on	PXI
trigger	line	6.

NIRFSA_VAL_PXI_TRIG7_STR
("PXI_Trig7")

The	signal	is	exported	on	PXI
trigger	line	7.

NIRFSA_VAL_PXI_STAR_STR
("PXI_STAR")

The	signal	is	exported	on	the
PXI	star	trigger	line.

NIRFSA_ATTR_DIGITAL_IF_EQUALIZATION_ENABLED
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Toggles	use	of	the	digital	equalization	filter	for	the	NI	5600.

Defined	Values:
VI_TRUE Enables	digital	IF	equalization	on	the	NI	5600.
VI_FALSE Disables	digital	IF	equalization	on	the	NI	5600.

NIRFSA_ATTR_SERIAL_NUMBER
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
Returns	the	serial	number	of	the	NI	5600	downconverter	module.

NIRFSA_ATTR_TEMPERATURE
Specific	Attribute
Data
type Access High	Level	Functions

ViReal64 RO None

Description
Returns	the	current	temperature	of	the	NI	5600	downconverter	module.

NIRFSA_ATTR_RANGE_CHECK
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Specifies	whether	to	validate	attribute	values	and	function	parameters.	If
enabled,	NI-RFSA	validates	the	parameter	values	that	you	pass	to	NI-
RFSA	functions.	Range	checking	parameters	is	very	useful	for
debugging.	After	you	validate	your	program,	you	can	set	this	attribute	to
VI_FALSE	to	disable	range	checking	and	maximize	performance.

Note		Use	niRFSA_InitWithOptions	to	override	this	value.

Defined	Values:
VI_TRUE NI-RFSA	validates	attribute	values	and	function	parameters.

This	is	the	default	value.
VI_FALSE NI-RFSA	does	not	validate	attribute	values	and	function

parameters.

NIRFSA_ATTR_QUERY_INSTRUMENT_STATUS
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Specifies	whether	NI-RFSA	queries	the	device	status	after	each
operation.	Querying	the	device	status	is	useful	for	debugging.	After	you
validate	your	program,	you	can	set	this	attribute	to	VI_FALSE	to	disable
status	checking	and	maximize	performance.
NI-RFSA	can	choose	to	ignore	status	checking	for	particular	attributes,
regardless	of	the	setting	of	this	attribute.

Note		Use	niRFSA_InitWithOptions	to	override	this	value.

Defined	Values:
VI_TRUE NI-RFSA	queries	the	device	status	after	each	operation.
VI_FALSE NI-RFSA	does	not	query	the	device	status	after	each

operation.	This	is	the	default	value.

NIRFSA_ATTR_CACHE
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Specifies	whether	to	cache	the	value	of	attributes.	When	caching	is
enabled	,	NI-RFSA	tracks	the	current	NI-RFSA	device	settings	and
avoids	sending	redundant	commands	to	the	device.
NI-RFSA	can	always	cache	or	never	cache	particular	attributes,
regardless	of	the	setting	of	this	attribute.
Default	Value:	VI_TRUE

Use	niRFSA_InitWithOptions	to	override	the	default	value.

Defined	Values:
VI_TRUE Caching	is	enabled.
VI_FALSE Caching	is	disabled.

NIRFSA_ATTR_SIMULATE
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean RO None

Description
Specifies	whether	or	not	to	simulate	NI-RFSA	I/O	operations.	This	is
useful	for	debugging	applications	without	using	hardware.	Once	a
session	is	opened,	you	cannot	change	the	simulation	state.	Use	the
niRFSA_InitWithOptions	function	to	enable	simulation.

Defined	Values:
VI_TRUE NI-RFSA	simulates	NI-RFSA	I/O	operations.
VI_FALSE NI-RFSA	does	not	simulate	NI-RFSA	I/O	operations.	This	is

the	default	value.

NIRFSA_ATTR_RECORD_COERCIONS
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Specifies	whether	the	IVI	engine	keeps	a	list	of	the	value	coercions	it
makes	for	integer	and	real	type	attributes.

Note		This	attribute	is	currently	not	supported.

Defined	Values:
VI_TRUE The	IVI	engine	keeps	a	list	of	the	value	coercions	it	makes

for	integer	and	real	type	attributes.
VI_FALSE The	IVI	engine	does	not	keep	a	list	of	the	value	coercions	it

makes	for	integer	and	real	type	attributes.	This	is	the	default
value.

NIRFSA_ATTR_INTERCHANGE_CHECK
Specific	Attribute
Data
type Access High	Level	Functions

ViBoolean R/W None

Description
Specifies	whether	to	perform	interchangeability	checking	and	retrieve
interchangeability	warnings.

Note		Interchangeability	check	is	unsupported.

Defined	Values:
VI_TRUE The	driver	performs	interchangeability	checking	and	retrieves

warnings.
VI_FALSE The	driver	does	not	perform	interchangeability	checking	or

retrieve	warnings.	This	is	the	default	value.

NIRFSA_ATTR_SPECIFIC_DRIVER_DESCRIPTION
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	a	brief	description	of	NI-RFSA.

NIRFSA_ATTR_SPECIFIC_DRIVER_PREFIX
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	the	prefix	for	NI-RFSA.	The	name	of	each	user-
callable	function	in	NI-RFSA	starts	with	this	prefix.

NIRFSA_ATTR_SPECIFIC_DRIVER_VENDOR
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	the	name	of	the	vendor	that	supplies	NI-RFSA.

NIRFSA_ATTR_SPECIFIC_DRIVER_REVISION
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	additional	version	information	about	NI-RFSA.

NIRFSA_ATTR_SUPPORTED_INSTRUMENT_MODELS
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
Contains	a	model	code	of	the	NI-RFSA	device.	For	drivers	that	support
more	than	one	device,	this	attribute	contains	a	comma-separated	list	of
supported	devices.

NIRFSA_ATTR_INSTRUMENT_MANUFACTURER
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	the	name	of	the	manufacturer	for	the	NI-RFSA
device	you	are	currently	using.

NIRFSA_ATTR_INSTRUMENT_MODEL
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	the	model	number	or	name	of	the	NI-RFSA	device
that	you	are	currently	using.

NIRFSA_ATTR_INSTRUMENT_FIRMWARE_REVISION
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	that	contains	the	firmware	revision	information	for	the	NI-RFSA
device	you	are	currently	using.

NIRFSA_ATTR_LOGICAL_NAME
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
A	string	containing	the	logical	name	you	specified	when	opening	the
current	IVI	session.	You	may	pass	a	logical	name	to	niRFSA_init	or
niRFSA_InitWithOptions.	The	IVI	Configuration	Utility	must	contain	an
entry	for	the	logical	name.	The	logical	name	entry	refers	to	a	driver
session	section	in	the	IVI	Configuration	file.	The	driver	session	section
specifies	a	physical	device	and	initial	user	options.

NIRFSA_ATTR_IO_RESOURCE_DESCRIPTOR
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
Indicates	the	resource	name	NI-RFSA	uses	to	identify	the	physical
device.	If	you	initialize	NI-RFSA	with	a	logical	name,	this	attribute
contains	the	resource	name	that	corresponds	to	the	entry	in	the	IVI
Configuration	Utility.
If	you	initialize	NI-RFSA	with	the	resource	name,	this	attribute	contains
that	value.

NIRFSA_ATTR_DRIVER_SETUP
Specific	Attribute
Data
type Access High	Level	Functions

ViString RO None

Description
The	DriverSetup	string	is	used	to	set	the	initial	values	for	attributes	that
are	specific	to	NI-RFSA.

The	format	of	the	DriverSetup	string	is:

Tag:	Value

Tag	is	the	name	of	the	DriverSetup	string	attribute.	Value	is	the	value	set
to	the	attribute.	To	set	multiple	attributes,	separate	their	assignments	with
a	semicolon.
The	DriverSetup	string	can	include	the	following	tags:

Digitizer—Specifies	the	resource	name	of	the	digitizer	to	use	for	this
session.	If	this	DriverSetup	tag	is	not	specified,	the	resource	name	for	the
downconverter	associated	in	MAX	is	used,	for	example,
DriverSetup=Digitizer:pxi1slot4
Refer	to	niRFSA_InitWithOptions	for	additional	information	about	the
optionsString	parameter.	Refer	to	the	NI	RF	Signal	Analyzers	Getting
Started	Guide	for	information	on	MAX	setup.
Default	Value:	""	(empty	string)

Operating	System	Support
For	information	about	the	supported	operating	system	(OS)	for	your
device,	refer	to	the	NI	RF	Signal	Analzyers	Readme.

Note		Some	devices	are	not	supported	under	Windows	Vista.
Refer	to	the	NI	RF	Signal	Analzyers	Readme	for	a	complete	list	of
products	and	their	OS	support.

Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products

Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Discussion
Forums	at	ni.com/forums.	National	Instruments	Applications
Engineers	make	sure	every	question	receives	an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.
Declaration	of	Conformity	(DoC)—A	DoC	is	our	claim	of
compliance	with	the	Council	of	the	European	Communities	using
the	manufacturer​s	declaration	of	conformity.	This	system	affords
the	user	protection	for	electronic	compatibility	(EMC)	and	product
safety.	You	can	obtain	the	DoC	for	your	product	by	visiting
ni.com/certification.
Calibration	Certificate—If	your	product	supports	calibration,	you
can	obtain	the	calibration	certificate	for	your	product	at
ni.com/calibration.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Doc)
javascript:WWW(WWW_CC)

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Global)

Warranty
The	NI	PXI-5661	is	warranted	against	defects	in	materials	and
workmanship	for	a	period	of	one	year	from	the	date	of	shipment,	as
evidenced	by	receipts	or	other	documentation.	National	Instruments	will,
at	its	option,	repair	or	replace	equipment	that	proves	to	be	defective
during	the	warranty	period.	This	warranty	includes	parts	and	labor.
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING

FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action
accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.

Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.

Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)

Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)

WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR

APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.

1	dB	Gain	Compression	Measurement
An	amplifier	maintains	a	constant	gain	for	low-level	input	signals.
However,	at	higher	input	levels,	the	amplifier	goes	into	saturation	and	its
gain	decreases.	The	1	dB	compression	point	(P1dB)	indicates	the	power
level	that	causes	the	gain	to	drop	by	1	dB	from	its	small	signal	value.

Measurement	Setup
Measuring	the	1	dB	gain	compression	point	of	a	device	requires	driving
the	UUT	into	compression	without	driving	the	RF	Signal	Analyzer	into
compression.	This	requires	proper	attenuation	at	the	RF	Signal	Analyzer
and	a	signal	source	of	sufficient	power	to	compress	the	UUT.	You	can
apply	attenuation	by	programming	the	internal	input	attenuators	or	by
using	external	attenuation.
The	1	dB	compression	point	is	derived	from	the	gain	relationship
between	output	power	and	input	power.	Using	the	measurement	setup
shown	in	the	figure	below,	source	amplitude	is	slowly	increased	while	the
UUT	output	is	monitored.

Typical	1	dB	Gain	Compression	Setup
Output	power	is	plotted	against	input	power	as	shown	in	the	following
figure.

Gain	Compression	Plot
The	straight	line	on	this	graph	is	an	extrapolation	of	the	small	signal	gain

of	the	UUT.	The	input	1	dB	compression	point	is	the	input	power	that
causes	the	UUT	gain	to	drop	by	1	dB	from	this	small	signal	value,	or
approximately	​12	dBm	in	this	case.

Understanding	RF	Signal	Analyzer	Compression	Limits
Like	all	signal	analysis	devices,	the	RF	Signal	Analyzer	is	not	completely
linear	and	will	eventually	reach	compression.	However,	the	RF	Signal
Analyzer	architecture	possesses	a	high	degree	of	linearity,	and	its
compression	point	is	typically	5	dBm	or	higher.
Ensure	accurate	UUT	compression	measurements	by	limiting	the	signal
at	the	RF	Signal	Analyzer	input	mixer	to	20	dB	below	the	compression
point	listed	in	the	NI	PXI-5660	RF	Vector	Signal	Analyzer	Specifications
document	included	in	your	RF	Signal	Analyzer	kit.

Choosing	the	Optimal	RF	Signal	Analyzer	Attenuation
Setting
Choosing	the	optimal	attenuation	settings	for	a	UUT	compression
measurement	requires	you	take	the	following	factors	into	account:

The	maximum	output	signal	of	your	UUT	must	be	attenuated	to
10​20	dB	less	than	the	compression	point	of	the	RF	Signal
Analyzer.
The	resolution	bandwidth	setting	of	the	RF	Signal	Analyzer	must
be	low	enough	that	small	signals	used	to	determine	the	linear	gain
of	the	UUT	are	not	overwhelmed	with	noise	from	the	RF	Signal
Analyzer.

To	set	the	proper	RF	Signal	Analyzer	attenuation	level	for	a	compression
test	on	a	UUT	with	known	output	compression	estimate	and	known
approximate	gain,	complete	the	following	steps:

1.	 Set	the	RF	Signal	Analyzer	mixer	level	to	​20	dBm	and	its
reference	level	to	10	dB	above	the	estimated	UUT	compression
point.

mixer	level	=	reference	level	–	attenuation.
2.	 Set	the	RF	Signal	Analyzer	center	frequency	to	your	intended

testing	frequency,	its	span	to	1	MHz,	and	its	resolution	bandwidth
to	1	kHz.

3.	 Inject	a	signal	into	the	UUT	small	enough	that	its	output	level	is	at
least	20	dB	below	the	estimated	UUT	compression	point.	If	the
UUT	output	signal	level	is	too	close	to	the	noise	floor	of	the	RF
Signal	Analyzer,	decrease	the	RF	Signal	Analyzer	resolution
bandwidth.

4.	 Increase	the	input	signal	to	the	UUT.	If	the	output	signal	has
reached	5	dB	below	the	RF	Signal	Analyzer	reference	level	and
compression	of	the	UUT	has	not	been	reached,	increase	the
reference	level	by	10	dB.

5.	 Repeat	step	4	until	compression	appears	in	the	UUT.
The	setting	you	obtain	is	the	optimal	attenuation	setting.

Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	6555	7838
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 385	(0)	9	725	72511
France 33	(0)	1	48	14	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	413091
Japan 81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00

South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100

	NI RF Vector Signal Analyzers Help
	Conventions
	Related Documentation
	Fundamentals
	Guidelines for Making Accurate Measurements
	General Amplitude/Spectrum
	Harmonic Distortion
	Two-Tone Third-Order Intermodulation Distortion
	Noise Figure

	NI 5661 RF Vector Signal Analyzer
	NI 5661 Theory of Operation
	Hardware Front Panel Connectors and Indicators
	NI 5600 Front Panel
	NI 5142 Front Panel

	NI 5661 Signal Paths
	RF Attenuation and Signal Levels
	Hardware Block Diagrams
	NI 5600 RF Downconverter Module Block Diagram
	NI PXI-5142 IF Digitizer Block Diagram

	Calibration

	Programming
	Getting Started with NI-RFSA
	Using NI-RFSA in LabVIEW
	Using NI-RFSA in LabWindows/CVI

	Add-On Software for Measurement and Analysis

	Operating System Support
	Important Information
	Technical Support and Professional Services
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

