


NI-Motion™	Help
July	2007,	372134B-01
This	help	file	provides	information	about	the	NI-Motion	driver	software,
including	background,	configuration,	and	programming	information.	The
purpose	of	this	help	file	is	to	provide	a	basic	understanding	of	the	NI-
Motion	driver	software,	and	provide	programming	steps	and	examples	to
help	you	develop	NI-Motion	applications.
This	help	file	is	intended	for	experienced	LabVIEW,	C/C++,	or	other
developers.	Code	instructions	and	examples	assume	a	working
knowledge	of	the	given	programming	language.	This	help	file	also
assumes	a	general	knowledge	of	motion	control	terminology	and
development	requirements.
This	help	file	pertains	to	all	NI	motion	controllers	that	use	the	NI-Motion
driver	software.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


Related	Documentation
Most	motion	control	manuals	also	are	available	as	PDFs.	You	must	have
Adobe	Reader	with	Search	and	Accessibility	5.0.5	or	later	installed	to
view	the	PDFs.	Refer	to	the	Adobe	Systems	Incorporated	Web	site	at
www.adobe.com	to	download	Adobe	Reader.	Refer	to	the	National
Instruments	Product	Manuals	Library	at	ni.com/manuals	for	updated
documentation	resources.
The	following	documents	contain	information	that	you	may	find	helpful	as
you	use	this	help	file:

Getting	Started	with	NI-Motion	for	NI	73xx	Motion	Controllers—
Provides	installation	instructions	and	general	information	about	the
NI-Motion	product.
Getting	Started:	NI	SoftMotion	Controller	for	Copley	Controls
CANopen	Drives—Contains	information	about	getting	started	with
the	NI	SoftMotion	Controller	for	CANopen.
NI-Motion	VI	Help—Contains	LabVIEW	VI	reference	files	and
provides	details	about	each	VI,	including	VI	descriptions,	lists	of
control	and	input	terminals,	usage,	illustrations,	and	error	codes.
NI-Motion	Function	Help—Contains	function	reference	files	for	C
and	Visual	Basic	and	provides	details	about	each	function,
including	a	description	of	the	function,	a	list	of	the	function
parameters,	illustrations,	and	error	codes.
Measurement	&	Automation	Explorer	Help	for	Motion—Provides
information	about	using	MAX	to	configure	the	NI	73xx	motion
controller	as	well	as	some	advanced	conceptual	information	about
topics	such	as	Bode	analysis	and	control	loop	parameters.
NI	73xx	user	manuals—Describes	the	electrical	and	mechanical
aspects	of	the	NI	73xx	motion	controller,	and	contains	information
about	installing	and	operating	the	device.
NI-Motion	Readme—Contains	system	requirements,	installation
instructions,	descriptions	of	any	changes	made	to	the	software,
information	about	new	features	in	the	release,	and	information
about	late-breaking	known	issues	that	are	not	documented	in	other
NI-Motion	documents.
NI	Developer	Zone	(NIDZ)—Visit	the	NI	Developer	Zone,	at
ni.com/zone,	for	example	programs,	tutorials,	technical

javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
javascript:AcrobatLink('Getting Started with NI-Motion.pdf');
NI-MotionCReferenceHelp.chm::/NI-Motion_Function_Help.html
javascript:LaunchHelp('nimotion.chm', 'Motion_and_Measurement_Automation_Explorer.html')
javascript:WWW(WWW_Zone)


presentations,	the	Instrument	Driver	Network,	product	advisors,
application	notes,	and	a	discussion	forum	where	you	can	share
ideas,	questions,	and	source	code	with	motion	developers	around
the	world.
Motion	Hardware	Advisor—Visit	the	National	Instruments	Motion
Hardware	Advisor	at	ni.com/devzone/advisors/motion/	to	select
motors	and	stages	appropriate	to	the	motion	control	application.

In	addition	to	the	NI	Developer	Zone,	you	can	find	NI-Motion	C/C++	and
Visual	Basic	programming	examples	in	the	NI-
Motion\FlexMotion\Examples	folder	where	you	installed	NI-Motion.	The
default	directory	is	Program	Files\National	Instruments\NI-Motion	for
Windows	XP/2000	and	the	32-bit	version	of	Windows	Vista	and	Program
Files	(x86)\National	Instruments\NI-Motion	for	the	64-bit	version	of	Windows
Vista.
You	can	find	LabVIEW	example	programs	under	examples\Motion	in	the
directory	where	you	installed	LabVIEW.	You	can	find
LabWindows™/CVI™	examples	under	samples\Motion	in	the	directory
where	you	installed	LabWindows/CVI.
You	can	find	the	NI-Motion	C/C++	and	LabVIEW	example	code
referenced	in	this	manual	in	the	NI-Motion\Documentation\Examples\NI-
Motion	User	Manual	folder	where	you	installed	NI-Motion.

javascript:WWW(WWW_Advisor)


Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	formatting	and	typographical
conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a	bit	or
signal	name—for	example,	AO	<0..3>.

[	] Square	brackets	enclose	optional	items—for	example,
[response].

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
This	icon	denotes	a	tip,	which	alerts	you	to	advisory
information.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.
This	icon	denotes	a	caution,	which	advises	you	of
precautions	to	take	to	avoid	injury,	data	loss,	or	a	system
crash.

bold Bold	text	denotes	items	that	you	must	select	or	click	in	the
software,	such	as	menu	items	and	dialog	box	options.	Bold
text	also	denotes	parameter	names.

dark	red Text	in	this	color	denotes	a	caution.
green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,

help	file,	or	Web	address.
italic Italic	text	denotes	variables,	emphasis,	cross–references,	or

an	introduction	to	a	key	concept.	Italic	text	also	denotes	text
that	is	a	placeholder	for	a	word	or	value	that	you	must
supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,



programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames,	and	extensions.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This
font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.	You
do	not	need	to	specify	this	operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the	second
term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



Introduction
This	section	provides	basic	information	about	the	NI-Motion	driver
software,	motion	control	setup,	and	specific	task-based	instructions	for
creating	motion	control	applications	using	the	LabVIEW	and	C/C++
application	development	environments.



About	NI-Motion
NI-Motion	is	the	driver	software	for	National	Instruments	73xx	motion
controllers	and	the	NI	SoftMotion	Controller.	You	can	use	NI-Motion	to
create	motion	control	applications	using	the	included	library	of	LabVIEW
VIs	and	C/C++	functions.
National	Instruments	also	offers	the	NI	Motion	Assistant	and	NI-Motion
development	tools	for	Visual	Basic.



NI-Motion	Architecture
The	NI-Motion	driver	software	architecture	is	based	on	the	interaction
between	the	NI	motion	controllers	and	a	host	computer.	This	interaction
includes	the	hardware	and	software	interface	and	the	physical	and
functional	architecture	of	the	NI	motion	controllers.	The	following	block
diagram	demonstrates	the	NI	motion	control	hardware	and	software
interaction.

Note		The	NI	Motion	Controller	block	is	not	applicable	to	the	NI
SoftMotion	Controller.



NI	Motion	Controller	Architecture
Functionally,	the	architecture	of	the	NI	73xx	motion	controllers	and	the	NI
SoftMotion	Controller	is	generally	divided	into	four	components:
supervisory	control,	trajectory	generator,	control	loop,	and	motion	I/O.	For
the	NI	SoftMotion	Controller,	the	motion	I/O	component	is	separate	from
the	controller.	The	following	figures	demonstrate	how	the	components	of
the	73xx	and	NI	SoftMotion	Controller	interact.
Typical	NI	73xx	Motion	Controller	Functional	Architecture

NI	SoftMotion	Controller	Functional	Architecture



NI	Motion	Controller	Functional	Components
The	following	list	describes	how	each	component	of	the	73xx	controllers
and	the	NI	SoftMotion	Controller	functions:

Supervisory	control—Performs	all	the	command	sequencing	and
coordination	required	to	carry	out	the	specified	operation

System	initialization,	which	includes	homing	to	a	zero
position
Event	handling,	which	includes	electronic	gearing,	triggering
outputs	based	on	position,	updating	profiles	based	on	user
defined	events,	and	so	on
Fault	Detection,	which	includes	stopping	moves	on	a	limit
switch	encounter,	safe	system	reaction	to	emergency	stop	or
drive	faults,	watchdog,	and	so	on

Trajectory	generator—Provides	path	planning	based	on	the
profile	specified	by	the	user
Control	loop—Performs	fast,	closed-loop	control	with
simultaneous	position,	velocity,	and	trajectory	maintenance	on	one
or	more	axes
The	control	loop	handles	closing	the	position/velocity	loop	based
on	feedback,	and	it	defines	the	response	and	stability	of	the
system.	For	stepper	systems,	the	control	loop	is	replaced	with	a
step	generation	component.	To	enable	the	control	loop	to	execute
faster	than	the	trajectory	generation,	an	interpolation	component,
or	spline	engine,	the	control	loop	interpolates	between	setpoints
calculated	by	the	trajectory	generator.	The	following	figure
illustrates	the	functional	architecture	of	NI	motion	controllers.



Motion	I/O—Analog	and	digital	I/O	that	sends	and	receives	signals
from	the	rest	of	the	motion	control	system.	Typically,	the	analog
output	is	used	as	a	command	signal	for	the	drive,	and	the	digital
I/O	is	used	for	quadrature	encoder	signals	as	feedback	from	the
motor.	The	motion	I/O	performs	position	breakpoint	and	high	speed
capture.	Also,	the	supervisory	control	uses	the	motion	I/O	to
achieve	certain	required	functionality,	such	as	reacting	to	limit
switches	and	creating	the	movement	modes	needed	to	initialize
the	system.



NI	73xx	Controller	Architecture
NI	73xx	controllers	use	a	dual-processor	architecture.	The	two
processors,	a	central	processing	unit	(CPU)	and	a	digital	signal
processor	(DSP),	form	the	backbone	of	the	NI	motion	controller.
The	controller	CPU	is	a	32-bit	micro-controller	running	an	embedded	real
time,	multitasking	operating	system.	This	CPU	offers	the	performance
and	determinism	needed	to	solve	most	complex	motion	applications.	The
CPU	performs	command	execution,	host	synchronization,	I/O	reaction,
and	system	supervision.
The	DSP	has	the	primary	responsibility	of	fast	closed-loop	control	with
simultaneous	position,	velocity,	and	trajectory	maintenance	on	multiple
axes.	The	DSP	also	closes	the	position	and	velocity	loops,	and	directly
commands	the	torque	to	the	drive	or	amplifier.
Motion	I/O	occurs	in	hardware	on	an	FPGA	and	consists	of	limit/home
switch	detection,	position	breakpoint,	and	high-speed	capture.	This
ensures	very	low	latencies	in	the	range	of	hundreds	of	nanoseconds	for
breakpoints	and	high-speed	captures.	Refer	to	the	Synchronization
section	for	information	about	breakpoints	and	high-speed	capture.
The	motion	controller	processor	is	monitored	by	a	watchdog	timer,	which
is	hardware	that	can	be	used	to	automatically	detect	software	anomalies
and	reset	the	processor	if	any	occur.	The	watchdog	timer	checks	for
proper	processor	operation.	If	the	firmware	on	the	motion	controller	is
unable	to	process	functions	within	62	ms,	the	watchdog	timer	resets	the
motion	controller	and	disallows	further	communications	until	you	explicitly
reset	the	motion	controller.	This	ensures	the	real-time	operation	of	the
motion	control	system.	The	following	functions	may	take	longer	than	62
ms	to	process:

Save	Defaults
Reset	Defaults
Enable	Auto	Start
Object	Memory	Management
Clear	Buffer
End	Storage

These	functions	are	marked	as	non-real-time	functions.	Refer	to	the	NI-
Motion	Function	Help	or	the	NI-Motion	VI	Help	for	more	information.

NI-MotionCReferenceHelp.chm::/NI-Motion_Function_Help.html


The	following	block	diagram	illustrates	the	physical	architecture	of	the	NI
motion	controller	hardware.

Tip		Because	the	NI	SoftMotion	Controller	is	not	a	hardware
device,	information	about	its	architecture	is	not	covered	in	this
topic.	Refer	to	NI	SoftMotion	Controller	Architecture	for	information
about	the	functional	architecture	specific	to	the	NI	SoftMotion
Controller.



NI	SoftMotion	Controller	Architecture
The	NI-Motion	architecture	for	the	NI	SoftMotion	Controller	uses	standard
PC-based	platforms	and	open	standards	to	connect	intelligent	drives	to	a
real-time	host.	In	this	architecture,	the	software	components	of	the
motion	controller	run	on	a	real-time	host	and	all	I/O	is	implemented	in	the
drives.	This	separation	of	I/O	from	the	motion	controller	software
components	helps	to	lower	system	cost	and	improve	reliability	by
improving	connectivity.	The	CANopen	standard	is	used	to	connect	these
components.
When	you	use	the	NI	SoftMotion	Controller	with	a	CANopen	device,	you
can	daisy	chain	up	to	15	drives	together	and	connect	them	to	the	real-
time	host.	The	real-time	Process	Data	Objects	(PDOs)	defined	by	the
CANopen	protocol	are	used	to	transfer	data	between	the	drives	and	host.
All	I/O	required	by	the	motion	controller	is	implemented	by	CANopen
drives	that	support	the	Device	Profile	402	for	Motion	Control.	Currently,
the	NI	SoftMotion	Controller	supports	only	CANopen	drives	from	Copley
Controls	Corp.	When	used	with	CANopen	devices,	the	Supervisory
Control	and	Trajectory	Generation	components	of	the	NI	SoftMotion
Controller	execute	in	a	real-time	environment	that	is	running	LabVIEW
Real-Time	Module	(ETS).
If	your	motion	control	system	uses	8	axes	or	fewer,	the	supervisory
control	and	trajectory	generation	loops	execute	every	10	milliseconds.	If
your	motion	control	system	uses	more	than	8	axes,	the	supervisory
control	and	trajectory	generation	loops	execute	every	20	milliseconds.
When	you	use	the	NI	SoftMotion	Controller	with	a	CANopen	drive,	the
drive	implements	the	control	loop	and	interpolation,	as	shown	in	the
following	figure.

In	this	configuration,	the	I/O	and	the	control	loop	execute	on	the



CANopen	drive.	The	NI	SoftMotion	Controller	uses	an	NI-CAN	device	to
communicate	to	the	CAN	bus.



NI	SoftMotion	Controller	Communication
Watchdog
The	supervisory	control	in	the	NI	SoftMotion	Controller	continuously
monitors	all	communication	with	the	drives	connected	to	the	host.	If	any
drive	fails	to	update	its	data	in	the	host	loop	update	period,	the	axis
corresponding	to	that	drive	is	disabled	and	the	communication	watchdog
status	bit,	which	is	returned	by	the	Read	Per	Axis	Status	VI	or	function,	is
set	to	TRUE.	Similarly,	all	drives	connected	to	the	NI	SoftMotion
Controller	are	configured	to	go	into	a	fault	state	if	the	data	from	the	NI
SoftMotion	Controller	is	not	updated	every	host	loop	update	period	on	the
drives.
The	communication	watchdog	functionality	ensures	that	the	NI
SoftMotion	Controller	operates	in	real	time.

Tip		To	get	an	axis	or	axes	out	of	the	communication	watchdog
state,	reset	the	NI	SoftMotion	Controller.

NI-MotionCReferenceHelp.chm::/flex_read_axis_status.html


Creating	NI-Motion	Applications
The	following	figure	describes	the	steps	for	creating	an	application	with
NI-Motion,	and	describes	the	generic	steps	required	to	design	a	motion
application.

For	information	about	interaction	with	other	I/O,	such	as	a	National
Instruments	data	and/or	image	acquisition	devices,	refer	to
Synchronization.



Programming	with	NI-Motion
You	can	use	the	C/C++	functions	and	LabVIEW	VIs,	included	with	NI-
Motion,	to	configure	and	execute	motion	control	applications.	This	section
covers	the	NI-Motion	algorithms	you	need	to	use	all	the	features	of	NI-
Motion.
Each	task	discussion	uses	the	same	structure.	First,	a	generic	algorithm
flow	chart	shows	how	the	component	pieces	relate	to	each	other.	Then,
the	task	discussion	details	any	aspects	of	creating	the	task	that	are
specific	to	LabVIEW	or	C/C++	programming,	complete	with	diagrams	and
code	examples.

Note		The	LabVIEW	block	diagrams	and	C/C++	code	examples
are	designed	to	illustrate	concepts,	and	do	not	contain	all	the	logic
or	safety	features	necessary	for	most	functional	applications.

Refer	to	the	NI-Motion	Function	Help	or	the	NI-Motion	VI	Help	for	detailed
information	about	specific	functions	or	VIs.

NI-MotionCReferenceHelp.chm::/NI-Motion_Function_Help.html


What	You	Need	to	Know	about	Moves
This	section	discusses	the	concepts	necessary	for	programming	motion
control	including	move	profiles,	move	types,	velocity	and	acceleration
values,	and	timing	loops.



Move	Profiles
The	basic	function	of	a	motion	controller	is	to	make	moves.	The	trajectory
generator	takes	in	the	type	of	move	and	the	move	constraints	and
generates	points,	or	instantaneous	positions,	in	real	time.	Then,	the
trajectory	generator	feeds	the	points	to	the	control	loop.
The	control	loop	converts	each	instantaneous	position	to	a	voltage	or	to
step-and-direction	signals,	depending	on	the	type	of	motor	you	are	using.
Move	constraints	are	the	maximum	velocity,	acceleration,	deceleration,
and	jerk	that	the	system	can	handle.	The	trajectory	generator	creates	a
velocity	profile	based	on	these	move	constraint	values.
There	are	two	types	of	profiles	that	can	be	generated	while	making	the
move:	trapezoidal	and	s-curve.



Trapezoidal
When	you	use	a	trapezoidal	profile,	the	axes	accelerate	at	the
acceleration	value	you	specify,	and	then	cruise	at	the	maximum	velocity
you	load.	Based	on	the	type	of	move	and	the	distance	being	covered,	it
may	be	impossible	to	reach	the	maximum	velocity	you	set.
The	velocity	of	the	axis,	or	axes,	in	a	coordinate	space	never	exceeds	the
maximum	velocity	loaded.	The	axes	decelerate	to	a	stop	at	their	final
position,	as	shown.



S-Curve
The	acceleration	and	deceleration	portions	of	an	s-curve	motion	profile
are	smooth,	resulting	in	less	abrupt	transitions,	as	shown	in	the	following
figure.	This	limits	the	jerk	in	the	motion	control	system,	but	increases
cycle	time.	The	value	by	which	the	profile	is	smoothed	is	called	the
maximum	jerk	or	s-curve	value.



Basic	Moves
There	are	four	basic	move	types:

Reference	Move—Initializes	the	axes	to	a	known	physical
reference	such	as	a	home	switch	or	encoder	index
Straight–Line	Move—Moves	from	point	A	to	point	B	in	a	straight
line.	The	move	can	be	based	on	position	or	velocity
Arc	Move—Moves	from	point	A	to	point	B	in	an	arc	or	helix
Contoured	Move—A	user-defined	move;	you	generate	the
trajectory,	and	the	points	loaded	into	the	motion	controller	are
splined	to	create	a	smooth	profile

The	motion	controller	uses	the	specified	move	constraints,	along	with	the
move	data,	such	as	end	position	or	radius	and	travel	angle,	to	create	a
motion	profile	in	all	the	moves	except	the	contoured	moves.	Contoured
moves	ignore	the	move	constraints	and	follow	the	points	you	have
defined.



Coordinate	Space
With	the	exception	of	the	arc	move,	you	can	execute	all	basic	moves	on
either	a	single	axis	or	on	a	coordinate	space.	A	coordinate	space	is	a
logical	grouping	of	axes.	If	you	are	performing	a	move	that	uses	more
than	one	axis,	you	must	specify	a	coordinate	space	made	up	of	the	axes
the	move	will	use,	as	shown	in	the	following	figure.

Note		Arc	moves	always	execute	on	a	coordinate	space.

Use	the	Configure	Vector	Space	VI	or	function	to	configure	a	coordinate
space.	This	function	creates	a	logical	mapping	of	axes	and	treats	the
axes	as	part	of	a	coordinate	space.	The	function	then	executes	the	move
generated	by	the	trajectory	generator	on	the	vector,	and	treats	all	the
move	constraints	as	vector	values.

NI-MotionCReferenceHelp.chm::/flex_config_vect_spc.html


Multi-Starts	versus	Coordinate	Spaces
Coordinate	spaces	always	start	and	end	the	motion	of	all	axes
simultaneously.	You	can	use	multi-starts	to	create	a	similar	effect	without
grouping	axes	into	coordinate	spaces.	Using	a	multi-start	automatically
starts	all	axes	virtually	simultaneously.	To	simultaneously	end	the	moves,
you	must	calculate	the	move	constraints	to	end	travel	at	the	same	time.
In	coordinate	spaces,	these	values	are	calculated	automatically.



Trajectory	Parameters
Use	trajectory	parameters	to	control	the	moves	you	program	in	NI-
Motion.
All	trajectory	parameters	for	servo	axes	are	expressed	in	terms	of
quadrature	encoder	counts.	Parameters	for	open-loop	and	closed-loop
stepper	axes	are	expressed	in	steps.	For	servo	axes,	the	encoder
resolution,	which	is	expressed	in	counts	per	revolution,	determines	the
ultimate	positional	resolution	of	the	axis.
For	stepper	axes,	the	number	of	steps	per	revolution	depends	upon	the
type	of	stepper	drive	and	motor	you	are	using.	For	example,	a	stepper
motor	with	1.8°/step	(200	steps/revolution)	used	in	conjunction	with	a	10X
microstep	drive	has	an	effective	resolution	of	2,000	steps	per	revolution.
Resolution	on	closed-loop	stepper	axes	is	limited	to	the	steps	per
revolution	or	encoder	counts	per	revolution,	whichever	value	is	more
coarse.
Floating-point	versus	fixed-point	parameter	representation	and	time	base
are	two	additional	factors	that	affect	the	way	trajectory	parameters	are
loaded	to	the	NI	motion	controller	as	compared	to	how	they	are	used	by
the	trajectory	generators.



Floating-Point	versus	Fixed-Point	Parameters
On	NI	73xx	motion	controllers,	you	can	load	some	trajectory	parameters
as	either	floating-point	or	fixed-point	values,	but	the	internal
representation	on	the	NI	motion	controller	is	always	fixed-point.	You	must
consider	this	functionality	when	working	with	onboard	variables,	inputs,
and	return	vectors.	This	functionality	also	has	a	small	effect	on	parameter
range	and	resolution.
The	NI	SoftMotion	Controller	uses	a	64-bit	floating	point	trajectory
generator.	The	ranges	for	all	move	constraints	are	the	full	64-bit	range,
which	includes	maximum	velocity,	maximum	acceleration,	maximum
deceleration,	maximum	acceleration	jerk,	maximum	deceleration	jerk,
and	velocity	override	percentage.	All	arc	parameters	that	use	floating
point	also	support	the	full	64-bit	floating	point	range.



NI	73xx	Move	Constraint	Values
The	following	sections	define	the	minimum	and	maximum	values	for
move	constraints	as	well	as	additional	information	about	the	resolution	of
the	velocity	override	value	and	arc	angle.	Velocity	and	acceleration
values	are	loaded	in	counts/s,	RPM,	RPS/s,	steps/s,	and	so	on,	which
are	all	functions	of	seconds	or	minutes.	However,	the	trajectory	generator
updates	target	position	at	the	Trajectory	Update	Rate,	which	is
programmable	with	the	Enable	Axes	VI	or	function.	This	means	that	the
range	for	these	parameters	depends	on	the	update	rate	selected.
NI	73xx	Velocity	in	RPM
NI	73xx	Velocity	in	Counts/s	or	Steps/s

NI	73xx	Acceleration	in	Counts/s2

NI	73xx	Acceleration	in	RPS/s
NI	73xx	Velocity	Override	in	Percent
NI	73xx	Arc	Angles	in	Degrees

NI-MotionCReferenceHelp.chm::/flex_enable_axis.html


NI	73xx	Velocity	in	RPM
Velocity	values	in	RPM	are	converted	to	an	internal	16.16	fixed-point
format	in	units	of	counts	(steps)	per	sample	period	(update	period)	before
being	used	by	the	trajectory	generator.	NI-Motion	can	control	velocity	to
1/65,536	of	a	count	or	step	per	sample.
The	following	table	shows	the	minimum	and	maximum	velocity	in
counts/min.	Use	the	formula	shown	in	the	Calculation	Based	on	Units
column	to	determine	the	counts/min	value	to	RPM.

Update
Rate MIN MAX Calculation

Based	on	Units
62.5	µs 14.648438

counts/min
For	servo	motors,	the	maximum
counts/min	is	1.2	billion
independent	of	the	update	rate.

±RPMmax	=
MAX×1/r
where
r	=
counts/revolution

125	µs 7.324219
counts/min

187.5
µs

4.882813
counts/min

250	µs 3.662109
counts/min

312.5
µs

2.929688
counts/min

For	stepper	motors,	the	maximum
counts/min	value	is	dependent	on
the	controller:

480	million	counts/min	for
NI	7350
240	million	counts/min	for
NI	7330/7340/7390

±RPMmin	=
MIN×1/r
where
r	=
counts/revolution

375	µs 2.441406
counts/min

437.5
µs

2.092634
counts/min

500	µs 1.831055
counts/min



You	can	calculate	this	minimum	velocity	increment	in	RPM	with	the
following	formula:
minimum	RPM	=	Vmin	×	( )	×	60	×	( )

where
Vmin	=	1/65,536	counts/sample	or	steps/sample
Ts	=	sample	period	in	seconds	per	sample
60	=	number	of	seconds	in	a	minute
R	=	counts	or	steps	per	revolution

or
minimum	RPM	=	MIN	×	

You	also	can	calculate	the	minimum	velocity	using	the	formula	shown	in
the	Calculation	Based	on	Units	column.
For	a	typical	servo	axis	with	2,000	counts	per	revolution	operating	at	a
250	µs	update	rate,	the	minimum	RPM	increment	is

	×	 	×	60	×	 	=	0.00183105	RPM
or

3.662109	×	 	=	0.00183105	RPM
You	can	calculate	the	maximum	velocity	in	RPM	with	the	following
equation:
maximum	RPM	=	Vmax	×	60	×	

where
Vmax	=	20	MHz	for	servos
8	MHz	for	steppers	on	a	NI	7350	controller
4	MHz	for	steppers	on	a	NI	7330,	NI	7340,	or	NI	7390	motion	controller
R	=	counts/steps	per	revolution

and	is	constrained	by	acceleration/deceleration	according	to	the	following
equation:
velocity	 	(65,536	×	deceleration)	​	acceleration

where	velocity	is	in	counts/sample	and	acceleration	and	deceleration	are
in	counts/sample2.



From	the	example,	the	maximum	RPM	is

(20	×	106)	×	60	×	 	=	600,000	RPM
RPM	values	stored	in	onboard	variables	are	in	double-precision	IEEE
format	(f64).



NI	73xx	Velocity	in	Counts/s	or	Steps/s
Velocity	values	in	counts/s	or	steps/s	are	also	converted	to	the	internal
16.16	fixed-point	format	in	units	of	counts	or	steps	per	sample	(update)
period	before	being	used	by	the	trajectory	generator.	Although	the	motion
controller	can	control	velocity	to	1/65,536	of	a	count	or	step	per	sample,	it
is	impossible	to	load	a	value	that	small	with	the	Load	Velocity	VI	or
function,	as	shown	in	the	following	formula:
Velocity	in	counts	or	step/s	=	Vmin	×	

where:
Vmin	is	1/65,536	counts/sample	or	steps/sample	and
Ts	is	the	sample	period	in	seconds	per	sample.

Even	at	the	fastest	update	rate,	Ts	=	62.5	×	10​6

Load	Velocity	takes	an	integer	input	with	a	minimum	value	of	1	count/s	or
step/s.	You	cannot	load	fractional	values.	If	you	need	to	load	a	velocity
slower	than	one	count	or	step	per	second,	use	the	Load	Velocity	in	RPM
VI	or	function.
You	can	calculate	the	maximum	velocity	with	the	following	equation:
maximum	velocity	=	Vmax

where
Vmax	=	20	MHz	for	servos
8	MHz	for	steppers	on	a	NI	7350	controller
4	MHz	for	steppers	on	a	NI	7330,	NI	7340,	or	NI	7390	motion	controller

and	is	constrained	by	acceleration/deceleration	according	to	the	following
equation:
velocity	 	(65,536	×	deceleration)	​	acceleration

where	velocity	is	in	counts/sample	and	acceleration	and	deceleration	are
in	counts/sample2.

NI-MotionCReferenceHelp.chm::/flex_load_velocity.html
NI-MotionCReferenceHelp.chm::/flex_load_rpm.html


NI	73xx	Acceleration	in	Counts/s2
Acceleration	and	deceleration	values	are	converted	to	an	internal	16.16
fixed-point	format	in	units	of	counts/s2	before	being	used	by	the	trajectory
generator.
The	following	table	shows	the	minimum	and	maximum	acceleration
update	rates	in	counts/sec2.

Update
Rate MAX MIN

Calculation
Based	
on	Units

62.5	µs 2,048,000,000	counts/sec2 3906	counts/sec2 Accelmax	=
MAX

125	µs 2,048,000,000	counts/sec2 977	counts/sec2

187.5	µs 910,222,222	counts/sec2 434	counts/sec2

250	µs 512,000,000	counts/sec2 244	counts/sec2

312.5	µs 327,680,000	counts/sec2 156	counts/sec2 Accelmin	=
MIN

375	µs 227,555,556	counts/sec2 109	counts/sec2

437.5	µs 167,183,673	counts/sec2 80	counts/sec2

500	µs 128,000,000	counts/sec2 61	counts/sec2

You	can	calculate	the	minimum	acceleration	increment	with	the	following
formula:

minimum	acceleration/deceleration	=	Amin	×	( )2

where

Amin	=	1/65,536	counts/sample2	or	steps/sample2

Ts	=	sample	period	in	seconds	per	sample
For	a	typical	servo	axis	with	2,000	counts	per	revolution	operating	at	the
250	µs	update	rate,	calculate	the	minimum	acceleration/deceleration
increment	using	the	following	equation:

( )	×	( )2	=	244	counts/second2



You	can	calculate	the	maximum	acceleration/deceleration	using	the
following	equation:

maximum	acceleration/deceleration	=	Amax	×	( )2

where

Amax	=	32	counts/sample2

Ts	=	sample	period	in	seconds	per	sample
and	is	constrained	according	to	the	following	equations:
acceleration	256	 	deceleration
deceleration	65536	 	acceleration



NI	73xx	Acceleration	in	RPS/s
Acceleration	and	deceleration	values	in	RPS/s	are	converted	to	an
internal	16.16	fixed-point	format	in	units	of	counts/sample2	or
steps/sample2	before	being	used	by	the	trajectory	generator.
The	following	table	shows	the	minimum	and	maximum	acceleration
update	rates	in	counts/sec2.

Update
Rate MAX MIN Calculation	Based	on

Units
62.5	µs 2,048,000,000

counts/sec2
3906
counts/sec2

±RPS/smax	=	MAX×1/r
where	r	=
counts/revolution

125	µs 2,048,000,000
counts/sec2

977
counts/sec2

187.5	µs 910,222,222
counts/sec2

434
counts/sec2

250	µs 512,000,000
counts/sec2

244
counts/sec2

312.5	µs 327,680,000
counts/sec2

156
counts/sec2

±RPS/smin	=	MIN×1/r
where	r	=
counts/revolution

375	µs 227,555,556
counts/sec2

109
counts/sec2

437.5	µs 167,183,673
counts/sec2

80
counts/sec2

500	µs 128,000,000
counts/sec2

61
counts/sec2

You	can	calculate	the	minimum	acceleration	increment	in	RPS/s	with	the
following	formula:

RPS/sec	=	Amin	×	( )2	×	
where

Amin	=	1/65,536	counts/sample2	or	steps/sample2



Ts	=	sample	period	in	seconds	per	sample
R	=	counts	or	steps	per	revolution

or
RPM/s	=	MIN	×	

For	a	typical	servo	axis	with	2,000	counts	or	steps	per	revolution
operating	at	the	250	µs	update	rate,	calculate	the	minimum	RPS/s
increment	using	the	following	equation:

( )	×	( )2	×	 	=	0.122070	RPS/s
or

244	×	 	=	0.122
You	can	calculate	the	maximum	RPS/s	using	the	following	equation:

maximum	RPS/s	=	Amax	×	( 	)2	×	( )

where

Amax	=	32	counts/sample2

Ts	=	sample	period	in	seconds	per	sample
R	=	counts	or	steps	per	revolution

and	is	constrained	according	to	the	following	equations:
acceleration	 	256	×	deceleration
deceleration	 	65536	×	acceleration

or

For	a	typical	servo	axis	with	2,000	counts	or	steps	per	revolution
operating	at	the	250	µs	update	rate,	calculate	the	maximum	RPS/s
increment	using	the	following	equation:

32	×	( )2	×	 	=	256,000	RPS/s
RPS/s	values	stored	in	onboard	variables	are	in	double-precision	IEEE
format	(f64).



NI	73xx	Velocity	Override	in	Percent
The	Load	Velocity	Override	VI	or	function	takes	a	single-precision
floating-point	(f32)	data	value	from	0	to	150%,	but	velocity	override	is
internally	implemented	as	a	velocity	scale	factor	of	0	to	384	with	an
implicit	fixed	denominator	of	256.	NI-Motion	uses	the	velocity	override	to
increase	the	speed	of	the	calculation	for	the	sake	of	calculation	speed—
the	division	is	a	shift	right	by	eight	bits.	The	resolution	for	velocity
override	is	therefore	limited	to	1/256,	or	about	0.39%.

Note		The	conversion	from	floating-point	to	fixed-point	is
performed	on	the	host	computer,	not	on	the	motion	controller.	To
load	velocity	override	from	an	onboard	variable,	you	must	use	the
integer	representation	of	0	to	384,	where	384	corresponds	to
150%.

Note		If	the	distance	of	the	move	is	too	small,	it	may	not	be
possible	to	reach	the	commanded	maximum	move	constraints.	In
such	instances,	NI-Motion	adjusts	the	move	constraints	lower	to
reach	the	commanded	position.

NI-MotionCReferenceHelp.chm::/flex_load_velocity_override.html


NI	73xx	Arc	Angles	in	Degrees
The	Load	Circular	Arc,	Load	Helical	Arc,	and	Load	Spherical	Arc
VIs/functions	take	angle	parameters	in	degrees	as	double-precision
floating-point	values.	These	values	are	converted	to	an	internal	16.16
fixed-point	representation	where	the	integer	part	corresponds	to	multiples
of	45°	(for	example,	360°	is	represented	as	0x0008	0000).
Use	the	following	formula	to	convert	from	floating-point	to	fixed	point:

where:
Q	is	the	quotient,	the	integer	multiple	of	45°
R	is	the	remainder.

For	example,	94.7°	is	represented	in	16.16	format	as	follows:

The	minimum	angular	increment	is	therefore

	×	45º	=	0.000687º

Note		The	conversion	from	floating-point	to	fixed-point	is
performed	on	the	host	computer,	not	on	the	NI	motion	controller.
To	load	arc	VIs	from	onboard	variables,	you	must	use	the	16.16
fixed-point	representation	for	all	angles.



NI	73xx	Arc	Move	Limitations
The	following	are	limitations	to	the	velocity	and	acceleration	of	arc
moves.

Note		Round	the	result	of	these	equations	to	the	nearest	integer.

Arc	moves	must	meet	the	requirements	of	the	following	equations	or	an
NIMC_invalidVelocityError	is	generated:
V	×	P	×	4	<	R

and

where
V	=	Velocity	in	counts/s
P	=	PID	sample	rate	in	seconds
I	=	Coarse	Arc	Points	Interval	Period	(10	ms	or	20	ms)	in	seconds,
configured	in	MAX
R	=	Radius	in	counts

Arc	moves	must	meet	the	requirements	of	the	following	equations	or	an
NIMC_invalidAccelerationError	is	generated:
A	×	P	×	4	<	R

and

where

A	=	Acceleration/deceleration	in	counts/s2

P	=	PID	sample	rate	in	seconds
I	=	Coarse	Arc	Points	Interval	Period	(10	ms	or	20	ms)	in	seconds,
configured	in	MAX
R	=	Radius	in	counts

javascript:LaunchHelp('nimotion.chm', 'eISLinitializationPreferencesTab.html')
javascript:LaunchHelp('nimotion.chm', 'eISLinitializationPreferencesTab.html')


Timing	Loops
National	Instruments	recommends	that	you	use	the	loop	timings
discussed	in	the	following	sections.



Status	Display
When	you	are	displaying	status	information	to	the	user,	such	as	position,
move	status,	or	velocity,	an	update	rate	faster	than	60	ms	has	no	value.
In	fact,	there	is	no	need	to	update	a	display	any	faster	than	22	Hz
because	the	human	eye	can	detect	flicker	only	at	refresh	rates	slower
than	22	Hz.
However,	you	might	see	flicker	in	monitors	at	around	60	Hz,	because	of
interference	with	artificial	light	from	light	bulbs	that	run	on	a	60	Hz	AC
signal.	The	recommended	standard	is	60	ms	because	one	might	need
multiple	function	calls	within	one	loop	to	acquire	all	the	necessary	data.



Graphing	Data
When	acquiring	data	for	graphing	or	tracking	purposes,	a	10	ms	update
time	suits	most	applications.	MAX,	for	example,	updates	its	motion
graphs	every	10	ms.	This	update	time	equates	to	100	samples	every
second	and	provides	enough	resolution	for	typical	applications.	Consider
how	accurate	the	graph	display	is	when	choosing	the	timing	for	the	loop.



Event	Polling
Use	a	polling	interval	of	5	ms	when	polling	for	a	time-critical	event	that
must	occur	before	the	program	continues.	This	interval	is	fast	enough	to
satisfy	most	time-critical	polling	needs,	although	certain	high-speed
applications	may	require	a	faster	interval.	Consider	the	allowable
response	time	when	choosing	a	polling	interval.
For	example,	to	synchronize	the	motion	with	the	acquisition	in	an
application	where	a	user	places	an	object	under	the	scan	area	and	clicks
a	Scan	button,	you	create	periodic	breakpoints	every	10	counts	to	trigger
a	data	acquisition	over	RTSI.	In	this	example,	the	loop	needs	only	to	read
the	position	and	wait	for	the	move	to	complete	before	ending	the	scan.
Although	the	program	polls	for	an	event	(move	complete),	no	action	is
being	triggered	by	the	move	complete.	Because	there	is	no	need	for
instantaneous	action,	there	is	no	need	to	update	the	position	any	faster
than	60	ms,	and	60	ms	is	acceptable	for	monitoring	the	move	complete
status	as	well.



Straight-Line	Moves
A	straight-line	move	executes	the	shortest	move	between	two	points	and
can	use	one,	two,	or	three	axes.	Straight-line	moves	are	either	position-
based	or	velocity-based.



Position-Based	Straight-Line	Moves
Position-based	straight-line	moves	use	the	specified	target	position	to
generate	the	move	trajectory.	For	example,	if	the	motor	is	currently	at
position	zero,	and	the	target	position	is	100,	a	position-based	move
creates	a	trajectory	that	moves	100	counts	(steps).
The	controller	requires	the	following	information	to	move	to	another
position	in	a	straight	line:

Start	position—Current	position,	normally	held	over	from	a
previous	move	or	initialized	to	zero
End	position—Also	known	as	the	target	position,	or	where	you
want	to	move	to
Move	constraints—Maximum	velocity,	maximum	acceleration,
maximum	deceleration,	and	maximum	jerk
Tip		When	you	are	using	the	NI	SoftMotion	Controller,	you	can
load	separate	acceleration	and	deceleration	jerk	values.

The	motion	controller	uses	the	given	information	to	create	a	trajectory
that	never	exceeds	the	move	constraints	and	that	moves	an	axis	or	axes
to	the	end	position	you	specify.	The	controller	generates	the	trajectory	in
real	time,	so	you	can	change	any	of	the	parameters	while	the	axes	are
moving.



Straight-Line	Move	Algorithm
The	straight-line	move	algorithm	includes	the	following	procedures:

Load	target	position—Specifies	the	end	position
Load	the	move	constraints—Loads	the	velocity,	acceleration,
deceleration,	and	jerk	values
Start	motion—Starts	the	move

The	start	position	is	always	the	current	position	of	the	axis	or	axes.	You
can	load	the	end	position	as	either	an	absolute	position	to	move	to	or	as
a	position	relative	to	the	starting	position.	Although	you	can	update	any
parameter	while	the	move	is	in	progress,	the	new	parameter	is	used	only
after	a	subsequent	Start	or	Blend	Move.

Tip		You	must	load	the	move	constraints	only	if	they	are	different
from	what	was	previously	loaded.



Straight-Line	Move	LabVIEW	Diagram
The	following	block	diagrams	demonstrate	using	NI-Motion	to	complete	a
1D	and	2D	straight-line	move,	respectively.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.



1D	Straight-Line	Move	Block	Diagram

1		Load	Velocity		 4		Load	S-Curve
Time		

7		Start	Motion		

2		Load
Acceleration/Deceleration		

5		Set	Operation
Mode		

8		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

6		Load	Target
Position		

9		Motion	Error
Handler		



2D	Straight-Line	Move	Block	Diagram

1		Configure	Vector
Space		

5		Load	S-Curve
Time		

9			Check	Move
Complete	Status		

2		Load	Velocity		 6		Set	Operation
Mode		

10		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Load	Target
Position		

11		Read	per	Axis
Status		

4		Load
Acceleration/Deceleration		

8		Start	Motion		 12		Motion	Error
Handler		



Straight-Line	Move	C/C++	Code
Tip		The	following	example	code	is	not	necessarily	complete,	and
may	not	compile	if	copied	exactly.	Refer	to	NI-
Motion\Documentation\Examples\NI-Motion	User	Manual\	for	files	that
are	complete	and	compile	as	is.



1D	Straight-Line	Move	Code



2D	Straight-Line	Move	Code



Velocity-Based	Straight-Line	Moves
Some	motion	applications	require	moves	that	travel	in	a	straight	line	for	a
specific	amount	of	time	at	a	given	speed.	This	type	of	move	is	known	as
velocity	profiling	or	jogging.
You	can	use	a	motion	control	application	to	move	a	motor	at	a	given
speed	for	a	specific	time,	and	then	change	the	speed	without	stopping
the	axis.	The	sign	of	the	loaded	velocity	specifies	the	direction	of	motion.
Positive	velocity	implies	forward	motion	and	negative	velocity	implies
reverse	motion.

Tip		You	can	change	the	move	constraints	during	a	velocity	move.



Velocity-Based	Straight-Line	Move	Algorithm
The	following	figure	shows	a	generic	velocity-based	straight-line	move
algorithm	applicable	to	both	C/C++	and	LabVIEW	code.

Loading	a	second	velocity	and	executing	the	Start	Motion	VI	or	function
causes	the	motion	controller	to	accelerate	or	decelerate	to	the	newly
loaded	velocity	using	the	acceleration	or	deceleration	parameters	last
loaded.	The	axis	decelerates	to	a	stop	using	the	Stop	Motion	VI	or
function.	The	velocity	profile	created	in	the	example	code	is	shown	in	the
following	figure.

NI-MotionCReferenceHelp.chm::/flex_start.html
NI-MotionCReferenceHelp.chm::/flex_stop_motion.html


Velocity-Based	Straight-Line	Move	LabVIEW
Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
velocity-based	straight-line	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 5		Set	Operation
Mode		

9			Start	Motion		

2		Load
Acceleration/Deceleration		

6		Start	Motion		 10		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Read	per	Axis
Status		

11		Stop	Motion		

4		Load	S-Curve	Time		 8		Load	Velocity		 12		Motion	Error
Handler		



Velocity-Based	Straight-Line	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;											//	Board	identification	number

			u8			axis;														//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			i32	moveTime1;										//	Time	for	the	1st	segment

			i32	moveTime2;										//	Time	for	the	2nd	segment

			i32	initialTime;

			i32	currentTime;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	3;

			//	Set	the	axis	number

			axis	=	1;

			//	Move	time	for	the	first	segment

			moveTime1	=	5000;	//milliseconds

			//	Move	time	for	the	second	segment

			moveTime2	=	10000;	//milliseconds

			////////////////////////////////

			//------------------------------------------------------------

			//	First	segment

			//------------------------------------------------------------

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)



			err	=	flex_load_acceleration(boardID,	axis,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	jerk	(s-curve	value)	for	the	move	(in	sample	periods)

			err	=	flex_load_scurve_time(boardID,	axis,	100,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	velocity

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_VELOCITY);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	the	time	for	first	segment

			initialTime	=	timeGetTime();

			do

			{

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Get	the	current	time	and	check	if	time	is	over	for	the	first	segment

						currentTime	=	timeGetTime();

						if((currentTime	-	initialTime)	>=		moveTime1)	break;

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_MOVE_COMPLETE_BIT)	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			//------------------------------------------------------------

			//	Second	segment

			//------------------------------------------------------------

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	axis,	6568,	0xFF);

			CheckError;

			//	Start	the	move	-	to	update	the	velocity



			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	the	time	for	second	segment

			initialTime	=	timeGetTime();

			do

			{

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Get	the	current	time	and	check	if	time	is	over	for	the	second	segment

						currentTime	=	timeGetTime();

						if((currentTime	-	initialTime)	>=		moveTime2)	break;

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_MOVE_COMPLETE_BIT)	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			//	Decelerate	the	axis	to	a	stop

			err	=	flex_stop_motion(boardID,	axis,	NIMC_DECEL_STOP,	0);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);



									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Velocity	Profiling	Using	Velocity	Override
You	also	can	use	the	Load	Velocity	Override	VI	or	function	to	shift	from
one	velocity	to	another	while	executing	moves.	When	you	use	this
function,	you	indicate	the	new	velocity	in	terms	of	a	percentage	of	the
originally	loaded	velocity	instead	of	explicitly	stating	the	velocity	you	want
to	change	to.
For	example,	120	percent	of	an	original	velocity	of	10,000	changes	the
velocity	to	12,000.
The	transition	between	velocities	follows	all	other	move	constraints.

NI-MotionCReferenceHelp.chm::/flex_load_velocity_override.html


Velocity	Profiling	Using	Velocity	Override	Algorithm
The	following	figure	shows	a	velocity-based	straight-line	move	algorithm
showing	the	use	of	velocity	override	applicable	to	both	C/C++	and
LabVIEW	code.



Velocity	Profiling	Using	Velocity	Override
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	do	velocity
profiling	using	Velocity	Override.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 5		Set	Operation
Mode		

9			Read	per	Axis
Status		

2		Load
Acceleration/Deceleration		

6		Start	Motion		 10		Stop	Motion		

3		Load
Acceleration/Deceleration		

7		Read	per	Axis
Status		

11		Motion	Error
Handler		

4		Load	S-Curve	Time		 8		Load	Velocity
Override		

				



Velocity	Profiling	Using	Velocity	Override	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;											//	Board	identification	number

			u8			axis;														//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			i32	moveTime1;										//	Time	for	the	1st	segment

			i32	moveTime2;										//	Time	for	the	2nd	segment

			i32	initialTime;

			i32	currentTime;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	3;

			//	Set	the	axis	number

			axis	=	1;

			//	Move	time	for	the	first	segment

			moveTime1	=	5000;	//milliseconds

			//	Move	time	for	the	second	segment

			moveTime2	=	10000;	//milliseconds

			////////////////////////////////

			//------------------------------------------------------------

			//	First	segment

			//------------------------------------------------------------

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_ACCELERATION,	100000,	0xFF);



			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	jerk	(s-curve	value)	for	the	move	(in	sample	periods)

			err	=	flex_load_scurve_time(boardID,	axis,	100,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	velocity

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_VELOCITY);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	the	time	for	first	segment

			initialTime	=	timeGetTime();

			do

			{

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

												

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Get	the	current	time	and	check	if	time	is	over	for	the	first	segment

						currentTime	=	timeGetTime();

						if((currentTime	-	initialTime)	>=		moveTime1)	break;

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_MOVE_COMPLETE_BIT)	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			//------------------------------------------------------------

			//	Second	segment

			//------------------------------------------------------------

			//	Change	the	velocity	to	80%	of	the	initially	loaded	value

			err	=	flex_load_velocity_override(boardID,	axis,	80,	0xFF);



			CheckError;

			//	Wait	for	the	time	for	second	segment

			initialTime	=	timeGetTime();

			do

			{

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

												

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Get	the	current	time	and	check	if	time	is	over	for	the	second	segment

						currentTime	=	timeGetTime();

						if((currentTime	-	initialTime)	>=		moveTime2)	break;

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_MOVE_COMPLETE_BIT)	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			

			

			//	Decelerate	the	axis	to	a	stop

			err	=	flex_stop_motion(boardID,	axis,	NIMC_DECEL_STOP,	0);

			CheckError;

			//	Reset	velocity	override	back	to	100%

			err	=	flex_load_velocity_override(boardID,	axis,	100,	0xFF);

			CheckError;

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{



									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Arc	Moves
An	arc	move	causes	a	coordinate	space	of	axes	to	move	on	a	circular,
spherical,	or	helical	path.	You	can	move	two-dimensional	vector	spaces
in	a	circle	only	on	a	2D	plane.	You	can	move	a	3D	vector	space	on	a
spherical	or	helical	path.
Each	arc	generated	by	the	motion	controller	passes	through	a	cubic
spline	algorithm	that	ensures	the	smoothest	arc.	This	also	ensures
negligible	chordal	error,	which	is	error	caused	when	two	points	on	the
surface	of	the	arc	join	with	each	other	using	a	straight	line.	A	cubic	spline
algorithm	generates	multiple	points	between	every	two	points	of	the	arc,
ensuring	smooth	motion,	minimum	jerk,	and	maximum	accuracy	at	all
times.	The	data	path	is	shown	in	the	following	figure.

Note		Arc	moves	must	meet	the	requirements	of	the	equations	in
NI	73xx	Arc	Move	Limitations	or	an	NIMC_invalidVelocityError	is
generated.



Circular	Arcs
A	circular	arc	defines	an	arc	in	the	XY	plane	of	a	2D	or	3D	coordinate
space.	The	arc	is	specified	by	a	radius,	starting	angle,	and	travel	angle.
Also,	like	all	coordinate	space	moves,	the	arc	uses	the	values	of	move
constraints—maximum	velocity,	maximum	acceleration,	and	maximum
deceleration.

Tip		For	the	NI	SoftMotion	Controller,	the	arc	generation	also	uses
acceleration	jerk	and	deceleration	jerk	while	calculating	the	arc
move.

Note		When	you	use	an	NI	73xx	motion	controller	to	move	a	motor
in	an	arc,	you	can	use	only	trapezoidal	profiles.	You	do	not	use
jerk	to	calculate	the	profile	for	arc	moves.

To	move	axes	in	a	circular	arc,	the	motion	controller	needs	the	following
information:

Radius—Specifies	the	distance	from	the	center	of	the	arc	to	its
edge
Start	Angle—Orients	the	arc	on	its	plane	using	the	starting	point
as	an	axis	to	spin	around.	Because	the	starting	point	for	a	new	arc
is	fixed	based	on	the	current	position,	moving	its	center	around	the
starting	point	alters	the	orientation	of	a	new	arc.	For	example,	the
following	figure	shows	the	effect	of	changing	the	start	angle	from	0°
to	180°.	

1		Original	Arc		 2		Arc	with	180°	Start	Angle		
Travel	Angle—Indicates	how	far	the	arc	travels	in	a	360°	circle.



For	example,	a	travel	angle	of	90°	executes	a	quarter-circle,	a
travel	angle	of	360°	creates	a	full	circle,	and	a	travel	angle	of	720°
creates	two	full	circles.	A	positive	travel	angle	always	creates
counterclockwise	circular	motion.	A	negative	travel	angle	reverses
the	direction	to	create	clockwise	circular	motion,	as	shown	in	the
following	figure.	

1		Positive	Travel	Angle		 2		Negative	Travel	Angle		



Circular	Arc	Move	Algorithm
The	following	figure	shows	a	generic	circular	arc	move	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.



Circular	Arc	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
circular	arc	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

5		Load	Circular	Arc		 8		Read	per	Axis
Status		

2		Load	Velocity		 6		Start	Motion		 9		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Check	Move
Complete	Status		

10		Motion	Error
Handler		

4		Load
Acceleration/Deceleration		

				 				



Circular	Arc	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;											//	Board	identification	number

			u8			vectorSpace;							//	Vector	space	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			u16	status;

			u16	moveComplete;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	0);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			



			//	Load	Spherical	Arc

			err	=	flex_load_circular_arc	(boardID,	vectorSpace,	5000/*radius*/,	0.0/*startAngle*/,	180.0/*travelAngle*/,	0xFF);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			do

			{

						axisStatus	=	0;

						//Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

						CheckError;

						

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	2

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			}while	(!moveComplete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{



									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Spherical	Arcs
A	3D	spherical	arc	defines	a	2D	circular	arc	in	the	X'Y'	plane	of	a
coordinate	system	that	is	transformed	by	rotation	in	pitch,	as	shown	in
the	first	figure,	and	yaw,	as	shown	in	the	second	figure,	from	the	normal
3D	coordinate	space	(XYZ).

In	the	transformed	X'Y'Z'	space,	the	3D	arc	is	reduced	to	a	simpler	2D
arc.	The	3D	arc	is	defined	as	a	2D	circular	arc	in	the	X'Y'	plane	of	a
transformed	vector	space	X'Y'Z'.	This	transformed	vector	space,	X'Y'Z',	is
defined	in	orientation	only,	with	no	absolute	position	offset.	Its	orientation
is	relative	to	the	XYZ	vector	space,	and	is	defined	in	terms	of	pitch	and
yaw	angles.	When	rotating	through	the	pitch	angle,	the	Y	and	Y'	axes
stay	aligned	with	each	other	while	the	X'Z'	plane	rotates	around	them.
When	rotating	through	the	yaw	angle,	the	Y'	axis	never	leaves	the
original	XY	plane,	as	the	newly-defined	X'Y'Z'	vector	space	rotates
around	the	original	Z-axis.
The	radius,	start	angle,	and	travel	angle	parameters	also	apply	to	a
spherical	arc	that	defines	the	arc	in	two	dimensions.



Spherical	Arc	Move	Algorithm
The	following	figure	shows	a	generic	spherical	arc	move	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.



Spherical	Arc	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
spherical	arc	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

5		Load	Spherical	Arc		 9			Read	per	Axis
Status		

2		Load	Velocity		 6		Start	Motion		 10		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Check	Move
Complete	Status		

11		Motion	Error
Handler		

4		Load
Acceleration/Deceleration		

8		Read	per	Axis	Status		 				



Spherical	Arc	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;											//	Board	identification	number

			u8		vectorSpace;							//	Vector	space	number

			u16	csr			=	0;									//	Communication	status	register

			u16	axisStatus;								//	Axis	status

			u16	status;

			u16	moveComplete;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	3D	Vector	Space	comprising	of	axes	1,	2	and	3

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	3);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;



			//	Load	Spherical	Arc

			err	=	flex_load_spherical_arc	(boardID,	vectorSpace,	5000/*radius*/,	45.0/*planePitch*/,

												45.0/*planeYaw*/,	0.0/*startAngle*/,	180.0/*travelAngle*/,	0xFF);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			do

			{

						axisStatus	=	0;

						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

						CheckError;

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	2

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	3

						err	=	flex_read_axis_status_rtn(boardID,	3,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			}while	(!moveComplete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling



			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Helical	Arcs
A	helical	arc	defines	an	arc	in	a	3D	coordinate	space	that	consists	of	a
circle	in	the	XY	plane	and	synchronized	linear	travel	in	the	Z-axis.	The
arc	is	specified	by	a	radius,	start	angle,	travel	angle,	and	Z-axis	linear
travel.	Linear	travel	is	the	linear	distance	traversed	by	the	helical	arc	on
the	Z-axis,	as	shown	in	the	following	figure.

1		Side	View	of	Helix		 3		Isometric	View	of	Helix		
2		Top	View	of	Helix		 4		Linear	Travel		



Helical	Arc	Move	Algorithm
The	following	figure	shows	a	generic	helical	arc	move	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.



Helical	Arc	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
helical	arc	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

5		Load	Helical	Arc		 9		Read	per	Axis
Status		

2		Load	Velocity		 6		Start	Motion		 10		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Check	Move	Complete
Status		

11		Motion	Error
Handler		

4		Load
Acceleration/Deceleration		

8		Read	per	Axis	Status		 				



Helical	Arc	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void){

			u8		boardID;											//	Board	identification	number

			u8		vectorSpace;							//	Vector	space	number

			u16	csr			=	0;									//	Communication	status	register

			u16	axisStatus;								//	Axis	status

			u16	status;

			u16	moveComplete;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	3D	Vector	Space	comprising	of	axes	1,	2	and	3

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	3);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			

			//	Load	Helical	Arc

			err	=	flex_load_helical_arc	(boardID,	vectorSpace,	5000/*radius*/,	0.0/*startAngle*/,	



																																	720.0/*travelAngle*/,	5000	/*linear	travel*/,	0xFF);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			do

			{

						axisStatus	=	0;

						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

						CheckError;

						

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	2

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						

						//	Check	the	following	error/axis	off	status	for	axis	3

						err	=	flex_read_axis_status_rtn(boardID,	3,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&amp;	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			}while	(!moveComplete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:



			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Contoured	Moves
A	contoured	move	moves	an	axis	or	a	coordinate	space	of	axes	in	a
pattern	that	you	define.	The	trajectory	generator	on	the	motion	controller
is	not	used	during	a	contoured	move.	The	controller	takes	position	data	in
the	form	of	an	array,	and	splines	the	data	before	outputting	it	to	the	DACs
or	stepper	outputs,	as	shown	in	the	following	figure.

Contoured	moves	are	useful	when	you	want	to	generate	a	trajectory	that
cannot	be	constructed	from	straight	lines	and	arcs.	To	ensure	that	the
motion	is	smooth	with	minimum	jerk,	the	motion	controller	creates
intermediate	points	using	a	cubic	spline	algorithm.
The	move	constraints	commonly	used	to	limit	other	types	of	moves,	such
as	maximum	velocity,	maximum	acceleration,	maximum	deceleration,
and	maximum	jerk,	have	no	effect	on	contoured	moves.	However,	the
NI	Motion	Assistant	prototyping	tool	can	remap	a	user-defined	trajectory
based	on	specified	move	constraints,	preserving	move	characteristics
and	move	geometry.



Contoured	Move	Algorithm
The	following	figure	shows	a	generic	contoured	move	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.

All	contoured	moves	are	relative,	meaning	motion	starts	from	the	position
of	the	axis	or	axes	at	the	time	the	contouring	move	starts.	This	behavior
is	similar	to	the	way	arc	moves	work.	Depending	on	the	operation	mode
you	use,	you	can	load	absolute	positions	in	the	array	or	relative	positions,
which	imply	incremental	position	differences	between	contouring	points.



Absolute	versus	Relative	Contouring
All	positions	in	a	contouring	buffer	are	relative	to	the	current	position
when	starting.	There	is	an	assumed	0	point	that	the	firmware	adds	to	the
front	of	the	buffer	of	points.	For	example,	if	the	contour	buffer	is	[10,	20,
30,	40],	the	positions	are	[0,	10,	20,	30,	40]	in	the	firmware.
When	a	contour	move	starts	it	takes	a	snap	shot	of	the	current	position
according	to	the	following	equation:
StartPosition	=	currentPosition.

The	start	position	is	added	to	each	point	in	the	buffer	to	get	the	actual
position	to	move	through	according	to	the	following	equation:
Point	=	StartPosition	+	bufferPosition[n].

If	the	current	position	is	100,	and	the	buffer	is	[10,	20,	30,	40],	the	contour
move	follows	these	points:	[100,	110,	120,	130,	140].
The	difference	between	absolute	contouring	and	relative	contouring	is
how	the	points	in	the	buffer	are	treated.	The	previous	example	was	of	an
absolute	contour	move.	A	relative	contour	move	treats	the	points	as
deltas	according	to	the	following	formula:
Point[n]	=	Point[n-1]	+	bufferPosition[n]

For	a	relative	contour	move	that	starts	at	position	100	and	includes	a
buffer	with	the	following	values:	[10,	20,	30,	40],	the	points	the	contour
move	follows	are	[100,	110,	130,	160,	200].
For	contoured	moves,	no	two	consecutive	points	can	differ	by	more	than
215	​	1.	For	absolute	position	mode,	the	first	position	in	the	array	passed
to	the	controller	must	be	less	than	215	​	1,	and	any	two	consecutive	points
must	be	less	than	215	​	1.	For	relative	position	mode,	no	point	passed	to
the	controller	can	be	greater	than	215	​	1.
Absolute	versus	Relative	Contouring	Example
If	an	axis	starts	at	position	0	and	uses	either	of	the	following	sets	of
contouring	points,	the	axis	ends	up	at	position	28.	If	the	axis	starts	at
position	10,	it	ends	up	at	position	38	in	both	cases.

1 3 6 10 14 18 22 25 27 28



1 2 3 4 4 4 4 3 2 1



Contoured	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
contoured	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

5		Start	Motion		 9		Clear	Buffer		

2		Set	Operation
Mode		

6		Read	per	Axis	Status		 10		Set	Operation
Mode		

3		Configure	Buffer		 7		Read	per	Axis	Status		 11		Motion	Error
Handler		

4		Write	Buffer		 8		Check	Move	Complete
Status		

				

The	following	figure	demonstrates	the	TRUE	case	of	the	example.



1		Check	Buffer		 2		Write	Buffer		



Contoured	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;															//	Board	identification	number

			u8			vectorSpace;											//	Vector	space	number

			u16	csr			=	0;														//	Communication	status	register

			u16	axisStatus;													//	Axis	status

			u16	status;																	//	Temporary	copy	of	status

			u16	moveComplete;											//	Move	complete	status

			i32	i;

			i32	points[1994]	=			NIMC_SPIRAL_ARRAY;			//	Array	of	2D	points	to	move

			u32	numPoints	=	1994;							//	Total	number	of	points	to	contour	through

			i32	bufferSize	=	1000;						//	The	size	of	the	buffer	to	allocate	on	the	motion	controller

			f64	actualInterval;									//	The	interval	the	controller	can	really	contour	at

			i32*	downloadData	=	NULL;			//	The	temporary	array	that	is	created	to	download	the	points	to	the	controller

			u32	currentDataPoint	=	0;			//	Indicates	the	next	point	in	the	points	array	that	is	to	be	downloaded

			i32	backlog;																//	Indicates	the	available	space	to	download	more	points

			u16	bufferState;												//	Indicates	the	state	of	the	onboard	buffer

			u32	pointsDone;													//	Indicates	the	number	of	points	that	have	been	consumed

			u32	dataCopied	=	0;									//	Keeps	tack	of	the	points	copied

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	0);

			CheckError;

			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_CONTOURING);

			CheckError;



			//	Configure	buffer	on	motion	controller	memory	(RAM)

			//	Note	requested	time	interval	is	hardcoded	to	10	milliseconds

			err	=	flex_configure_buffer(boardID,	1	/*buffer	number*/,	vectorSpace,	NIMC_POSITION_DATA,	bufferSize,	numPoints,	NIMC_TRUE,	10,	&actualInterval);

			CheckError;

			//	Send	the	first	1000	points	of	the	data

			downloadData	=	malloc(sizeof(i32)*bufferSize);

			for(i=0;i<bufferSize;i++){

						downloadData[i]	=	points[i];

						currentDataPoint++;

			}

			err	=	flex_write_buffer(boardID,	1/*buffer	number*/,	bufferSize,	0,	downloadData,	0xFF);

			free(downloadData);

			downloadData	=	NULL;

			CheckError;

			//	Start	Motion

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			for(;;){

						axisStatus	=	0;

						//	Check	for	available	space	and	download	remaining	points	every	50	milliseconds

						Sleep(50);

						//	Check	to	see	if	we	have	more	points	to	download

						if(currentDataPoint	<	numPoints){

									err	=	flex_check_buffer_rtn(boardID,	1/*buffer	number*/,	&backlog,	&bufferState,	&pointsDone);

									CheckError;

									if(backlog	>=	300){

												downloadData	=	malloc(sizeof(i32)*backlog);

												dataCopied	=	0;

												for(i=0;i<backlog;i++){

															if(currentDataPoint	>	numPoints)	break;

															downloadData[i]	=	points[currentDataPoint];

															currentDataPoint++;

															dataCopied++;

												}

												err	=	flex_write_buffer	(boardID,	1	/*buffer	number*/,	dataCopied,	0,	downloadData,	0xFF);

												free(downloadData);

												downloadData	=	NULL;

												CheckError;

									}

						}



						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

						CheckError;

						if(moveComplete)	break;

						//	Check	for	axis	off	status/following	error	or	any	modal	errors

						//			Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG){

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Check	the	motor	off	status	on	all	the	axes	or	axis

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						if(	(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	||	(axisStatus	&	NIMC_AXIS_OFF_BIT)	){

									break;	//	Break	out	of	the	for	loop	as	an	axis	was	killed

						}

			}

			//	Set	the	mode	back	to	absolute	mode	to	get	the	controller	out	of	contouring

			//	mode

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Free	the	buffer	allocated	on	the	controller	memory

			err	=	flex_clear_buffer(boardID,	1/*buffer	number*/);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){



						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Reference	Moves
Use	reference	moves	to	move	the	axes	to	a	known	starting	location	and
orientation.	Reference	functions	include	the	Find	Reference	VI	or
function,	the	Check	Reference	VI	or	function,	the	Wait	Reference	VI	or
function,	the	Read	Reference	Status	VI	or	function,	the	Load	Reference
Parameters	VI	or	function,	and	the	Get	Reference	Parameters	VI	or
function.
Use	Check	Reference	to	determine	if	the	Find	Reference	operation	is
complete.	This	function	is	often	placed	in	a	loop	that	continues	until	the
status	for	the	Find	Reference	operation	is	shown	to	be	complete.	You	can
use	Wait	Reference	if	there	is	no	need	to	monitor	the	status	of	the	Find
Reference.
Use	a	Find	Reference	move	to	initiate	a	search	operation	to	find	a
reference	position.	Available	search	operations	include	home	switch,
index	pulse,	forward	limit	switch,	reverse	limit	switch,	center,	or	run
sequence.	Refer	to	the	NI-Motion	VI	Help	or	the	NI-Motion	Function	Help
for	information	about	reference	move	options.

NI-MotionCReferenceHelp.chm::/flex_find_reference.html
NI-MotionCReferenceHelp.chm::/flex_check_reference.html
NI-MotionCReferenceHelp.chm::/flex_wait_reference.html
NI-MotionCReferenceHelp.chm::/flex_read_reference_status.html
NI-MotionCReferenceHelp.chm::/flex_load_reference_parameter.html
NI-MotionCReferenceHelp.chm::/flex_get_reference_parameter.html
NI-MotionCReferenceHelp.chm::/NI-Motion_Function_Help.html


Reference	Move	Algorithm
The	following	figure	shows	a	generic	reference	move	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.



Find	Home
Setting	the	Find	Reference	search	type	to	Home	initiates	a	search
sequence	for	a	home	input	or	other	sensor	hooked	up	to	the	home	input.
Attributes	you	can	specify	include	the	initial	search	direction,	the	edge
(forward	or	reverse)	of	the	home	signal	to	stop	on,	and	the	desired	travel
direction	when	you	approach	the	specified	home	edge.
The	search	is	performed	at	the	maximum	find	velocity	specified	by	Max
Find	Velocity	or	Max	Find	RPM.	The	velocity	of	the	axis	is	set	to	this
value	during	the	find	operation.	The	velocity	is	then	restored	to	its
previous	value	after	the	search	completes.
When	the	initial	search	direction	is	forward,	the	axis	starts	moving	in	the
forward	direction.	If	the	specified	home	signal	transition	is	detected,	the
find	home	sequence	continues	based	on	the	other	control	bits.	If	the
forward	limit	switch	is	encountered	before	the	home	input,	the	axis
automatically	reverses	direction	and	continues	searching	for	the	home
input.	Then,	if	the	reverse	limit	is	encountered	before	the	home	input,	the
sequence	stops	and	the	Home	Found	status	is	False.	If	a	home	input
exists,	finding	it	is	guaranteed.	A	similar	search	sequence	is	followed
when	the	initial	search	direction	is	reverse,	except	the	search	starts	in	the
reverse	direction.
You	can	configure	the	find	home	sequence	to	detect	either	the	rising	or
falling	edge	of	the	home	signal,	as	shown	in	the	following	figures.	You
also	can	set	the	active	state	of	the	limit	and	home	inputs	with	the	Set
Limit	Input	Polarity	VI	or	function	and	Set	Home	Input	Polarity	VI	or
function,	respectively.	After	the	home	input	is	found,	motion	approaches
the	home	edge	from	the	specified	direction.	If	necessary,	the	axis	travels
past	the	home	edge	and	reverses	direction	to	approach	it	from	the
programmed	direction.	To	smoothly	approach	the	edge,	this	portion	of	the
sequence	is	executed	at	a	slower	velocity	using	the	Approach	Velocity
Percent	value	set	with	Load	Reference	Parameter	VI	or	function	or	in
MAX.	This	approach	direction	feature	is	used	to	minimize	the	effects	of
motion	system	windup,	backlash,	and/or	home	sensor	hysteresis.

NI-MotionCReferenceHelp.chm::/flex_set_limit_input_polarity.html
NI-MotionCReferenceHelp.chm::/flex_set_home_polarity.html
NI-MotionCReferenceHelp.chm::/flex_load_reference_parameter.html


The	forward	edge	is	the	edge	of	the	home	switch	that	has	a	position
higher	than	that	of	the	reverse	edge.
The	Wait	Reference	VI	or	function	reports	the	success	of	a	Find	Home.
Wait	Reference	also	can	be	used	to	query	if	the	find	operation	is
complete	by	using	a	timeout	of	0.	You	also	can	monitor	this	status	with
the	Read	Reference	Status	VI	or	function	and	Read	per	Axis	Status	VI	or
function.	When	the	home	input	is	found,	the	Home	Found	status	is	set	to
True.	If	the	home	sequence	fails	to	locate	the	specified	edge	of	the	home
signal,	the	Home	Found	status	is	False.

Note		National	Instruments	recommends	not	connecting	the	home
input	to	either	the	forward	or	reverse	limits.	This	might	cause
inappropriate	behavior.	Instead	use	Find	Forward	or	Find	Reverse.
Consider	using	Find	Center	for	stages	if	your	goal	is	to	center	the
system	to	the	center	of	travel.

If	you	execute	a	Find	Home	on	systems	without	a	home	input,	the
sequence	always	terminates	at	the	limit	switch	opposite	to	the	initial
search	direction.	The	Home	Found	status	is	false	and	the	edge	and
approach	direction	features	are	not	applicable.	Consider	using	Find
Forward	and	Reverse	Limits	instead.
If	Smart	Enable	is	disabled	you	must	enable	both	limits	and	the	home
input	prior	to	executing	the	Find	Home.	If	any	of	the	limit	or	home	inputs

NI-MotionCReferenceHelp.chm::/flex_wait_reference.html
NI-MotionCReferenceHelp.chm::/flex_read_reference_status.html
NI-MotionCReferenceHelp.chm::/flex_read_axis_status.html


are	disabled	on	the	axis,	the	Find	Home	does	not	start	and	a	modal	error
is	generated.	Also,	after	a	Find	Home	sequence	completes,	the	home
input	must	be	disabled	because	it	is	no	longer	required,	assuming	you	do
not	want	to	stop	on	it	the	next	time	the	system	moves	past	it.
With	the	Smart	Enable	feature	enabled	both	limits	and	the	home	input
are	automatically	enabled	prior	to	initiating	the	search.	After	the	search
completes,	the	limits	and	the	home	input	are	returned	to	their	previous
states.	If	you	use	Smart	Enable,	National	Instruments	recommends
setting	the	default	in	MAX	to	enable	the	forward	and	reverse	limits	and
disable	the	home	input.
After	the	home	input	is	found,	an	offset	move	is	performed,	if	specified.
Offset	Move	specifies	the	amount	and	direction	of	the	offset.	This	offset
move	is	performed	at	the	maximum	find	velocity	specified	by	Max	Find
Velocity	or	Max	Find	RPM.	By	default	Offset	Move	is	0,	resulting	in	no
offset	move.

Note		If	you	are	doing	an	offset	move	after	a	Find	Home,	verify
that	you	set	the	correct	Edge	to	Stop	On	using	the	Load	Reference
Parameter	VI	or	function	so	that	the	offset	move	does	not	cross
the	home	switch.

After	the	offset	move	is	performed,	the	position	is	reset	if	Reset	Position?
is	true.	The	position	is	set	to	the	values	indicated	by	Reset	Primary
Position	and	Reset	Secondary	Position.	This	procedure	establishes	a
repeatable	reference	position	that	is	as	accurate	as	the	home	edge
location.
In	closed-loop	encoder	based	systems,	you	can	perform	a	Find	Index
after	a	Find	Home	to	overcome	any	errors	in	the	home	edge	location.
The	Find	Index	operation	allows	you	to	get	a	fixed	encoder	position
relative	to	your	home	input.
Example	1
You	want	to	find	the	forward	edge	of	the	home	input	on	axis	2	and
approach	it	from	the	reverse	direction.	You	also	want	to	perform	an	offset
of	500	counts	in	the	forward	direction	and	then	reset	the	position	to	0.	In
addition,	you	want	to	begin	searching	in	the	reverse	direction.	First,	the
settings	in	MAX	must	correspond	to	the	following:

Final Search Edge Smart Reset Offset			 Reset Reset



Direction Direction Enable Position? Primary
Position

Secondary
Position

True
(Reverse)

True
(Reverse)

False
(Forward)

True True 500 0 0

Then,	to	start	the	search,	call	Find	Reference	with	the	following
parameters:

axisOrVectorSpace	=	Axis	2	(using	LabVIEW)/NIMC_AXIS2
(using	C)	
searchType	=	Find	Home	(0)	
axisOrVSMap	=	Unused

As	shown	in	the	following	figure,	this	Find	Home	sequence	searches	for
the	home	input	at	the	Max	Find	Velocity	from	the	reverse	direction	(1).
When	the	home	input	is	found,	the	axis	decelerates	and	repositions	to
the	desired	approach	direction	(2).	Then,	the	forward	edge	is	approached
at	the	Approach	Velocity	in	the	reverse	direction	(3).

Example	2
You	want	to	find	the	forward	edge	of	the	home	input	on	axis	2	and
approach	it	from	the	forward	direction.	You	also	want	to	perform	an	offset
of	500	counts	in	the	reverse	direction	and	then	reset	the	position	to	0.	In
addition,	you	want	to	begin	searching	in	the	reverse	direction.	First,	the
settings	in	MAX	must	correspond	to	the	following:

Final
Direction

Search
Direction

Edge Smart
Enable

Reset
Position?

Offset			 Reset
Primary
Position

Reset
Secondary
Position



False
(Forward)

True
(Reverse)

False
(Forward)

True True –500 0 0

Then,	to	start	the	search,	call	Find	Reference	with	the	following
parameters:

axisOrVectorSpace	=	Axis	2	(using	LabVIEW)/NIMC_AXIS2
(using	C)	
searchType	=	Home	(0)	
axisOrVSMap	=	Unused

As	shown	in	the	following	figure,	this	Find	Home	sequence	searches	for
the	home	input	from	the	reverse	direction	(1).	When	the	home	input	is
found,	the	axis	decelerates	(2).	Then	the	forward	edge	is	approached	at
the	Approach	Velocity	in	the	forward	direction	(3).

Example	3
You	want	to	find	the	reverse	edge	of	the	home	input	on	axis	2	and
approach	it	from	the	reverse	direction.	In	addition,	you	want	to	begin
searching	in	the	reverse	direction.	First,	the	settings	in	MAX	must
correspond	to	the	following:

Final
Direction

Search
Direction

Edge Smart
Enable

Reset
Position?

Offset			 Reset
Primary
Position

Reset
Secondary
Position

True
(Reverse)

True
(Reverse)

True
(Reverse)

True False 0 0 0

Then,	to	start	the	search,	call	Find	Reference	with	the	following



parameters:
axisOrVectorSpace	=	Axis	2	(using	LabVIEW)/NIMC_AXIS2
(using	C)	
searchType	=	Home	(0)	
axisOrVSMap	=	Unused

As	shown	in	the	following	figure,	this	Find	Home	sequence	searches	for
the	home	input	from	the	reverse	direction	(1).	When	the	forward	edge	of
the	home	input	is	found,	the	axis	decelerates	to	the	Approach	Velocity
(2).	Then	the	reverse	edge	is	approached	at	the	Approach	Velocity	in	the
reverse	direction	(3).

Example	4
You	want	to	find	the	reverse	edge	of	the	home	input	on	axis	2	and
approach	it	from	the	forward	direction.	In	addition,	you	want	to	begin
searching	in	the	reverse	direction.	First,	the	settings	in	MAX	must
correspond	to	the	following:

Final
Direction

Search
Direction

Edge Smart
Enable

Reset
Position?

Offset			 Reset
Primary
Position

Reset
Secondary
Position

False
(Forward)

True
(Reverse)

True
(Reverse)

True False 0 0 0

Then,	to	start	the	search,	call	Find	Reference	with	the	following
parameters:

axisOrVectorSpace	=	Axis	2	(using	LabVIEW)/NIMC_AXIS2



(using	C)	
searchType	=	Home	(0)	
axisOrVSMap	=	Unused

As	shown	in	the	following	figure,	this	Find	Home	sequence	searches	for
the	home	input	from	the	reverse	direction	(1).	When	the	reverse	edge	of
the	home	input	is	found,	the	axis	decelerates	(2).	Then	the	reverse	edge
is	approached	at	the	Approach	Velocity	in	the	forward	direction	(3).

Note		When	the	initial	search	direction	is	forward,	the	Find	Home
behavior	is	the	reverse	of	the	examples	shown.



Find	Index
Setting	the	Find	Reference	search	type	to	Index	initiates	a	search
sequence	to	find	the	index	(marker)	signal	of	the	feedback	encoder.
Attributes	you	can	specify	include	the	initial	search	direction,	approach
velocity	percent,	and	search	distance.
The	encoder	index	signal	is	accurate	to	one	quadrature	count	and
provides	a	much	more	repeatable	reference	than	using	just	a	limit	or
home	input	edge.	Find	Index	is	typically	executed	after	a	Find	Home,
Find	Center,	or	Find	Limit	operation.	With	this	procedure,	the	home	input
need	only	be	accurate	enough	to	repeatedly	locate	the	axis	within	the
same	encoder	revolution	or	index	period.	Then	you	can	use	Find	Index	to
find	a	unique	instance	of	the	index.

Note		Find	Index	is	only	available	on	axes	with	incremental
encoder	feedback.

When	performing	a	Find	Index	operation	after	another	find,	you	might
notice	inconsistent	operation	if	the	index	(marker)	signal	is	near	to	the
edge	of	the	home	input	or	limit.	In	this	case,	a	Find	Index	operation	can
sometimes	be	off	by	one	revolution.	To	solve	this,	National	Instruments
recommends	performing	an	offset	move	on	the	previous	find	to	move
away	from	the	index	(marker)	signal,	and	then	perform	the	Find	Index
operation.
The	search	sequence	is	performed	in	the	specified	direction	at	a	fixed
low	velocity	of	¼	RPS	unless	the	maximum	find	velocity	is	slower.	To
guarantee	finding	the	index	(if	one	exists),	the	length	of	the	move	is
automatically	set	to	slightly	greater	than	one	encoder	revolution.	If	you
previously	performed	a	Find	Forward	Limit	or	a	Find	Reverse	Limit
National	Instruments	recommends	you	set	the	search	direction	of	the
Find	Index	to	a	direction	opposite	to	the	direction	of	travel	into	the	limit.
Find	Index	uses	the	Approach	Velocity	Percent	value	set	with	the	Load
Reference	Parameter	VI	or	function	or	in	MAX	throughout	the	entire
search	sequence.

Note		If	the	velocity	of	the	Find	Index	operation	is	very	high,	it	is
possible	the	search	distance	is	reported	complete	before	index
found	reported	complete.	This	results	in	Index	Found	status
reported	as	false.	To	avoid	this	you	can	either	increase	the	search

NI-MotionCReferenceHelp.chm::/flex_load_reference_parameter.html


distance	to	allow	more	time	to	report	the	index	found	and/or
decrease	the	search	speed	to	slow	down	the	search.

In	normal	operation,	Find	Index	uses	high-speed	capture	circuitry	to
detect	the	index.	The	axis	typically	overshoots	by	an	amount	that	varies
depending	on	the	velocity,	then	comes	back	to	the	index.	In	most	cases
this	is	not	noticeable.

Note		If	you	are	using	a	linear	encoder	or	if	your	counts/steps	per
revolution	is	set	to	a	value	other	than	the	actual	counts/steps	per
revolution,	use	the	Search	Distance	parameter	set	with	Load
Reference	Parameter	or	in	MAX	to	load	a	custom	search	distance
for	a	Find	Index	move.

The	Wait	Reference	VI	or	function	reports	the	success	of	a	Find	Index.
Wait	Reference	also	can	be	used	to	query	if	the	find	operation	is
complete	using	a	timeout	of	0.	You	also	can	monitor	this	status	with	the
Read	per	Axis	Status	VI	or	function.	When	the	index	is	found	the	Index
Found	status	is	set	to	True.	If	the	index	is	not	found	during	the	search
revolution,	the	axis	comes	to	a	stop	and	indicates	the	failure	by	setting
the	Index	Found	status	to	False.	Missing	the	index	is	possible	for	a
number	of	reasons	including	an	incorrectly	connected	encoder	or	an
incorrect	value	for	counts	per	revolution.	Refer	to	the	motion	controller
documentation	for	more	information	about	encoder	connections	and
index	phasing.
You	can	only	execute	a	Find	Index	on	properly	configured	axes	that	are
presently	stopped	or	killed.	Attempting	to	execute	a	Find	Index	while	the
axis	is	in	motion	generates	a	modal	error.	Refer	to	the	Errors	and	Error
Handling	section	of	the	NI-Motion	VI	Help	or	NI-Motion	Function	Help	for
more	information	about	errors.
If	Smart	Enable	is	disabled	National	Instruments	recommends	you
disable	the	home	input	before	performing	a	Find	Index.	If	you	previously
performed	a	Find	Home,	depending	on	the	settings,	you	might	encounter
the	home	input	during	a	Find	Index.
With	the	Smart	Enable	feature	enabled	both	limits	are	enabled	and	the
home	input	is	disabled	prior	to	initiating	the	search.	After	the	search
completes	the	limits	are	returned	to	their	previous	states.	If	you	use
Smart	Enable,	National	Instruments	recommends	setting	the	default	in
MAX	to	enable	the	forward	and	reverse	limits	and	disable	the	home	input.

NI-MotionCReferenceHelp.chm::/flex_wait_reference.html
NI-MotionCReferenceHelp.chm::/flex_read_axis_status.html
NI-MotionCReferenceHelp.chm::/ErrorsandErrorHandling.html


After	the	index	(marker)	signal	is	found,	an	offset	move	is	performed.
Offset	Move	specifies	the	amount	and	direction	of	the	offset.	This	offset
move	is	performed	at	the	maximum	find	velocity	specified	by	Max	Find
Velocity	or	Max	Find	RPM.	By	default	Offset	Move	is	0,	resulting	in	no
offset	move.
After	the	offset	move	is	performed,	the	position	is	reset	if	Enable	Reset
Position	is	true.	The	position	is	set	to	the	values	indicated	by	Primary
Reset	Position	and	Secondary	Reset	Position.



Find	Forward	and	Reverse	Limits
Setting	the	Find	Reference	search	type	to	Forward	Limit	initiates	a
search	sequence	to	find	the	forward	limit.	Setting	the	search	type	to
Reverse	Limit	initiates	a	search	sequence	to	find	the	reverse	limit.
Attributes	you	can	specify	include	the	Initial	Search	Direction	and	the
Final	Approach	Direction	(for	when	the	search	encounters	each	of	the
limits).
The	search	is	performed	at	the	maximum	find	velocity	specified	by	Max
Find	Velocity	or	Max	Find	RPM.	The	velocity	of	the	axis	is	set	to	this
value	during	the	find	operation.	The	velocity	is	then	restored	to	its
previous	value	after	the	search	completes.
When	the	search	operation	initiates	the	axis	starts	moving	in	the	direction
of	the	limit.	When	the	axis	encounters	the	limit	in	that	direction	the	search
completes	and	the	Wait	Reference	VI	or	function	returns	a	true	value.

A	fine-tuning	operation	is	performed	when	the	limit	is	reached.	This
provides	for	a	more	accurate	search.	To	smoothly	approach	the	edge,
this	portion	of	the	sequence	is	executed	at	a	fixed	low	velocity	of	1/4	RPS
unless	the	maximum	find	velocity	is	slower.	This	approach	direction
feature	is	used	to	minimize	the	effects	of	motion	system	windup,
backlash,	and/or	home	sensor	hysteresis.	If	the	final	approach	direction
is	the	opposite	to	the	direction	of	travel	into	the	limit	(true),	the	axis	then
slowly	backs	off	the	limit	until	the	limit	becomes	inactive	again.	If	the	final
approach	direction	is	the	same	as	the	direction	of	travel	into	limit	(false),
then	the	axis	slowly	backs	off	the	limit	and	re-approaches	it.	You	also	can
set	the	active	state	of	the	limit	with	the	Set	Limit	Input	Polarity	VI	or
function.
If	Smart	Enable	is	disabled	National	Instruments	recommends	you
disable	the	home	input	before	performing	a	Find	Forward	Limit	or	Find
Reverse	Limit.	If	the	home	input	is	enabled	and	encountered	during	a
Find	Center,	the	search	stops	at	the	home	input	and	generates	a	modal
error.
With	the	Smart	Enable	feature	enabled	the	limit	you	are	searching	for	is
enabled,	the	opposite	limit	is	left	as-is,	and	home	input	is	disabled	prior	to
initiating	the	search.	After	the	search	completes,	the	limits	are	returned	to
their	previous	states.	If	you	use	Smart	Enable,	National	Instruments

NI-MotionCReferenceHelp.chm::/flex_wait_reference.html
NI-MotionCReferenceHelp.chm::/flex_set_limit_input_polarity.html


recommends	setting	the	default	in	MAX	to	enable	the	forward	and
reverse	limits	and	disable	the	home	input.
After	the	limit	is	located,	an	offset	move	is	performed.	Offset	Move
specifies	the	amount	and	direction	of	the	offset.	This	offset	move	is
performed	at	the	maximum	find	velocity	specified	by	Max	Find	Velocity	or
Max	Find	RPM.	Usually	the	Offset	Move	is	negative	for	a	Find	Forward
Limit	and	positive	for	a	Find	Reverse	Limit.	By	default	Offset	Move	is	0,
resulting	in	no	offset	move.
After	the	offset	move	is	performed,	the	position	is	reset	if	Reset	Position?
is	true.	The	position	is	set	to	the	values	indicated	by	Reset	Primary
Position	and	Reset	Secondary	Position.



Find	Center
Setting	the	Find	Reference	search	type	to	Center	initiates	a	search
sequence	positioning	the	axis	in	the	middle	of	the	forward	and	reverse
limits.	Attributes	you	can	specify	include	the	Initial	Search	Direction	and
the	Final	Approach	Direction	(for	when	the	search	encounters	each	of	the
limits).
The	search	is	performed	at	the	maximum	find	velocity	specified	by	Max
Find	Velocity	or	Max	Find	RPM.	The	velocity	of	the	axis	is	set	to	this
value	during	the	find	operation.	The	velocity	is	then	restored	to	its
previous	value	after	the	search	completes.
When	the	search	direction	is	forward,	the	axis	starts	moving	in	the
forward	direction.	When	the	limit	in	that	direction	is	encountered,	the
direction	is	reversed	to	find	the	reverse	limit.	After	both	limits	are	reached
a	center	position	can	be	calculated	from	the	recorded	positions.	The	axis
then	proceeds	to	the	calculated	center.	When	the	center	is	found	the	Wait
Reference	VI	or	function	returns	a	true	value.	A	similar	search	sequence
starting	in	the	reverse	direction	is	followed	when	the	initial	search
direction	is	reverse.
At	the	end	of	each	limit	of	travel,	a	fine-tuning	operation	is	performed.
This	provides	for	a	more	accurate	search.	To	smoothly	approach	the
edge,	this	portion	of	the	sequence	is	executed	at	a	fixed	low	velocity	of
1/4	RPS	unless	the	maximum	find	velocity	is	slower.	This	approach
direction	feature	is	used	to	minimize	the	effects	of	motion	system	windup,
backlash,	and/or	home	sensor	hysteresis.	If	the	final	approach	direction
is	opposite	to	the	direction	of	travel	into	the	limit	(true),	the	axis	slowly
backs	off	the	limit	until	the	limit	becomes	inactive	again.	If	the	final
approach	direction	is	the	same	as	the	direction	of	travel	into	limit	(false),
the	axis	slowly	backs	off	the	limit	and	re-approaches	it.	You	also	can	set
the	active	state	of	the	limits	in	MAX	or	with	the	Set	Limit	Input	Polarity	VI
or	function.

If	Smart	Enable	is	disabled	National	Instruments	recommends	you
disable	the	home	input	before	performing	a	Find	Center.	If	the	home	input
is	enabled	and	encountered	during	a	Find	Center,	the	search	stops	at	the
home	input	and	generates	a	modal	error.

NI-MotionCReferenceHelp.chm::/flex_wait_reference.html
NI-MotionCReferenceHelp.chm::/flex_set_limit_input_polarity.html


With	the	Smart	Enable	feature	enabled	both	limits	are	enabled	and	the
home	input	is	disabled	prior	to	initiating	the	search.	After	the	search
completes	the	limits	are	returned	to	their	previous	states.	If	you	use
Smart	Enable,	National	Instruments	recommends	setting	the	default	in
MAX	to	enable	the	forward	and	reverse	limits	and	disable	the	home	input.
After	the	center	is	located,	an	offset	move	is	performed.	Offset	Move
specifies	the	amount	and	direction	of	the	offset.	This	offset	move	is
performed	at	the	maximum	find	velocity	specified	by	Max	Find	Velocity	or
Max	Find	RPM.	By	default	Offset	Move	is	0,	resulting	in	no	offset	move.
After	the	offset	move	is	performed,	the	position	is	reset	if	Reset	Position?
is	true.	The	position	is	set	to	the	values	indicated	by	Reset	Primary
Position	and	Reset	Secondary	Position.



Run	Sequence
Setting	the	Find	Reference	search	type	to	Run	Sequence	initiates	a
predefined	search	across	multiple	axes	and	multiple	find	types.	The
sequence	run	is	specified	in	MAX.	You	also	can	use	the	Load	Reference
Parameter	VI	or	function	to	programmatically	set	the	Sequence	Order	for
a	given	axis	and	search	type.
The	Run	Sequence	option	allows	you	to	pre-configure	a	search
sequence.	That	sequence	can	then	be	run	with	a	single	function.	The
sequence	gets	saved	when	you	save	user	defaults	to	Flash	(ROM).
To	specify	a	run	sequence	programmatically,	you	can	use	Load
Reference	Parameter	to	set	the	Sequence	Order	for	a	given	axis	and
search	type.	The	Sequence	Order	refers	to	the	phase	a	particular	search
is	in.	The	default	Sequence	Order	0	indicates	that	a	particular	search
type	is	not	included	in	the	sequence.

Note		Only	one	search	type	on	a	given	axis	can	have	the	same
Sequence	Order	number.	If	you	set	the	Find	Home	Sequence
Order	of	2,	then	set	the	Find	Index	Sequence	Order	to	2,	Find
Home	Sequence	Order	resets	to	0	and	Find	Index	Sequence
Order	is	2.	No	error	is	reported	if	this	is	the	case.

When	specifying	Sequence	Orders	you	must	be	sure	not	to	skip
over	a	number,	all	phases	must	be	contiguous.	Any	finds	specified
after	the	gap	is	not	executed.	For	example,	if	you	specify	a	Find
Center	Sequence	Order	of	1	and	a	Find	Index	Sequence	Order	of
3,	only	the	Find	Center	is	executed.

Example
Suppose	you	have	a	stage	configured	with	its	x-axis	tied	to	axis	2,	its	y-
axis	tied	to	axis	3,	and	another	device	attached	to	the	stage	tied	to	axis	1.
If	you	want	to	make	sure	you	center	the	device	attached	to	the	stage
before	you	centered	the	stage	you	might	set	up	a	run	sequence	similar	to
the	following:

Phase	1	 Wait	 Phase	2	 Wait	 Phase	3
Axis	1	 Find	Center Find	Index
Axis	2			 Find	Center Find	Index

NI-MotionCReferenceHelp.chm::/flex_load_reference_parameter.html


Axis	3			 Find	Center Find	Index

The	sequence	is	specified	as	different	phases.	The	next	phase	does	not
start	until	all	find	operations	in	a	given	phase	are	complete.	In	this
example,	Phase	1	is	the	centering	of	axis	1;	Phase	2	consists	of	finding
the	index	of	axis	1,	and	centering	axes	2	and	3;	Phase	3	consists	of
finding	the	index	of	axes	2	and	3.	For	this	example	you	would	set	Find
Center	Sequence	Order	on	Axis	1	to	1,	Find	Index	Sequence	Order	on
Axis	1	to	2,	Find	Center	Sequence	Order	on	Axes	2	and	3	to	2,	and	Find
Index	Sequence	Order	on	Axes	2	and	3	to	3.



Reference	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
reference	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 4		Load	S-Curve
Time		

7		Read	per	Axis
Status		

2		Load
Acceleration/Deceleration		

5		Find	Reference		 8		Check	Reference		

3		Load
Acceleration/Deceleration		

6		Check
Reference		

9		Motion	Error
Handler		



Reference	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void){

			u8		boardID;																//	Board	identification	number

			u8		axis;																			//	Axis	number

			f64	acceleration			=100;				//	Acceleration	value	in	RPS/S

			f64	velocity						=200;					//	Velocity	value	in	RPM

			u16	found,	finding;									//	Check	Reference	Statuses

			u16	axisStatus;													//	Axis	status

			u16	csr=0;																		//	Communication	status	Register

			i32	position;															//	Current	position	of	axis

			i32	scanVar;																//	Scan	variable	to	read	in	values	not	supported

																																																//	by	the	scanf	function

			//	Variables	for	modal	error	handling

			u16	commandID;														//	The	commandID	of	the	function

			u16	resourceID;													//	The	resource	ID

			i32	errorCode;														//	Error	code

			//	Get	the	board	ID

			printf("Enter	the	Board	ID:	");

			scanf("%d",	&scanVar);

			boardID=(u8)scanVar;

			//	Check	if	the	board	is	at	power	up	reset	condition

			err	=	flex_read_csr_rtn(boardID,	&csr);

			CheckError;

				if	(csr	&	NIMC_POWER_UP_RESET	){

						printf("\nThe	FlexMotion	board	is	in	the	reset	condition.	Please	initialize	the	board	before	");

						printf("running	this	example.		The	\"flex_initialize_controller\"	function	will	initialize	the	");

						printf("board	with	settings	selected	through	Measurement	and	Automation	Explorer\n");

						return;

			}

			//	Get	the	axis	number

			printf("Enter	the	axis:	");

			scanf("%d",&scanVar);

			axis=(u8)scanVar;

			//	Flush	the	Stdin



			fflush(stdin);

			//	Load	acceleration	and	deceleration	to	the	axis	selected

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	acceleration,	0xFF);

			CheckError;

			//	Load	velocity	to	the	axis	selected

			err	=	flex_load_rpm(boardID,	axis,	velocity,	0xFF);

			CheckError;

			//	Start	the	Find	Reference	move

			err	=	flex_find_reference(boardID,	axis,	0,	NIMC_FIND_HOME_REFERENCE);

			CheckError;

			//	Wait	for	find	reference	to	complete	on	the	axis	AND

			//	also	check	for	modal	errors	at	the	same	time

			do{

						//	Read	the	current	position	of	axis

						err	=	flex_read_pos_rtn(boardID,	axis,	&position);

						CheckError;

						//	Display	the	current	position	of	axis

						printf("\rAxis	%d	position:	%10d",	axis,	position);

						//	Check	if	the	axis	has	stopped	b/c	of	axis	off	or	following	error

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						//	Check	if	the	reference	has	finished	finding

						err	=	flex_check_reference(boardID,	axis,	0,	&found,	&finding);

						CheckError;

						//	Read	the	Communication	Status	Register	-	check	the

						//	modal	error	bit

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									flex_stop_motion(boardID,NIMC_AXIS1,	NIMC_DECEL_STOP,	0);//Stop	the	Motion

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			//	test	for	find	reference	complete,	following	error,	or	axis	off	status

			}while	(	!(axisStatus	&	(NIMC_FOLLOWING_ERROR_BIT	|	NIMC_AXIS_OFF_BIT))	&&	finding);

			printf("\nAxis	%d	position:	%10d",	axis,	position);

			if	(found)

						printf("\rAxis	found	reference");

			else

						printf("\rAxis	did	not	find	reference");



			printf("\n\nFinished.\n");

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Blending
Blending,	also	called	velocity	blending,	superimposes	the	velocity	profiles
of	two	moves	to	maintain	continuous	motion.	Blending	is	useful	when
continuous	motion	between	concatenated	move	segments	is	important.
Examples	of	some	applications	that	can	use	blending	are	scanning,
welding,	inspection,	and	fluid	dispensing.
Blending	must	occur	on	velocity	profiles	of	two	move	segments,	so	the
end	positions	of	each	move	segment	may	or	may	not	be	reached.	For
example,	if	you	are	blending	two	straight-line	moves	that	form	a	90º
angle,	the	blended	move	must	round	the	corner	to	make	the	move
continuous.	In	this	case,	the	move	never	reaches	the	exact	position
where	the	two	straight	lines	meet,	but	instead	follows	the	rounded	corner,
as	shown	in	the	following	figure.

1		Starting	Position		 3		Corner	Rounded	by	Blending		
2		End	Point		

Motion	controllers	can	perform	blending	between	two	straight-line	moves,
between	two	arc	moves,	or	between	straight-line	and	arc	moves.
Blending	does	not	work	for	reference	and	contoured	moves.
Because	blending	occurs	on	velocity	profiles,	the	effect	of	reaching	the
end	positions	of	the	move	segments	and	the	maximum	velocity	depends
on	the	velocity,	acceleration,	deceleration,	and	jerk	loaded	for	the	two
move	segments.
Because	two	move	segments	are	always	used	while	blending,	it	is	very
important	that	you	wait	for	the	blend	to	complete	before	loading	the	next
move	segment	you	want	to	blend.



Blending	Algorithm
The	following	figure	shows	a	generic	blending	algorithm	applicable	to
both	C/C++	and	LabVIEW	code.



Blend	Factors
There	are	three	ways	you	can	start	the	second	move	in	a	blend:

Superimpose	the	two	moves	by	starting	the	second	move	as	the
first	move	starts	to	decelerate
Start	the	second	move	after	the	first	profile	is	complete
Start	the	second	move	after	the	first	profile	is	complete	and	the
added	delay	time	has	elapsed

Refer	to	Move	Profiles	for	more	information	about	move	profiles.



Superimpose	Two	Moves
Superimposing	two	moves	is	the	most	common	use	of	blending.	In	this
case,	the	motion	controller	tries	to	maintain	continuous	motion	by
superimposing	the	two	move	segments	such	that	the	second	move
segment	starts	its	profile	while	the	first	move	is	decelerating,	as	shown	in
the	following	figure.

1		Blending	Starts		 3		Actual	Velocity		
2		Blend	is	Complete		

The	velocity	during	the	superimposition	depends	on	the	cruising	velocity,
deceleration,	and	jerk	of	the	first	move	segment,	and	the	jerk,
acceleration,	and	cruising	velocity	of	the	second	move	segment.



Blend	after	First	Move	Is	Complete
Blending	moves	after	the	first	move	is	complete	causes	the	first	move
segment	to	come	to	a	complete	stop	before	starting	the	profile	of	the
second	segment,	as	shown	in	the	following	figure.

1		Blending	Starts		 2		Blend	is	Complete		

This	type	of	blending	is	useful	if	you	want	to	start	two	move	segments,
one	after	the	other,	with	no	delay	between	them.



Blend	after	Delay
You	can	blend	two	moves	after	a	delay	at	the	end	of	the	first	move,	as
shown	in	the	following	figure.

1		Blending	Starts		 3		User-Defined	Delay		
2		Blend	is	Complete		

Blending	in	this	manner	is	useful	if	you	want	to	start	two	move	segments
after	a	deterministic	delay.	The	two	move	segments	can	be	either
straight-line	moves	or	arc	moves.



Blended	Move	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
blended	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

8		Start	Motion		 15		Load	Vector
Space	Position		

2		Load	Velocity		 9		Load	Blend	Factor		 16		Blend	Motion		
3		Load
Acceleration/Deceleration		

10		Load	Circular	Arc		 17		Check	Move
Complete	Status		

4		Load
Acceleration/Deceleration		

11		Blend	Motion		 18		Read	per	Axis
Status		

5		Load	S-Curve	Time		 12		Check	Blend
Complete	Status		

19		Read	per	Axis
Status		

6		Set	Operation	Mode		 13		Read	per	Axis
Status		

20		Motion	Error
Handler		

7		Load	Vector	Space
Position		

14		Read	per	Axis
Status		

				



Blended	Move	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	Function

void	main(void){

			u8			boardID;										//	Board	identification	number

			u8			vectorSpace;						//	Vector	space	number

			u16	csr			=	0;									//	Communication	status	register

			u16	axisStatus;								//	Axis	status

			u16	status;

			u16	complete;										//	Move	or	blend	complete	status

			//	Variables	for	modal	error	handling

			u16	commandID;									//	The	commandID	of	the	function

			u16	resourceID;								//	The	resource	ID

			i32	errorCode;									//	Error	code

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1,	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	0);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)			

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	jerk	or	scurve	in	sample	periods

			err	=	flex_load_scurve_time(boardID,	vectorSpace,	1,	0xFF);

			CheckError;



			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Load	the	first	straight	line	segments	to	position	5000,	5000

			err	=	flex_load_vs_pos(boardID,	vectorSpace,	5000,	5000,	0,		0xFF);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			//	Load	Circular	Arc	-	making	a	semicircle	in	the	counter	clockwise	direction

			err	=	flex_load_circular_arc	(boardID,	vectorSpace,	5000/*radius*/,	0.0/*startAngle*/,	180.0/*travelAngle*/,	0xFF);

			CheckError;

			//	Blend	the	move

			err	=	flex_blend(boardID,	vectorSpace,	0);

			CheckError;

			//	Wait	for	blend	to	complete	before	loading	the	next	segment

			do

			{

						axisStatus	=	0;

						//	Check	the	blend	complete	status

						err	=	flex_check_blend_complete_status(boardID,	vectorSpace,	0,	&complete);

						CheckError;									

						

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	2

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}



						Sleep(50);	//	Check	every	50	ms

			}while	(!complete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			//	Load	the	final	straightline	segments	to	position	0,	0

			err	=	flex_load_vs_pos(boardID,	vectorSpace,	0,	0,	0,		0xFF);

			CheckError;

			//	Wait	for	move	to	complete	as	this	is	the	final	segment

			do

			{

						axisStatus	=	0;

						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&complete);

						CheckError

						

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Check	the	following	error/axis	off	status	for	axis	2

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						Sleep(50);	//	Check	every	50	ms

			}while	(!complete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			



			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Electronic	Gearing	and	Camming
Use	electronic	gearing	or	camming	to	synchronize	the	movement	of	one
or	more	slave	axes	to	the	movement	of	a	master	device,	which	can	be	an
encoder,	ADC,	or	the	trajectory	of	another	axis.	The	movement	of	the
slave	axes	may	be	at	a	higher	or	lower	gear	ratio	than	the	master.	For
example,	every	turn	of	the	master	axis	may	cause	a	slave	axis	to	turn
twice.



Gearing
Electronic	gearing	allows	one	slave	motor	to	be	driven	in	proportion	to	a
master	motor	or	feedback	sensor,	such	as	an	encoder	or	torque	(analog)
sensor.
As	the	slave	follows	the	master	position	at	a	constant	ratio,	the	effect	is
similar	to	that	of	two	axes	mechanically	geared.
Electronic	gearing	has	several	advantages	over	mechanical	gears.	The
most	notable	is	flexibility	because	you	can	change	gear	ratios	on-the-fly.
The	other	major	advantage	to	electronic	gearing	is	that	you	can
superimpose	a	move	over	a	geared	axis.	The	superimposed	move	is
added	to	the	geared	profile	of	the	slave	axis,	which	allows	the	slave	axis
to	be	synchronized	on-the-fly.
An	axis	can	be	geared	to	another	axis,	or	to	an	encoder	or	ADC.	When
you	gear	an	axis	to	another	axis,	the	slave	axis	follows	the	trajectory
generation	of	the	master	axis.	For	example,	if	you	manually	move	the
master	axis,	the	slave	axis	does	not	move	because	the	trajectory
generator	of	the	master	axis	is	not	active.
When	you	gear	an	axis	to	an	encoder,	or	feedback	device,	the	slave	axis
follows	the	feedback	generated	by	the	encoder.	If	the	encoder	detects
movement,	the	slave	moves	proportionally	to	information	returned	by	the
encoder.	For	example,	if	you	twist	the	master	axis	connected	to	the
encoder,	the	slave	axis	also	turns	because	it	is	using	the	position
information	gathered	by	the	encoder.
When	an	axis	is	geared	to	an	ADC,	the	slave	axis	follows	the	binary
value	of	the	ADC	as	if	it	were	a	position.	For	example,	if	the	binary	code
for	2	V	is	6553,	the	slave	axis	tracks	to	this	position.



Electronic	Gearing	Algorithm
The	following	figure	shows	a	generic	electronic	gearing	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.



Absolute	versus	Relative	Gearing
The	gear	ratio	is	used	to	determine	how	far	the	slave	axis	must	move	in
proportion	to	the	master	when	gearing	is	enabled.	The	gear	ratio	can	be
absolute	or	relative.
Slave	axis	move	=	Master	axis	position	×	Gear	ratio

Relative	Gearing
Relative	gearing	allows	you	to	change	the	gear	ratio	on-the-fly.	The
master	move	is	calculated	based	on	the	master	reference	position,	which
is	updated	when	gearing	is	enabled	and	is	updated	each	time	a	new	gear
ratio	is	loaded.	For	example,	if	you	have	a	gearing	ratio	of	2:1
(slave:master),	the	slave	moves	20	counts	when	the	master	device
moves	10	counts.

Absolute	Gearing
Absolute	gearing	behaves	similarly	to	relative	gearing	in	that	when
gearing	is	enabled,	the	slave	axis	follows	the	master	axis	movement	as	it
is	defined	by	the	gear	ratio.	The	difference	between	relative	and	absolute
gearing	is	that	the	reference	position	calculated	for	the	master	axis	is
updated	only	when	gearing	is	enabled.	This	difference	is	apparent	when
the	gear	ratio	is	updated	on-the-fly.
For	example,	if	the	gear	ratio	is	2:1,	the	current	master	position	is	1010,
the	current	slave	position	is	3020,	and	the	gear	ratio	is	changed	to	3:1,
the	slave	axis	jumps	from	3020	to	3030	but	the	master	position	remains
the	same.



Changing	a	gear	ratio	on-the-fly	during	absolute	gearing	allows	you	to
quickly	synchronize	the	slave	axis	with	the	master	axis.

Note		When	the	gear	ratio	is	changed	on-the-fly,	the	slave	axis
moves	at	full	torque	to	the	new	position.



Electronic	Gearing	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
electronic	gearing	using	an	encoder	as	the	gear	master.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Gear
Master		

5		Load	Velocity		 9		Start	Motion		

2		Load	Gear	Ratio		 6		Load
Acceleration/Deceleration		

10		Wait	for	Move
Complete		

3		Enable	Gearing
Single	Axis		

7		Set	Operation	Mode		 11		Enable	Gearing
Single	Axis		

4		Wait		 8		Load	Target	Position		 12		Motion	Error
Handler		



Electronic	Gearing	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8	boardID;													//	Board	identification	number

			u8	slaveAxis;											//	Slave	axis	number

			u8	master;														//	Gear	master

			u16	csr			=	0;										//	Communication	status	register

			u16	moveComplete;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			slaveAxis	=	1;

			//	Master	is	encoder	4

			master	=	NIMC_ENCODER4;

			////////////////////////////////

			//--------------------------------------------------------

			//	Set	up	the	gearing	configuration	for	the	slave	axis

			//--------------------------------------------------------

			//	Configure	Gear	Master

			err	=	flex_config_gear_master(boardID,	slaveAxis,	master);

			CheckError;

			

			//			Load	Gear	Ratio	3:2

			err	=		flex_load_gear_ratio(boardID,	slaveAxis,	NIMC_RELATIVE_GEARING,

																														3/*	ratioNumerator*/,	2/*	ratioDenominator*/,	0xFF);

			CheckError;

			//--------------------------------------------------------

			//	Enable	Gearing	on	slave	axis

			//--------------------------------------------------------

			err	=	flex_enable_gearing_single_axis	(boardID,	slaveAxis,	NIMC_TRUE);

			CheckError;



			//	Wait	for	5	seconds

			Sleep(5000);

			

			//--------------------------------------------------------

			//	Set	up	the	move	parameters	for	the	superimposed	move

			//--------------------------------------------------------

			

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	slaveAxis,	NIMC_RELATIVE_TO_CAPTURE);

			CheckError;

			//	Load	Velocity	in	counts/s

			err	=	flex_load_velocity(boardID,	slaveAxis,	10000,	0xFF);

			CheckError;

			//	Load	Acceleration	and	Deceleration	in	counts.sec^2

			err	=	flex_load_acceleration(boardID,	slaveAxis,	NIMC_BOTH,	100000,	0xFF);

			CheckError;

			//	Load	the	target	position	for	the	registration	(superimposed)	move

			err	=	flex_load_target_pos(boardID,	slaveAxis,	5000,	0xFF);

			CheckError;

			//	Start	registration	move	on	the	slave	

			err	=	flex_start(boardID,	slaveAxis,	0);

			CheckError;

			err	=	flex_wait_for_move_complete	(boardID,	slaveAxis,	0,	

																																						1000/*ms	timeout*/,	20/*ms	pollInterval*/,	&moveComplete);

			CheckError;

			//--------------------------------------------------------

			//	Disable	Gearing	on	slave	axis

			//--------------------------------------------------------

			err	=	flex_enable_gearing_single_axis	(boardID,	slaveAxis,	NIMC_FALSE);

			CheckError;

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{



									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Camming
Electronic	camming	operates	similarly	to	electronic	gearing	in	that	the
move	distance	of	an	axis	is	proportional	to	the	move	distance	of	its
master	device.	Camming	differs	from	gearing	in	how	the	master/slave
ratio	is	handled	by	the	motion	controller.	Gearing	is	used	in	applications
where	a	constant	gear	value	creates	a	linear	slave	position	profile,	as
shown.

Camming	creates	a	more	flexible	profile	by	using	more	master/slave
ratios.	These	ratios	are	handled	automatically	by	the	motion	controller,
allowing	precise	switching	of	the	gear	ratios,	as	shown	in	the	following
figure.	Camming	is	used	in	applications	where	the	slave	axis	follows	a
non-linear	profile	from	a	master	device.



Electronic	Camming	Algorithm
The	following	figure	shows	a	generic	electronic	gearing	algorithm
applicable	to	both	C/C++	and	LabVIEW	code.	Similar	to	gearing,	in	a
camming	application,	a	slave	axis	can	perform	any	move	when	camming
is	enabled.	The	move	profile	is	superimposed	over	the	camming	profile.



Camming	Application	Example
An	example	of	a	motion	control	system	that	can	benefit	from	the	flexibility
of	electronic	camming	is	welding	parts	as	they	travel	on	a	conveyor	belt.
The	following	figure	shows	that	the	welding	point	moves	to	the	first
position,	and	then	welds	the	material	for	a	couple	of	seconds.	Because
the	conveyor	belt	keeps	moving	at	a	constant	rate,	the	welding	point
must	follow	the	material	at	the	same	speed	as	the	conveyor	belt	during
the	weld	process.	When	the	welding	process	is	finished	for	one	item,	the
welding	point	must	quickly	return	to	its	initial	position	and	the	process
repeats.

1		Conveyor	belt		
2		Movement	of	the	welder	as	it	follows	the	object,
			and	then	returns	to	the	initial	position		
3		Welding	point		

In	this	application,	the	master	device	is	the	position	encoder	attached	to
the	conveyor	belt,	and	the	slave	axis	is	the	actuator	that	moves	the
welding	point.	The	slave	axis	repeatedly	performs	a	two-segment
movement:

1.	 First,	it	follows	the	material	with	the	same	speed	as	the	conveyor
belt.

2.	 Next,	it	returns	to	the	initial	position	as	the	next	material
approaches.

Each	segment	of	the	move	is	represented	with	a	gear	ratio	that	dictates



how	fast	and	in	which	direction	the	welding	point	is	moving	relative	to	the
conveyor	belt.
This	application	requires	the	slave	axis	to	switch	from	one	ratio	to	the
other	at	the	correct	master	position,	otherwise	the	welding	process	is	not
repeatable.	If	this	application	used	gearing	instead	of	camming,	the
latency,	or	delay,	of	loading	a	new	gear	ratio	might	cause	an
accumulation	of	position	errors.
When	a	camming	operation	is	active,	the	slave	axis	follows	a	profile	that
is	established	using	a	list	of	master	and	slave	positions	pairs,	called	the
camming	table	and	is	loaded	into	a	buffer	for	use	during	a	camming
operation.	An	example	of	a	camming	table	is	shown	below.
The	following	figure	shows	that,	in	the	welding	example	defined
previously,	the	conveyor	belt	is	moving	at	1,000	counts/s	and	the	parts	to
be	welded	are	6,000	counts	apart.	To	weld	the	part,	the	welding	point
must	follow	the	part	down	the	conveyor	belt	for	2	seconds.

In	this	welding	application,	the	slave	axis	must	follow	the	part	with	the
same	velocity	as	the	conveyor	belt	while	welding	is	in	progress.	Because
it	takes	two	seconds	to	weld	each	part,	the	welding	point	and	conveyor
belt	have	both	moved	2,000	counts	by	the	time	the	welding	is	complete.
This	part	of	the	welding	application	creates	the	first	move	segment.
For	the	second	move	segment,	the	welding	point	must	return	to	its
original	position	so	that	it	can	weld	the	next	part	on	the	conveyor	belt.	To
move	the	welding	point	to	its	original	position	at	the	same	time	that	the
next	part	is	in	the	correct	position	on	the	conveyor	belt,	the	welding	point
must	travel	2,000	counts	in	the	opposite	direction	of	the	conveyor	belt	at



half	the	speed	that	the	conveyor	belt	is	traveling	at.	The	following	figure
shows	the	move	profile	of	the	first	and	second	move	segments.

The	following	table	shows	the	camming	table	that	corresponds	to	the
move	profile	used	in	this	example.

Time
(seconds)

Master	Position
(counts)

Slave	Position
(counts) Ratio*

0 0 0 	
2 2000 2000 1
4 4000 1000 0.5
6 6000 0 0.5
*	Ratio	=	ΔSlaveDistance	/	ΔMasterDistance

The	camming	cycle	is	6,000	counts	and	is	divided	into	equal	length
segments.

Tip		Because	the	camming	cycle	is	6,000	counts,	the	master	cycle
must	also	be	6,000	counts.

Each	row	of	data	defines	a	gear	ratio.	The	camming	profile	is	repeated
after	a	camming	cycle	is	completed.	The	master	position	is	always
interpreted	inside	the	modulus	defined	by	the	camming	cycle.

For	example,	initially,	the	master	axis
moves	from	0	to	1000.	The	gear	ratio
used	for	this	move	is	1:1	because	the
master	position	is	in	the	0	to	2000
interval.	With	a	gear	ratio	of	1:1,	the
slave	axis	moves	at	the	same	speed
as	the	master	device	to	position	1000.



As	shown,	the	master	position	in	this
interval	is	inside	the	modulus.

If	the	master	axis	moves	to	position
2000,	the	gear	ratio	does	not	change
because	the	current	master	position
is	still	inside	the	0	to	2000	interval.

When	the	master	axis	moves	to
position	4,000,	the	gear	ratio	changes
to	​0.5.	The	slave	axis	travels	half	the
distance	that	the	master	axis	travels,
and	it	travels	in	the	opposite	direction.
When	the	master	reaches	position
6000,	the	slave	axis	moves	back	the
original	position,	and	the	camming
cycle	begins	again.



Slave	Offset
In	some	camming	applications,	the	slave	axis	might	begin	and	end	the
camming	cycle	at	different	positions,	as	shown	in	the	following	table.

Master	Position	(counts) Slave	Position	(counts)
0 0
2000 2000
4000 1000
6000 500

The	following	figure	shows	that,	after	three	camming	cycles,	the	slave
axis	end	position	is	500	counts	away	from	the	starting	position	(0)	with
the	slave	offset,	and	that	without	the	slave	offset,	the	slave	axis	end
position	is	1500	counts	away	from	the	starting	position	(0).
With	a	slave	offset	of	500,	the	slave	axis	traverses	the	positions	specified
in	the	camming	table,	but	it	does	not	maintain	the	camming	ratio.



Master	Offset
If	the	material	and	welding	point	are	not	initially	aligned,	as	shown,	the
master	offset	must	be	applied	to	consider	the	position	difference.

Without	the	master	offset,	the	master	device	position	is	already	inside	the
first	interval	as	soon	as	the	first	material	passes	the	welding	point.
The	following	figure	shows	that	the	master	cycle	intervals	are	offset	by	50
counts.	The	master	interval	is	shifted	from	0,	2,000,	4,000,	and	6,000	to
50,	2,050,	4,050,	and	6,050.

The	following	figure	shows	the	camming	profile	used	for	the	application
portrayed	in	the	previous	figures.





Electronic	Camming	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
electronic	camming.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Camming
Master		

6		Set	Operation
Mode		

11		Enable	Camming
Single	Axis		

2		Configure	Buffer		 7		Load	Move
Constraint		

12		Clear	Buffer		

3		Write	Buffer		 8		Load	Target
Position		

13		Motion	Error
Handler		

4		Enable	Camming
Single	Axis		

9		Start	Motion		 				

5		Wait	in	a	Sequence
Structure		

10		Wait	for	Move
Complete		

				



Electronic	Camming	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-Motion
CD	for	files	that	are	complete	and	compile	as	is.

//////////////////////////////////////////////////////////////////////

//	Main	Function

void	main(void)

{

			//	Locals

			u8	boardID;													//	Board	ID	as	assigned	by	MAX

			f64	bufferInterval	=	0;	//	Ignored

			//	Master	axis	information		

			u8	masterAxis;										//	Master	axis	ID

			i32	targetPos;										//	Position	to	move	to

			f64	velocity;											//	Velocity	limit	for	this	move

			f64	camCycle	=	70000;			//	Position	cycle	to	repeat	the	camming	process

			NIMC_DATA	data;									//	Generic	data	structure

			i32	masterPosition;					//	Current	master	position

			u16	masterStatus;							//	Current	master	status

			//	Slave	axis	information

			u8	slaveAxis;											//	Slave	axis	ID

			u8	buffer;														//	Buffer	to	contain	the	cam	table

			i32	positionArr[]	=	{0,	10000,	40000,	45000,	45000,	40000,	10000,	0};	//	

			u32	positionSize	=	sizeof(positionArr)	/	sizeof(i32);			//	Number	of	positions	in	the	array

			i32	slavePosition;						//	Current	slave	position

			//	For	error	handling

			u16	csr;																//	Communication	status

			u16	commandID;										//	Command	ID	that	causes	the	error

			u16	resourceID;									//	Resource	ID	that	is	set	on	the	failed	command

			i32	errorCode;										//	Error	code	from	the	controller

			i32	scanVar;												//	Scan	variable	to	read	in	values	not	supported

																											//	by	the	scanf	function

			//	Get	the	board	ID

			printf("Enter	the	board	ID:	");

			scanf("%d",	&scanVar);

			boardID=(u8)scanVar;

			//	Get	master	axis	information

			printf("\nEnter	information	about	the	master	axis...	\n");

			printf("Axis	ID:	");

			scanf("%d",	&scanVar);

			masterAxis=(u8)scanVar;



			printf("Target	position:	");

			scanf("%d",	&targetPos);

			printf("Velocity	limit:	");

			scanf("%lf",	&velocity);

			//	Get	the	slave	Axis

			printf("\nEnter	information	about	the	slave	axis...	\n");

			printf("Axis	ID:	");

			scanf("%d",	&scanVar);

			slaveAxis=(u8)scanVar;

			printf("Buffer	ID:	");

			scanf("%d",	&scanVar);

			buffer=(u8)scanVar;

			//	Configure	the	cam	master	&	master	cycle

			err	=	flex_configure_camming_master(boardID,	slaveAxis,	masterAxis,	camCycle);

			CheckError;

			//	Configure	the	cam	table

			err	=	flex_configure_buffer(boardID,	buffer,	slaveAxis,	

																															NIMC_CAMMING_POSITION,

																															positionSize,	positionSize,	

																															TRUE,	bufferInterval,	&bufferInterval);

			CheckError;

			//	Write	the	data	to	the	buffer

			err	=	flex_write_buffer(boardID,	buffer,	positionSize,	

																											NIMC_REGENERATION_NO_CHANGE,	

																											positionArr,	0xFF);

			CheckError;

			//	Enable	camming	immediately

			err	=	flex_enable_camming_single_axis(boardID,	slaveAxis,	TRUE,	-1.0);

			CheckError;

			//	Set	to	absolute	mode

			err	=	flex_set_op_mode(boardID,	masterAxis,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Set	the	maximum	velocity

			data.doubleData	=	velocity;

			err	=	flex_load_move_constraint(boardID,	masterAxis,	

																																			TnimcMoveConstraintVelocity,	&data);

			CheckError;

			//	Set	the	target	position

			err	=	flex_load_target_pos(boardID,	masterAxis,	targetPos,	0xFF);

			CheckError;



			//	Start	the	master	axis	movement

			err	=	flex_start(boardID,	masterAxis,	0x0);

			CheckError;

			//	Keep	running	until	the	master	completes	or	there's	a	modal	error

			do

			{

						Sleep	(100);

						//	Get	both	the	master	and	the	slave	current	positions.

						err	=	flex_read_pos_rtn(boardID,	masterAxis,	&masterPosition);

						CheckError;

						err	=	flex_read_pos_rtn(boardID,	slaveAxis,	&slavePosition);

						CheckError;

						//	Display	the	master	and	the	slave	current	positions.

						printf("Axis	%d	(master)	position	is	%d,	Axis	%d	(slave)	position	is	%d.\r",	

									masterAxis,	masterPosition,	slaveAxis,	slavePosition);

						

						//	Read	current	master	trajectory	status

						err	=	flex_read_axis_status_rtn(boardID,	masterAxis,	&masterStatus);

						CheckError;

						//	Check	for	modal	error

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

			}	while	(!(masterStatus	&	NIMC_MOVE_COMPLETE_BIT)	&&	

												!(csr	&	NIMC_MODAL_ERROR_MSG));

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//	NIMCCATCHTHIS:

			//	Disable	camming			

			flex_enable_camming_single_axis(boardID,	slaveAxis,	FALSE,	-1.0);

			//	Clear	(delete)	the	buffer

			flex_clear_buffer(boardID,	buffer);

			//	Make	sure	the	master	is	not	running

			flex_stop(boardID,	masterAxis,	0x0);	

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal



									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Acquiring	Time-Sampled	Position	and	Velocity
Data
NI	motion	controllers	can	acquire	a	buffer	of	position	and	velocity	data
that	is	firmware-timed.	After	you	command	the	motion	controller	to
acquire	position	and	velocity	data,	a	separate	acquire	data	task	is
created	in	the	real-time	operating	system	that	reads	time-sampled
position	and	velocity	data	into	a	FIFO	buffer	on	the	motion	controller.	You
can	read	data	in	from	this	buffer	asynchronously	from	the	host	computer,
as	shown	in	the	following	figure.

The	acquire	data	task	has	higher	priority	than	any	onboard	programs	or
housekeeping	tasks,	but	it	has	a	lower	priority	than	the	I/O	reaction	and
host	communication	tasks.	To	achieve	the	best	possible	performance,
keep	host	communications	to	a	minimum	when	acquiring	data.
The	FIFO	buffer	is	of	a	fixed	size	that	can	accommodate	4,096	samples
for	one	axis.	One	sample	consists	of	position	data,	in	counts	or	steps,
and	velocity	data,	in	counts/s	or	steps/s.	As	you	increase	the	number	of
axes	from	which	you	are	acquiring	data,	you	also	decrease	the	total
number	of	samples	you	can	acquire	per	axis.	For	example,	you	can
acquire	up	to	1,024	samples	per	axis	for	four	axes.	You	also	can	vary	the
time	period	between	acquired	samples	from	3	ms	to	65,535	ms.



Acquire	Data	Algorithm
The	following	figure	shows	a	generic	algorithm	applicable	to	both	C/C++
and	LabVIEW	code.

The	data	must	be	read	one	sample	at	a	time.	A	four-axis	sample	uses	the
following	pattern	for	returning	the	data.

Axis	1	position
Axis	1	velocity

Axis	2	position
Axis	2	velocity

Axis	3	position
Axis	3	velocity

Axis	4	position
Axis	4	velocity

If	you	request	1,024	samples,	you	must	read	each	of	the	1,024	samples
individually.



Acquire	Data	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	acquires
data	for	two	axes,	200	samples,	and	three	milliseconds	apart.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Acquire	Trajectory	Data		 3		Motion	Error	Handler		
2		Read	Trajectory	Data		



Acquire	Data	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;																	//	Board	identification	number

			u16	csr			=	0;																//	Communication	status	register

			i32	i;

			u16	axisMap;																		//	Bitmap	of	axes	for	which	data	is	requested

			i32	axis1Positions[200];						//	Array	to	store	the	positions	(1)

			i32	axis1Velocities[200];					//	Array	to	store	velocities			(1)

			i32	axis2Positions[200];						//	Array	to	store	the	positions	(2)

			i32	axis2Velocities[200];					//	Array	to	store	velocities			(2)

			u16	numSamples	=	200;									//	Number	of	samples

			i32	returnData[4];												//	Need	size	of	4	for	2	axes	worth	of	data

			//	Variables	for	modal	error	handling

			u16	commandID;																//	The	commandID	of	the	function

			u16	resourceID;															//	The	resource	ID

			i32	errorCode;																//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Axes	whose	data	needs	to	be	acquired

			axisMap	=	((1<<1)	|	(1<<2));	//	Axis	1	and	axis	2

			////////////////////////////////

			err	=		flex_acquire_trajectory_data(boardID,	axisMap,	numSamples,	3/*	ms	time	period*/);

			CheckError;

			

			for(i=0;	i<numSamples;	i++){

									

						Sleep	(10);	//	Check	every	10	ms	and	give	time	for	the	data

																		//	to	be	copied	to	onboard	FIFO

			

						//	Read	the	trajectory	data

						err	=		flex_read_trajectory_data_rtn(boardID,	returnData);

						CheckError;

						



						//	Two	axes	worth	of	data	is	read	every	sample

						axis1Positions[i]	=	returnData[0];

						axis1Velocities[i]	=	returnData[1];

						axis2Positions[i]	=	returnData[2];

						axis2Velocities[i]	=	returnData[3];

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Synchronization
You	can	synchronize	NI	motion	controllers	with	NI	data	and	image
acquisition	devices	using	breakpoints	and	high-speed	captures.	The
following	figure	illustrates	an	expanded	view	of	the	topics	covered	in	this
section.

*	Breakpoints	cause	a	digital	output	to	change	state	when	a
specified	position	is	reached	by	an	encoder.	Breakpoints	are
not	supported	by	the	NI	SoftMotion	Controller.
**	A	high-speed	capture	records	the	position	of	an	encoder
when	a	digital	line	is	used	as	a	trigger.	High-speed	captures
are	not	supported	by	the	NI	SoftMotion	Controller.

Note		If	you	are	using	RTSI	to	connect	your	motion	controller	to	a
National	Instruments	data	or	image	acquisition	device,	be	aware
that	the	NI	SoftMotion	Controller	does	not	support	RTSI.

Timing	and	triggering	with	NI-Motion	is	always	related	to	either	position	or
velocity.	Synchronizing	position	and	velocity	information	with	the	external
world	allows	you	to	coordinate	measurements	with	moves.	You	can
program	the	motion	controller	to	trigger	another	device	at	specified
positions	using	RTSI	or	a	pin	on	the	Motion	I/O	connector.	This



functionality	is	called	breakpoints,	which	are	divided	into	absolute
breakpoints,	relative	position	breakpoints,	and	periodically	occurring
breakpoints.
In	some	cases,	it	may	be	necessary	to	synchronize	position	with	some
measurement	occurring	external	to	the	motion	controller.	For	example,
you	might	be	aligning	two	fiber	optic	cables,	in	which	case	the	maximum
optical	power	needs	to	correspond	with	the	alignment	position.	To	align
the	fibers,	the	external	device	that	is	recording	the	optical	power	must
trigger	the	motion	controller	so	that	positions	and	optical	power
measurements	can	be	synchronized	and	analyzed.	This	functionality	is
known	as	high-speed	capture	or	trigger	inputs.	The	motion	controller	can
be	triggered	by	another	device	using	RTSI	or	externally	using	a	pin	on
the	Motion	I/O	connector.	When	triggered,	the	motion	controller	can	latch
the	current	position	of	the	encoder,	which	can	be	read	and	recorded.
The	following	table	shows	the	availability	of	breakpoint	modes	on	each	NI
motion	controller.

Breakpoint	Mode NI	7350 NI	7340,	NI	7330,	and	NI	7390
Absolute* Y Y

Relative* Y Y

Periodic Y N
Modulus N Y
Buffered Y N
*	Available	in	buffered	and	single	operation	for	NI	7350	and	in	single	operation	only	for	all	other
controllers



Absolute	Breakpoints
Absolute	position	breakpoints	allow	you	to	trigger	external	activities	as
the	motors	reach	specified	positions.	For	example,	if	you	need	to	use	an
image	acquisition	device	to	capture	an	image	from	a	certain	position
while	the	device	under	test	is	in	continuous	motion,	the	motion	controller
must	be	able	to	trigger	the	image	acquisition	device	as	it	reaches	those
positions.	The	current	position	is	continuously	compared	against	the
specified	breakpoint	position	by	the	encoder	circuitry	to	produce	a	latency
of	less	than	100	ns.
After	a	breakpoint	triggers,	you	must	re-enable	it	for	the	breakpoint	to
work	again.	In	certain	cases,	such	as	buffered	and	periodic	breakpoints,
the	motion	controller	automatically	re-enables	the	breakpoints.
The	implementation	for	absolute	breakpoints	is	divided	into	the	buffered
breakpoint	and	single	position	breakpoint	methods.

Note		All	breakpoints	can	be	affected	by	jitter	in	the	motion	control
system.	For	example,	if	you	have	a	very	small	breakpoint	window,
the	jitter	in	the	motion	control	system	could	cause	the	position	to
change	enough	to	reach	the	breakpoint	when	a	breakpoint	is	not
intended.	Increase	the	size	of	the	breakpoint	window	to
compensate	for	system	jitter.



Buffered	Breakpoints	(NI	7350	only)
Instead	of	enabling	breakpoints	in	your	application	at	the	software	level,
you	can	create	a	buffer	of	breakpoints	that	you	can	pre-load	into	the
motion	controller.	The	motion	controller	automatically	arms	the	next
breakpoint	in	the	buffer	when	the	preceding	breakpoint	triggers.
Therefore,	enabling	breakpoints	occurs	on	a	firmware-timed	basis,	which
enables	you	to	use	a	higher	bandwidth.



Buffered	Breakpoint	Algorithm
The	following	shows	the	basic	algorithm	for	implementing	buffered
breakpoints	applicable	to	both	C/C++	and	LabVIEW	code.



Buffered	Breakpoint	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	complete	a
blended	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Buffer		 4		Enable	Breakpoint
Output		

6		Clear	Buffer		

2		Write	Buffer		 5		Check	Buffer		 7		Motion	Error
Handler		

3		Configure
Breakpoint		

				



Buffered	Breakpoint	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main	(void)

{

			//	Resource	variables

			u8	boardID	=	1;											//	Board	identification	number

			u8	axis	=	NIMC_AXIS1;					//	Axis	number

			u8	buffer	=	1;												//	Buffer	number

			//	Modal	error	handling	variables

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			u16	csr	=	0;														//	Communication	status

			//	Buffer	resources

			i32	breakpointPositions[]	=	{1000,	1100,	1200,	1300,	1400,	1500,	1600};			

			u16	numberOfPoints	=	7;												//	Number	of	breakpoints

			f64	actualInterval;																//	Required	in	the	function	call	but	not	being	used

			f64	requestedInterval	=	10.0;						//	Required	in	the	function	call	but	not	being	used			

			u32	backLog;																							//	Number	of	space	available	in	buffer

			u16	bufferState;																			//	Buffer	state

			u32	pointsDone;																				//	Number	of	breakpoints	done	or	consumed

			//	Configure	the	buffer	for	buffered	breakpoint

			err	=	flex_configure_buffer(boardID,	buffer,			axis,	NIMC_BREAKPOINT_DATA,

																															numberOfPoints,	numberOfPoints,			NIMC_TRUE,

																															requestedInterval,	&actualInterval);									

			CheckError;

			//	Write	the	breakpoint	position	to	the	buffer

			err	=	flex_write_buffer(boardID,	buffer,	numberOfPoints,

																											NIMC_REGENERATION_NO_CHANGE,	breakpointPositions,	0xFF);

			CheckError;

			//	Configure	the	breakpoint	to	be	buffered	breakpoint

			err	=	flex_configure_breakpoint(boardID,	axis,	NIMC_ABSOLUTE_BREAKPOINT,	

																																			NIMC_PULSE_BREAKPOINT,	NIMC_OPERATION_BUFFERED);

			CheckError;									

			//	Enable	the	breakpoint

			err	=	flex_enable_breakpoint(boardID,	axis,	NIMC_TRUE);

			CheckError;



			//	Poll	the	status	of	the	buffer,	if	you	more	breakpoint	positions	

			//	to	write,	insert	flex_write_buffer	call	here.

			do	

			{

						//	Check	the	buffer	status

						err	=	flex_check_buffer_rtn(boardID,	buffer,	

																																		&backLog,	&bufferState,	&pointsDone);

						CheckError;

			

						Sleep(50);

			}	while	((pointsDone	!=	numberOfPoints)	||

												(bufferState	!=	NIMC_BUFFER_DONE));

			//	Clear	the	buffer

			err	=	flex_clear_buffer(boardID,	buffer);

			CheckError;

			return;

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Single	Position	Breakpoints
Single	position	breakpoints	execute	one	breakpoint	per	enabling.



Single	Position	Breakpoint	Algorithm
The	following	figures	shows	the	basic	algorithm	for	implementing	single
position	breakpoints	applicable	to	both	C/C++	and	LabVIEW	code.



Single	Position	Breakpoint	LabVIEW	Diagram
The	following	block	diagrams	demonstrate	using	NI-Motion	to	program	a
single	position	breakpoint,	both	with	and	without	RTSI.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure
Breakpoint		

3		Enable	Breakpoint
Output		

5		Motion	Error
Handler		

2		Load	Breakpoint
Position		

4		Read	per	Axis	Status		 				

The	following	figure	shows	how	to	route	this	breakpoint	using	RTSI.

1		Select	Signal		 3		Load	Breakpoint
Position		

5		Read	per	Axis
Status		

2		Configure
Breakpoint		

4		Enable	Breakpoint
Output		

6		Motion	Error
Handler		

After	the	breakpoint	is	routed	through	RTSI,	the	trigger	appears	on	both



the	RTSI	line	and	the	breakpoint	line	on	the	Motion	I/O	connector.



Single	Position	Breakpoint	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-Motion
CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;												//	Board	identification	number

			u8			axis;															//	Axis	number

			u16	csr			=	0;											//	Communication	status	register

			u16	axisStatus;										//	Axis	status

			i32	breakpointPosition[3]	=	{10000,	15000,	20000};

			i32	i;

			//	Variables	for	modal	error	handling

			u16	commandID;											//	The	commandID	of	the	function

			u16	resourceID;										//	The	resource	ID

			i32	errorCode;											//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Route	breakpoint	1	to	RTSI	line	1

			err	=	flex_select_signal	(boardID,	NIMC_RTSI1	/*destination*/,	NIMC_BREAKPOINT1/*source*/);

			CheckError;

			//	Configure	Breakpoint

			err	=	flex_configure_breakpoint(boardID,	axis,	NIMC_ABSOLUTE_BREAKPOINT,	NIMC_SET_BREAKPOINT,	0);

			CheckError;

	

			for(i=0;	i<3;	i++){

						//	Load	Breakpoint	Position	-	position	at	which	breakpoint	should	occur

						err	=	flex_load_pos_bp(boardID,	axis,	breakpointPosition[i],	0xFF);

						CheckError;

						//	Enable	the	breakpoint	on	axis	1

						err	=	flex_enable_breakpoint(boardID,	axis,	NIMC_TRUE);



						CheckError;

						do

						{

									//	Check	the	breakpoint	status

									err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

									CheckError;

															

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									

									//	Check	for	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep	(10);	//	Check	every	10	ms

						}while	(!(axisStatus	&	NIMC_POS_BREAKPOINT_BIT));//	Wait	for	breakpoint	to	be	triggered

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Relative	Position	Breakpoints
Relative	position	breakpoints	trigger	events	based	on	a	change	in
position	relative	to	the	position	at	which	the	breakpoint	was	enabled.
Instead	of	keeping	track	of	absolute	positions	and	the	current	position,
you	can	use	relative	breakpoints	to	specify	the	breakpoint	relative	to	the
position	where	the	breakpoint	is	enabled.
For	example,	if	you	are	creating	a	motion	control	system	to	control	the
two-dimensional	movement	of	a	microscope,	you	might	use	relative
position	breakpoints	to	move	the	microscope	a	specific	distance	in	a
direction,	and	then	hit	a	breakpoint	that	triggers	a	camera	snap.	The
relative	breakpoint	is	useful	in	this	example	because	the	current	position
is	not	important.	The	application	must	move	the	axis	a	specific	number	of
counts	from	wherever	it	is,	and	then	generate	a	breakpoint.

Note		All	breakpoints	can	be	affected	by	jitter	in	the	motion	control
system.	For	example,	if	you	have	a	very	small	breakpoint	window,
the	jitter	in	the	motion	control	system	could	cause	the	position	to
change	enough	to	reach	the	breakpoint	when	a	breakpoint	is	not
intended.	Increase	the	size	of	the	breakpoint	window	to
compensate	for	system	jitter.



Relative	Position	Breakpoints	Algorithm
The	following	figure	shows	the	basic	algorithm	for	relative	breakpoints
applicable	to	both	C/C++	and	LabVIEW	code.

Notice	that	relative	breakpoints	are	not	ideal	for	periodic	breakpoints.
There	is	a	latency	between	the	time	a	breakpoint	generates	and	is	re-
enabled.	If	the	axis	is	moving	at	sufficient	velocity,	the	breakpoint	re-
enables	only	after	the	axis	has	moved	slightly.	Because	a	relative
breakpoint	generates	relative	to	the	position	the	axis	was	in	when	the
breakpoint	was	enabled,	the	latency	between	generation	and	re-enabling
can	cause	additional	counts	between	breakpoints.
For	example,	the	actual	breakpoints	might	occur	at	positions	5,000;
10,003;	15,006;	and	20,012.	In	this	example,	the	axis	moves	three	counts
between	a	breakpoint	and	the	subsequent	re-enabling.	For	exact
distances	between	breakpoints	at	high	speeds,	use	Buffered	Breakpoints
(NI	7350	only)	or	Periodically	Occurring	Breakpoints.



Relative	Position	Breakpoints	LabVIEW	Diagram
In	this	example,	a	breakpoint	generates	and	then	is	re-enabled	5,000
counts	from	where	the	move	starts	using	RTSI.	The	following	code
examples	are	designed	to	illustrate	the	relative	breakpoint	algorithm	only.
These	examples	are	not	complete.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Select	Signal		 3		Load	Breakpoint
Position		

5		Read	per	Axis
Status		

2		Configure
Breakpoint		

4		Enable	Breakpoint
Output		

6		Motion	Error
Handler		



Relative	Position	Breakpoints	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;														//	Board	identification	number

			u8			axis;																	//	Axis	number

			u16	csr			=	0;													//	Communication	status	register

			u16	axisStatus;												//	Axis	status

			i32	breakpointPosition	=	5000;

			//	Variables	for	modal	error	handling

			u16	commandID;													//	The	commandID	of	the	function

			u16	resourceID;												//	The	resource	ID

			i32	errorCode;													//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Route	breakpoint	1	to	RTSI	line	1

			err	=	flex_select_signal	(boardID,	NIMC_RTSI1	/*destination*/,	NIMC_BREAKPOINT1/*source*/);

			CheckError;

			//	Configure	Breakpoint

			err	=	flex_configure_breakpoint(boardID,	axis,	NIMC_RELATIVE_BREAKPOINT,	NIMC_SET_BREAKPOINT,	0);

			CheckError;

			

			//	Load	Breakpoint	Position	-	position	at	which	breakpoint	should	occur

			err	=	flex_load_pos_bp(boardID,	axis,	breakpointPosition,	0xFF);

			CheckError;

			for(;;){

						//	Enable	the	breakpoint	on	axis	1

						err	=	flex_enable_breakpoint(boardID,	axis,	NIMC_TRUE);

						CheckError;

						do



						{

									//	Check	the	breakpoint	status

									err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

									CheckError;

															

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									

									//	Check	for	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep	(10);	//	Check	every	10	ms

						}while	(!(axisStatus	&	NIMC_POS_BREAKPOINT_BIT));//	Wait	for	breakpoint	to	be	triggered

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Periodically	Occurring	Breakpoints
NI-Motion	allows	you	to	program	the	motion	controller	to	generate
multiple	breakpoints	at	fixed	and	exact	intervals,	regardless	of	the
direction	of	travel	or	velocity.
There	are	two	ways	to	create	periodically	occurring	breakpoints	using	NI-
Motion	functions,	depending	on	which	motion	controller	you	have.	For	the
NI	7350	controller,	use	periodic	breakpoints.	For	NI	7330,	NI	7340,	and
NI	7390	controllers,	use	modulo	breakpoints	.

Note		All	breakpoints	can	be	affected	by	jitter	in	the	motion	control
system.	For	example,	if	you	have	a	very	small	breakpoint	window,
the	jitter	in	the	motion	control	system	could	cause	the	position	to
change	enough	to	reach	the	breakpoint	when	a	breakpoint	is	not
intended.	Increase	the	size	of	the	breakpoint	window	to
compensate	for	system	jitter.



Periodic	Breakpoints	(NI	7350	only)
Periodic	breakpoints	require	that	you	specify	an	initial	breakpoint	and	an
ongoing	repeat	period.	When	enabled,	the	periodic	breakpoints	begin
when	the	initial	breakpoint	occurs.	From	then	on,	a	new	breakpoint
occurs	each	time	the	axis	moves	a	distance	equal	to	the	repeat	period,
with	no	re-enabling	required.
For	example,	if	an	axis	is	enabled	at	position	zero,	the	initial	breakpoint	is
set	for	position	100,	and	the	breakpoint	period	is	set	at	1,000,	then	the
axis	behaves	as	shown	in	the	following	figure.



Periodic	Breakpoint	Algorithm
The	following	figure	shows	the	basic	algorithm	for	periodic	breakpoints
applicable	to	both	C/C++	and	LabVIEW	code.



Periodic	Breakpoint	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	generate	a
periodic	breakpoint	output.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure
Breakpoint		

4		Enable	Breakpoint
Output		

7		Read	per	Axis
Status		

2		Load	Breakpoint
Position		

5		Load	Target	Position		 8		Motion	Error
Handler		

3		Load	Breakpoint
Modulus		

6		Start	Motion		 				



Periodic	Breakpoint	C/C++	Code
The	following	section	includes	C/C++	code	for	executing	a	high-speed
capture,	as	well	as	using	RTSI	to	execute	a	high-speed	capture.	The
following	example	code	is	not	necessarily	complete,	and	may	not	compile
if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-Motion	CD	for
files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;															//	Board	identification	number

			u8		axis;																		//	Axis

			u16	csr			=	0;													//	Communication	status	Register

			u8		profileStatus;									//	Profile	Complete	Status

			u8		bpStatus;														//	Breakpoint	found	Status

			i32	bpPos;																	//	Breakpoint	Position

			i32	bpPer;																	//	Breakpoint	Period

			i32	targetPos;													//	Target	Position

			i32	currentPos;												//	Current	Position

			u16	axisStatus;												//	Status	of	the	axis

			//	Variables	for	modal	error	handling

			u16	commandID;													//	The	commandID	of	the	function

			u16	resourceID;												//	The	resource	ID

			i32	errorCode;													//	Error	code

			//	Get	the	board	ID

			printf("Enter	the	Board	ID:	");

			scanf("%u",	&boardID);

			//	Get	the	axis	number

			printf("Enter	a	axis	number:	");

			scanf("%u",&axis);

			//	Get	the	Target	Position

			printf("Enter	a	target	position:	");

			scanf("%ld",&targetPos);

			//	Get	the	Breakpoint	Position

			printf("Enter	a	breakpoint	position:	");

			scanf("%ld",&bpPos);

			//	Get	the	Breakpoint	Period

			printf("Enter	a	breakpoint	period:	");

			scanf("%ld",&bpPer);



			//	Configure	the	breakpoint	to	be	absolute

			err	=	flex_configure_breakpoint(boardID,axis,NIMC_PERIODIC_BREAKPOINT,NIMC_NO_CHANGE,0);

			CheckError;

			//	Load	the	position	to	start	breakpoints

			err	=	flex_load_pos_bp(boardID,axis,bpPos,0xFF);

			CheckError;

			//	Set	the	Period

			err	=	flex_load_bp_modulus(boardID,axis,bpPer,0xFF);

			CheckError;

			//	Enable	the	breakpoint

			err	=	flex_enable_breakpoint(boardID,axis,NIMC_TRUE);

			CheckError;

			//	Load	a	target	position

			err	=	flex_load_target_pos(boardID,axis,targetPos,0xFF);

			CheckError;

			//	Start	the	motion

			err	=	flex_start(boardID,axis,0);

			CheckError;

			printf("\n");

			do

			{

						//	Read	the	axis	status

						err	=	flex_read_axis_status_rtn(boardID,axis,&axisStatus);

						CheckError;

						err	=	flex_read_pos_rtn(boardID,axis,&currentPos);

						CheckError;

						//	Check	the	breakpoint	bit

						bpStatus	=	!((axisStatus	&	NIMC_POS_BREAKPOINT_BIT)==0);

						//	Check	the	profile	complete	bit

						profileStatus	=	!((axisStatus	&	NIMC_PROFILE_COMPLETE_BIT)==0);

						printf("Current	Position=%10d	Breakpoint	Status=%d	Profile	Complete=%d\r",currentPos,bpStatus,profileStatus);

						//	Check	for	modal	errors

						err	=	flex_read_csr_rtn(boardID,&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									flex_stop_motion(boardID,NIMC_VECTOR_SPACE1,	NIMC_DECEL_STOP,	0);//	



									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			}while(!profileStatus);

			printf("\nFinished.\n");

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Modulo	Breakpoints	(NI	7330,	NI	7340,	and	NI
7390	only)
Modulo	breakpoints	use	a	breakpoint	window,	which	defines	an	area
around	the	current	position.	The	two	breakpoints	around	the	current
position	are	always	enabled.
The	breakpoint	modulus	creates	a	repeat	period	for	the	breakpoints,	and
the	breakpoint	position	is	the	offset	from	absolute	zero.
For	example,	to	create	a	breakpoint	every	500	counts,	set	the	repeat
period	to	500	and	the	breakpoint	position	to	0.	If	the	breakpoint	is
enabled	when	the	axis	is	at	710,	the	breakpoints	at	1000	and	500	are
both	armed,	as	shown	in	the	following	figure.

As	another	example,	if	you	set	the	breakpoint	repeat	period	to	be	2000
counts	and	the	offset	to	be	​500,	breakpoints	occur	at	​4500,	​2500,	​500,
1500,	3500.	If	the	breakpoint	is	enabled	when	the	axis	is	at	2210,	the
breakpoints	at	1500	and	3500	are	both	armed,	as	shown	in	the	following
figure.

Each	time	a	breakpoint	occurs,	re-enable	it	to	load	the	next	breakpoint.



Modulo	Breakpoints	Algorithm
The	following	figure	shows	the	basic	algorithm	for	modulo	breakpoints
applicable	to	both	C/C++	and	LabVIEW	code.



Modulo	Breakpoints	LabVIEW	Diagram
The	following	block	diagrams	demonstrate	using	NI-Motion	to	generate	a
modulo	breakpoints	both	with	and	without	RTSI.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure
Breakpoint		

3		Load	Breakpoint
Position		

5		Read	per	Axis
Status		

2		Load	Breakpoint
Modulus		

4		Enable	Breakpoint
Output		

6		Motion	Error
Handler		

1		Select	Signal		 4		Load	Breakpoint
Position		

6		Read	per	Axis
Status		

2		Configure
Breakpoint		

5		Enable	Breakpoint
Output		

7		Motion	Error
Handler		

3		Load	Breakpoint
Modulus		

				 				



Modulo	Breakpoints	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;											//	Board	identification	number

			u8			axis;														//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Route	breakpoint	1	to	RTSI	line	1

			err	=	flex_select_signal	(boardID,	NIMC_RTSI1	/*destination*/,	NIMC_BREAKPOINT1/*source*/);

			CheckError;

			//	Configure	Breakpoint

			err	=	flex_configure_breakpoint(boardID,	axis,	NIMC_MODULO_BREAKPOINT,	NIMC_SET_BREAKPOINT,	0);

			CheckError;

			

			//	Load	Breakpoint	Modulus	-	repeat	period

			err	=	flex_load_bp_modulus(boardID,	axis,	500,	0xFF);

			CheckError;

			//	Load	Breakpoint	Position	-	position	at	which	breakpoint	should	occur

			//	every	modulo

			err	=	flex_load_pos_bp(boardID,	axis,	0,	0xFF);

			CheckError;

			for(;;){



						//	Enable	the	breakpoint	on	axis	1

						err	=	flex_enable_breakpoint(boardID,	axis,	NIMC_TRUE);

						CheckError;

						do

						{

									//	Check	the	move	complete	status/following	error/axis	off	status

									err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

									CheckError;

															

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									

									//	Check	the	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep	(10);	//Check	every	10	ms

						}while	(!(axisStatus	&	NIMC_POS_BREAKPOINT_BIT));	//	Wait	for	breakpoint	to	be	triggered

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Configuring	the	Breakpoint	Pulse	Width	(NI	7350
only)
On	NI	7350	devices	you	can	configure	a	customized	pulse	width	for
breakpoints	(position	compare	outputs)	to	trigger	devices	that	have
specific	minimum	active	pulse	requirements.	The	default	breakpoint	pulse
width	is	200	ns.	You	can	use	MAX	or	the	Write	Capture	Compare	Data	VI
or	function	to	set	a	pulse	width	of	between	1	µs	and	65,535	µs.	On	a
breakpoint	event,	the	breakpoint	signal	is	active	for	the	configured	pulse
width,	as	shown	in	the	following	figure.

Note		A	breakpoint	across	RTSI	always	generates	an	active	high
pulse	of	200	ns	duration.

Caution		The	breakpoint	frequency	depends	on	the	velocity	and
distance	between	breakpoints	and	is	limited	by	the	pulse	width.
The	breakpoint	frequency	must	meet	the	following	requirements
for	correct	operation.

javascript:LaunchHelp('nimotion.chm', 'eASLbreakpointAndTriggerTab.html')
NI-MotionCReferenceHelp.chm::/nimcWriteCaptureCompareData.html


Breakpoint	Frequency	Requirements
The	breakpoint	pulse	must	not	overlap	with	the	next	breakpoint	event.	If
the	breakpoint	pulse	overlaps	with	the	next	breakpoint	event,	breakpoint
generation	is	stopped	and	the	breakpoint	is	disabled.	To	recover	from	this
situation	change	the	pulse	width,	velocity,	or	distance	between
breakpoints.	In	addition,	the	breakpoint	frequency	cannot	be	greater	than
the	maximum	value	allowed	for	the	specified	breakpoint	type.	Therefore,
the	breakpoint	frequency,	in	hertz,	at	the	specified	pulse	width,	in
seconds,	must	conform	to	must	conform	to	the	following	two	conditions:

AND

Position	Compare	(Breakpoint)	Output	Type Maximum	Frequency
Single 150	Hz
Buffered,	PID	rate	of
62.5	µs	to	250	µs

2	kHz

Buffered,	PID	rate	greater
than	250	µs

1	kHz

Periodic 4	MHz



High-Speed	Capture
Some	motion	control	applications	require	that	you	execute	a	move	and
record	the	locations	where	external	triggers	happen.	To	accomplish	this,
you	must	use	the	high-speed	capture	functionality	of	NI	motion
controllers.
The	implementation	for	high-speed	capture	is	divided	into	the	buffered
(NI	7350	controllers	only)	and	non-buffered	high-speed	capture	methods.



High-Speed	Capture	Algorithm
The	following	figure	shows	the	basic	algorithm	for	high-speed	captures
applicable	to	both	C/C++	and	LabVIEW	code.



Buffered	High-Speed	Capture	(NI	7350	only)
Buffered	high-speed	capture	lets	you	create	a	buffer	that	holds	captured
positions	that	you	can	read	asynchronously	from	the	motion	controller.
The	motion	controller	automatically	arms	the	next	high-speed	capture,
and	writes	the	captured	high-speed	data	into	its	onboard	buffer.	The
enabling	of	high-speed	capture	occurs	on	a	firmware-timed	basis,	which
provides	better	frequency	than	the	non-buffered	high-speed	capture
method.



Buffered	High-Speed	Capture	Algorithm
The	following	figure	shows	the	basic	algorithm	for	buffered	high-speed
captures	applicable	to	both	C/C++	and	LabVIEW	code.



Buffered	High-Speed	Capture	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform	a
buffered	high-speed	capture.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Buffer		 4		Check
Buffer		

6		Clear	Buffer		

2		Configure	High-Speed
Capture		

5		Read
Buffer		

7		Motion	Error
Handler		

3		Enable	High-Speed	Capture		 				



Buffered	High-Speed	Capture	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;																		//	Board	identification	number

			u8		axis;																					//	Axis	number

			u16	csr			=	0;																//	Communication	status	register

			i32	bufferSize	=	100;									//	The	size	of	the	buffer	to	allocate	on	the	motion	controller

			u32	totalPoints	=	100;								//	The	number	of	high	speed	capture	to	acquire

			i32	capturedPositions[100];			//	Array	to	store	the	captured	positions

			f64	actualInterval;											//	The	interval	the	controller	can	really	contour	at

			u32	backlog;																		//	Indicates	the	available	space	for	captured	positions

			u32	pointsDone;															//	Indicates	the	number	of	points	that	have	been	consumed

			u16	bufferState;														//	Indicates	the	state	of	the	onboard	buffer

			u32	currentDataPoint	=	0;					//	Indicates	the	next	points	to	be	read	from	the	buffer

			i32*	readBuffer	=	NULL;							//	The	temporary	array	that	is	created	to	read	captured	positions

			u32	i;

			//	Variables	for	modal	error	handling

			u16	commandID;																//	The	commandID	of	the	function

			u16	resourceID;															//	The	resource	ID

			i32	errorCode;																//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	NIMC_AXIS1;

			////////////////////////////////

			//	Configure	buffer	on	motion	controller	memory	(RAM)

			//	Note	requested	time	interval	is	hardcoded	to	10	milliseconds

			err	=	flex_configure_buffer(boardID,	1	/*buffer	number*/,	axis,	NIMC_HS_CAPTURE_READBACK,	bufferSize,

																																						totalPoints,	NIMC_TRUE,	10,	&actualInterval);

			CheckError;

			//	Configure	High	Speed	Capture

			err	=	flex_configure_hs_capture(boardID,	axis,	NIMC_HS_LOW_TO_HIGH_EDGE,	NIMC_OPERATION_BUFFERED);

			CheckError;

			//	Enable	the	high	speed	capture	on	axis



			err	=	flex_enable_hs_capture(boardID,	axis,	NIMC_TRUE);

			CheckError;

			do

			{

						err	=	flex_check_buffer_rtn(boardID,	1	/*buffer	number*/,	&backlog,	&bufferState,	&pointsDone);

						CheckError;

						//	Check	backlog	for	captured	position	in	buffer

						if	(backlog	>	0)

						{

									readBuffer	=	(i32*)malloc(sizeof(i32)*backlog);

									//	If	captured	position	available	in	the	buffer,	read	the	captured	position	from	the	buffer

									err	=	flex_read_buffer_rtn(boardID,	1/*buffer	number*/,	backlog,	readBuffer);

									for(i=0;i<backlog;i++){

												if(currentDataPoint	>	totalPoints)	break;

												capturedPositions[currentDataPoint]	=	readBuffer[i];

												printf("capture	pos	%d\n",capturedPositions[currentDataPoint]);

												currentDataPoint++;

									}

									free(readBuffer);

									readBuffer	=	NULL;

									CheckError;

						}

						//	Check	for	axis	off	status/following	error	or	any	modal	errors

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG){

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			Sleep(60);			//	Check	every	60	ms

			}	while	(bufferState	!=	NIMC_BUFFER_DONE);

			//	Free	the	buffer	allocated	on	the	controller	memory

			err	=	flex_clear_buffer(boardID,	1/*buffer	number*/);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			



			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Non-Buffered	High-Speed	Capture
Non-buffered	high-speed	capture	allows	you	to	configure	a	single	high-
speed	capture	event.	For	multiple	high-speed	captures,	you	must	re-
enable	the	high-speed	capture	each	time	it	triggers.



High-Speed	Capture	Algorithm
The	following	figure	shows	the	basic	algorithm	for	high-speed	captures
applicable	to	both	C/C++	and	LabVIEW	code.



High-Speed	Capture	LabVIEW	Diagram
The	following	block	diagrams	demonstrate	using	NI-Motion	to	perform	a
high-speed	capture,	both	with	and	without	RTSI.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	High-Speed	Capture		 3		Read	per	Axis	Status		
2		Enable	High-Speed	Capture		 4		Read	Captured	Position		

To	trigger	the	high-speed	capture	from	a	RTSI	line,	set	the	Destination
parameter	in	Select	Signal	to	High	Speed	Capture	1,	as	shown	in	the
following	block	diagram.

1		Select	Signal		 3		Enable	High-Speed
Capture		

5		Read	Captured
Position		

2		Configure	High-Speed
Capture		

4		Read	per	Axis
Status		

				



High-Speed	Capture	C/C++	Code
The	following	section	includes	C/C++	code	for	executing	a	high-speed
capture,	as	well	as	using	RTSI	to	execute	a	high-speed	capture.	The
following	example	code	is	not	necessarily	complete,	and	may	not	compile
if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-Motion	CD	for
files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;															//	Board	identification	number

			u8			axis;																		//	Axis	number

			u16	csr			=	0;														//	Communication	status	register

			u16	axisStatus;													//	Axis	status

			i32	capturedPositions[6];			//	Array	to	store	the	captured	positions

			i32	i;

			//	Variables	for	modal	error	handling

			u16	commandID;														//	The	commandID	of	the	function

			u16	resourceID;													//	The	resource	ID

			i32	errorCode;														//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Route	breakpoint	1	to	RTSI	line	1

			err	=	flex_select_signal	(boardID,	NIMC_HS_CAPTURE1	/*destination*/,	NIMC_RTSI1/*source*/);

			CheckError;

			//	Configure	High	Speed	Capture

			err	=	flex_configure_hs_capture(boardID,	axis,	NIMC_HS_LOW_TO_HIGH_EDGE,	0);

			CheckError;

			

			for(i=0;	i<6;	i++){

						//	Enable	the	high	speed	capture	on	axis

						err	=	flex_enable_hs_capture(boardID,	axis,	NIMC_TRUE);

						CheckError;



						do

						{

									//	Check	the	high	speed	capture	status

									err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

									CheckError;

															

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									

									//	Check	the	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep	(10);	//	Check	every	10	ms

						}while	(!(axisStatus	&	NIMC_HIGH_SPEED_CAPTURE_BIT));//	Wait	for	high	speed	capture	to	be	triggered

						err	=	flex_read_cap_pos_rtn(boardID,	axis,	&capturedPositions[i]);

						CheckError;

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Real-Time	System	Integration	Bus	(RTSI)
RTSI	is	a	dedicated	high-speed	digital	bus	designed	to	facilitate	system
integration	by	low-level,	high-speed,	real-time	communication	between
National	Instruments	devices.
Many	applications,	such	as	scanning	and	alignment,	synchronize
measurements	made	with	data	and	image	acquisition	devices	with
position	and	velocity.	This	synchronization	requires	high	speeds	with	low
latencies.
Using	RTSI,	the	NI	motion	controller	can	share	high-speed	digital	signals
with	NI	data	acquisition	devices,	NI	image	acquisition	devices,	digital	I/O,
or	other	NI	motion	devices	with	no	external	cabling	and	without
consuming	bandwidth	on	the	host	bus.	The	RTSI	bus	also	has	built-in
switching,	so	you	can	route	signals	to	and	from	the	bus	on-the-fly	using
software.
In	addition	to	the	breakpoint	and	high	speed	capture	signals,	you	can
route	encoder	pulses	over	the	RTSI	lines,	which	serves	as	a	way	to
trigger	an	external	device	on	every	change	in	the	encoder	channels.	You
can	route	phase	A,	phase	B,	and	the	index	pulse	of	the	encoder	over
RTSI.
You	also	can	create	a	software	trigger	by	writing	to	the	RTSI	lines	directly
from	software.
You	can	route	position	breakpoints	and	encoder	pulses	using	the	RTSI
bus	to	trigger	other	devices.	You	also	can	configure	data	and	image
acquisition	devices	to	trigger	high-speed	captures	on	the	NI	motion
controllers	using	the	RTSI	bus.



RTSI	Implementation	on	the	Motion	Controller
You	can	configure	an	onboard	buffer	on	the	motion	controller	and	use	the
buffered	high-speed	capture	or	breakpoint	functionality	to	synchronize
the	motion	application	with	data	or	image	acquisition.
As	shown	in	the	following	figure,	the	I/O	reaction	task	automatically	re-
enables	the	breakpoints	or	high-speed	captures	on	the	NI	7350	motion
controller.	On	NI	7340	motion	controllers,	you	must	write	an	onboard
program	or	use	the	host	to	perform	the	same	re-enabling	tasks.



RTSI	Input	and	Output
The	following	sections	explain	the	usage	of	RTSI	for	input	and	output
signals.



Position	Breakpoints	Using	RTSI
You	can	use	the	Select	Signal	VI	or	function	to	route	position	breakpoints
using	one	of	the	RTSI	lines.	In	this	case,	the	motion	controller	triggers	the
external	device	at	a	given	position,	as	shown.

Note		A	breakpoint	across	RTSI	always	generates	an	active	high
pulse	of	200	ns	duration.

NI-MotionCReferenceHelp.chm::/flex_select_signal.html


Encoder	Pulses	Using	RTSI
You	may	need	to	trigger	the	external	device	to	acquire	data	every
encoder	phase	or	on	an	encoder	index	pulse,	as	shown.



Software	Trigger	Using	RTSI
You	can	use	the	Set	I/O	Port	MOMO	VI	or	function	to	write	directly	to	the
RTSI	lines	to	trigger	other	devices,	as	shown.

NI-MotionCReferenceHelp.chm::/flex_set_port.html


High-Speed	Capture	Input	Using	RTSI
When	the	RTSI	line	receives	the	trigger	from	a	data	or	image	acquisition
device,	the	corresponding	high-speed	capture	occurs,	as	shown.



Torque	Control
To	maintain	constant	torque	or	force,	the	sensor	that	returns	the	feedback
to	the	motion	controller	must	return	a	value	proportional	to	the	torque	or
force.	The	motion	controller	operates	torque-control	and	position-control
systems	in	much	the	same	way.	The	main	difference	is	that	the	feedback
in	position-control	systems	returns	the	current	position,	while	the
feedback	in	torque-control	systems	returns	a	voltage	proportional	to	the
current	force	or	torque.
You	can	implement	force	feedback	on	NI	motion	controllers	using	either
analog	feedback	or	by	monitoring	force.

Note		The	NI	SoftMotion	Controller	does	not	support	analog
feedback.



Analog	Feedback
In	this	mode,	the	torque	or	force	sensor	is	connected	to	one	of	the	analog
inputs	on	the	NI	motion	controller.	That	analog	channel	is	used	as	the
feedback	sensor.

Tuning	the	control	loop	with	a	force	sensor,	which	is	an	analog	feedback
sensor,	produces	the	same	results	as	with	a	position	feedback	sensor.
Depending	upon	the	resolution	you	are	using,	the	system	may	require
higher	gains	to	ensure	a	faster	response.	NI	motion	controllers	have	12-
bit	or	16-bit	analog	inputs,	whose	ranges	can	be	set	from	0	V	to	5	V,	​5	V
to	+5	V,	0	V	to	10	V,	and	​10	V	to	+10	V.	When	you	use	counts	for	entering
the	values	of	position,	velocity,	acceleration,	and	deceleration,	you	do	not
need	to	enter	the	counts/revolution	value	for	the	axis.
Refer	to	the	motion	controller	user	manual	for	information	about	analog
input	ranges.



Torque	Control	Using	Analog	Feedback	Algorithm
The	following	figure	shows	the	basic	algorithm	for	torque	control	using
analog	feedback	applicable	to	both	C/C++	and	LabVIEW	code.



Torque	Control	Using	Analog	Feedback
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
torque	control	using	analog	feedback.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 4		Set	Operation
Mode		

7		Read	per	Axis
Status		

2		Load
Acceleration/Deceleration		

5		Load	Target
Position		

8		Motion	Error
Handler		

3		Load
Acceleration/Deceleration		

6		Start	Motion		 				



Torque	Control	Using	Analog	Feedback	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;												//	Board	identification	number

			u8		axis;															//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			u16	moveComplete;

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//-----------------------------------------------------------

			//	Is	is	assumed	that	the	axis	being	moved	has	an	ADC	channel

			//	mapped	as	its	primary	feedback.		Position	is	treated	as	binary

			//	volts.		Hence	velocity	is	loaded	in	binary	volts/sec	and

			//	acceleration	as	binary	volts/sec^2.

			//-----------------------------------------------------------

			//	Set	the	velocity	for	the	move	(in	binary	volts/sec)

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			//	Set	the	acceleration	for	the	move	(in	binary	volts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	deceleration	for	the	move	(in	binary	volts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;



			//	Set	the	jerk	-	s-curve	time	(in	sample	periods)

			err	=	flex_load_scurve_time(boardID,	axis,	1000,	0xFF);

			CheckError;

			//	Set	the	operation	mode

			err	=		flex_set_op_mode	(boardID,	axis,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Load	Position	corresponding	to	the	voltage	which	you	want

			//	the	motor	to	maintain	(2047	~	5V	in	this	example)

			err	=	flex_load_target_pos	(boardID,	axis,	2047,	0xFF);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	axis,	0);

			CheckError;

			do

			{

						axisStatus	=	0;

						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	axis,	0,	&moveComplete);

						CheckError;

						//	Check	the	following	error/axis	off	status	for	axis	1

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

			}while	(!moveComplete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors



			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Monitoring	Force
You	can	use	this	second	force-feedback	mode	if	you	have	a	position
sensor	on	the	motor,	in	addition	to	the	torque	sensor.	The	control	loop	on
the	motion	controller	closes	the	position	and	velocity	loops	as	usual.	Use
MAX	to	map	the	encoder	as	the	feedback	device	for	the	axis.

For	monitoring	force,	create	an	outer	loop	to	monitor	the	torque	sensor,
and	move	the	motor	based	on	the	value	read	from	the	torque	sensor.

javascript:LaunchHelp('nimotion.chm', 'eAxisConfigurationTab.html')


Torque	Control	Using	Monitoring	Force	Algorithm
The	following	figure	shows	the	basic	algorithm	for	torque	control	using
monitoring	force	applicable	to	both	C/C++	and	LabVIEW	code.



Torque	Control	Using	Monitoring	Force
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
torque	control	using	monitoring	force.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 4		Set	Operation
Mode		

7		Start	Motion		

2		Load
Acceleration/Deceleration		

5		Read	ADC		 8		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

6		Load	Target
Position		

9		Motion	Error
Handler		



Torque	Control	Using	Monitoring	Force	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;												//	Board	identification	number

			u8		axis;															//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			i32	constant;											//	Constant	force

			i16	adcValue;											//	ADC	value	read

			

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			//	constant	force	needed	to	be	maintained

			//	corresponds	to	5V	for	a	+/-	5V	ADC	settings

			constant	=	2047;

			////////////////////////////////

			//-----------------------------------------------------------

			//	Is	is	assumed	that	the	axis	being	moved	has	an	encoder

			//	mapped	as	its	primary	feedback

			//-----------------------------------------------------------

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;



			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	jerk	(s-curve	value)	for	the	move	(in	sample	periods)

			err	=	flex_load_scurve_time(boardID,	axis,	100,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	velocity

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			do

			{

						//	Read	the	ADC	channel	number	1	and	calculate	the	position	to	be	updated

						err	=	flex_read_adc_rtn(boardID,	NIMC_ADC1,	&adcValue);

						CheckError;

						if(	(constant	-	adcValue)	!=	0){

									err	=	flex_load_target_pos(boardID,	axis,	(constant	-	adcValue),	0xFF);

									CheckError;

									//	Move	based	on	delta	force

									err	=		flex_start(boardID,	axis,	0);

									CheckError;

						}

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						Sleep	(50);	//	Check	every	10	ms

			}while	(!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	Exit	on	axis	off



			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Speed	Control	Based	on	Analog	Value
In	a	system	where	a	feed	roll	must	run	at	speeds	based	on	an	input
voltage,	the	algorithm	to	maintain	the	speed	consists	of	reading	the
analog	voltage	connected	to	one	of	the	analog	channels	on	the	motion
controller,	and	updating	the	speed	of	the	axis	based	on	the	value	of	the
voltage	read.	In	this	system,	the	feedback	is	a	normal	position	sensor,
such	as	an	encoder.



Speed	Control	Based	on	Analog	Feedback	Algorithm
The	following	figure	shows	the	basic	algorithm	for	speed	control	using
based	on	analog	feedback	applicable	to	both	C/C++	and	LabVIEW	code.

The	analog	input	could	be	connected	to	a	force	sensor,	which	ensures
that	the	tension	of	a	web	being	fed	is	maintained.



Speed	Control	Based	on	Analog	Feedback
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
speed	control	based	on	analog	feedback.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Velocity		 5		Start
Motion		

8		Start	Motion		

2		Load
Acceleration/Deceleration		

6		Read	ADC		 9		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Load
Velocity		

10		Motion	Error
Handler		

4		Set	Operation	Mode		



Speed	Control	Based	on	Analog	Feedback
C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;												//	Board	identification	number

			u8		axis;															//	Axis	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			i32	constant;											//	Constant	multiplier

			i16	adcValue;											//	ADC	value	read

		

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			axis	=	1;

			//		constant	to	multiply	the	ADC	value	read	to	calculate	the	required	velocity

			constant	=	10;

			////////////////////////////////

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	axis,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;

			//	Set	the	jerk	(s-curve	value)	for	the	move	(in	sample	periods)

			err	=	flex_load_scurve_time(boardID,	axis,	100,	0xFF);



			CheckError;

			//	Set	the	operation	mode	to	velocity

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_VELOCITY);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			do

			{

						//	Read	the	ADC	channel	number	1	and	calculate	the	velocity	to	be	updated

						err	=	flex_read_adc_rtn(boardID,	NIMC_ADC1,	&adcValue);

						CheckError;

						//	Set	the	velocity	based	on	the	ADC	value	read

						err	=	flex_load_velocity(boardID,	axis,	(adcValue	*	constant),	0xFF);

						CheckError;

						//	Update	the	velocity

						err	=		flex_start(boardID,	axis,	0);

						CheckError;

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	Exit	on	axis	off

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling



			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Onboard	Programs
This	section	provides	information	about	how	onboard	programs	work	for
the	NI	SoftMotion	Controller	and	for	NI	73xx	motion	controllers.



Using	Onboard	Programs	with	the	NI	SoftMotion
Controller
To	use	onboard	programs	with	the	NI	SoftMotion	Controller,	use	the
LabVIEW	Real-Time	Module	(RT)	to	target	your	application	to	run	in	the
same	environment	as	the	NI	SoftMotion	Controller.
Because	the	NI	SoftMotion	Controller	onboard	program	shares	the	same
processor	and	system	resources	with	the	NI	SoftMotion	Controller,
ensure	you	consider	the	following	points	before	running	your	application
in	LabVIEW	RT:

Ensure	that	your	top	level	VI	is	configured	to	run	at	normal,	above
normal,	or	high	priority.	If	you	are	targeting	LabVIEW	RT	for	ETS,
use	the	timed	loop	instead	of	changing	the	priority	of	your	top	level
VI.
Follow	the	guidelines	in	the	LabVIEW	Real-Time	Module	User
Manual.	The	guidelines	regarding	memory	allocation	and	using
shared	resources	are	especially	important.
The	jitter	of	the	system	increases	with	the	number	of	devices	used
in	your	RT	system.	Enable	only	the	devices	you	need	to	use	for	the
current	application.
Because	interrupts	cause	jitter,	National	Instruments	recommends
you	configure	your	application	to	poll	for	data	periodically	rather
than	wait	on	an	interrupt.
You	can	further	decrease	the	jitter	under	ETS	by	configuring	the
Ethernet	mode	to	be	polling.	You	configure	these	settings	for	the
RT	controller	in	Measurement	&	Automation	Explorer	(MAX).
Under	LabVIEW	RT,	the	NI	SoftMotion	Controller	runs	in	the
background	at	time	critical	priority.	The	NI	SoftMotion	Controller	is
designed	to	consume	less	than	40%	of	the	processor	bandwidth.
The	rate	at	which	the	NI	SoftMotion	Controller	updates	its	data	is
typically	100	Hz.



Using	Onboard	Programs	with	NI	73xx	Motion
Controllers
You	can	use	the	real-time	operating	system	on	the	NI	73xx	motion
controller	to	run	custom	programs.	This	functionality	allows	you	to	offload
tasks	from	the	host	processor	and	onto	the	motion	controller.	Using
onboard	variables,	which	are	global	data	on	the	device,	arithmetic	and
loop	operations,	and	efficient	wait	functions,	you	can	write	onboard
programs	to	execute	parts	of	the	motion	application	with	almost	no	host
interaction.	You	can	execute	up	to	10	onboard	programs	simultaneously.
Onboard	programs	have	the	least	priority	in	a	preemptive	multitasking
environment	running	on	the	embedded	microprocessor	because	the
primary	function	of	the	embedded	processor	is	supervisory	control	and
I/O	reaction.	Instead,	the	onboard	programs	run	in	a	time-sliced	manner
at	the	lowest	priority.	Each	onboard	program	gets	a	default	time	slice	of
two	milliseconds,	after	which	it	relinquishes	control	of	the	processor	to
the	next	onboard	program	or	housekeeping	task.
The	host	communication	and	I/O	reaction	tasks	take	higher	priority	than
the	onboard	programs	and	housekeeping	tasks,	as	shown	in	the
following	figure.	The	onboard	programs	and	housekeeping	tasks	are
time-sliced	among	themselves.
For	greater	control	and	determinism	for	the	motion	control	system,
National	Instruments	offers	the	LabVIEW	Real-Time	(RT)	module	motion
control	system,	which	consists	of	a	PXI	chassis,	PXI	motion	controller	or
controllers,	LabVIEW	RT,	and	NI-Motion	driver	software.



Note		If	you	continuously	poll	data	from	the	host,	the	onboard
program	gets	preempted	and	has	less	time	to	run.	To	keep	this
from	happening,	insert	a	small	delay	in	the	polling	loops	on	the
host.	Refer	to	Timing	Loops	for	information	about	programming
delays	in	the	loops.



Writing	Onboard	Programs
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

Almost	all	NI-Motion	functions	that	execute	on	the	host	can	run	onboard.
The	size	and	number	of	programs	is	completely	flexible.	It	is	ultimately
limited	by	the	32	total	memory	objects	in	the	Object	Registry	or	by	total
available	memory,	whichever	is	reached	first.	Refer	to	Begin	Program
Storage	VI	or	function	for	more	information.	These	onboard	programs
remain	on	the	motion	controller	until	you	reset	it.	If	you	want	the	onboard
programs	to	persist	through	a	reset	of	the	motion	controller,	save	them	to
FLASH,	as	shown.

1		Write	the	program	you	want	to	load	onto	onboard	memory.

				You	can	use	most	NI-Motion	functions	between	the	Begin	Program
Storage	VI	or	function
				and	the	End	Program	Storage	VI	or	function.		
2		Run	the	program	to	store	the	NI-Motion	functions	onto	the	onboard
RAM.		
3		Store	the	program	to	FLASH	memory	using	the	Object	Memory
Management	VI	or	function
				or	MAX	for	more	permanent	storage	(optional).		

NI-MotionCReferenceHelp.chm::/flex_begin_store.html
NI-MotionCReferenceHelp.chm::/flex_end_store.html
NI-MotionCReferenceHelp.chm::/flex_object_mem_manage.html
javascript:LaunchHelp('nimotion.chm', 'eDRLonboardMemoryManagerTab.html')


Onboard	Program	Algorithm
The	following	figure	shows	an	onboard	program	algorithm	applicable	to
both	C/C++	and	LabVIEW	code.



Onboard	Program	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	with	onboard
programs.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Begin	Program
Storage		

4		Load	Accel/Decel	in
RPS/s		

6		Start	Motion		

2		Load	Target
Position		

5		Load	Accel/Decel	in
RPS/s		

7		End	Program
Storage		

3		Load	Velocity	in
RPM		

				



Onboard	Program	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;													//	Board	identification	number

			u8			axis;																//	Axis	number

			u16	csr			=	0;												//	Communication	status	register

			//	Variables	for	modal	error	handling

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//--------------------------------------------------------

			//	Onboard	program	1.		This	onboard	program	moves	axis	one

			//	clockwise	5000	counts	(steps).		To	execute	this	onboard	program

			//	call	the	Run	Program	function

			//--------------------------------------------------------

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			CheckError;

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			//	Load	Target	Position	to	move	clockwise	5000	counts(steps)

			err	=	flex_load_target_pos(boardID,	axis,	5000,	0xFF);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	axis,	100.00,	0xFF);

			CheckError;



			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete

			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	2/*Indicates	axis	1*/,	

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);

			CheckError;

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Running,	Stopping,	and	Pausing	Onboard
Programs

Note		This	section	applies	only	to	NI	73xx	motion	controllers.

Use	Run	Program,	Stop	Program,	and	Pause/Resume	Program	to	run,
stop,	and	pause	an	onboard	program	that	resides	in	the	onboard	memory
of	a	motion	controller.

Note		Recursively	calling	an	onboard	program	generates	an	error.



Running	an	Onboard	Program
The	Run	Program	VI	or	function	executes	previously	stored	programs
from	RAM	or	FLASH.	Typically,	you	must	call	Run	Program	from	the	host,
because	it	is	not	possible	for	an	onboard	program	to	run	itself.	However,
it	is	possible	to	configure	the	motion	controller	to	automatically	run	an
onboard	program	upon	powering	up	the	motion	control	system.	You	also
can	call	an	onboard	program	from	another	onboard	program	using	Run
Program.

NI-MotionCReferenceHelp.chm::/flex_run_prog.html


Stopping	an	Onboard	Program
The	Stop	Program	VI	or	function	ends	the	execution	of	an	onboard
program	that	is	currently	running.
Stopping	an	onboard	program	using	Stop	Program	completely	ends
execution.	It	is	not	possible	to	resume	execution	of	the	stopped	onboard
program,	but	you	can	re-run	the	program	from	the	beginning.
You	can	stop	an	onboard	program	with	a	Stop	Program	VI	or	function	call
from	the	host	or	from	another	onboard	program.

Note		It	is	not	possible	for	an	onboard	program	to	stop	itself.

Tip		Stopping	an	onboard	program	is	different	from	stopping	the
motion	of	the	axis	or	axes.	When	you	stop	an	onboard	program,
any	moves	that	have	started	continue	to	run.	You	must	separately
call	the	Stop	Motion	VI	or	function	to	stop	the	motion	of	the	axis	or
axes.

NI-MotionCReferenceHelp.chm::/flex_stop_prog.html
NI-MotionCReferenceHelp.chm::/flex_stop_motion.html


Pausing/Resuming	an	Onboard	Program
The	Pause/Resume	Program	VI	or	function	suspends	execution	of	a
running	onboard	program,	or	resumes	execution	of	a	previously	paused
onboard	program.
You	can	pause	an	onboard	program	with	a	function	call	from	the	host,
from	the	onboard	program	itself,	or	from	another	running	onboard
program.	You	can	resume	an	onboard	program	with	a	function	call	from
the	host	or	from	another	running	onboard	program.

Note		It	is	not	possible	for	an	onboard	program	to	resume	itself.

Tip		Similar	to	the	Stop	Program	VI	or	function,	Pause/Resume
Program	has	no	effect	on	moves	that	have	started.

Automatic	Pausing
Any	run-time	error	that	occurs	during	execution	automatically	pauses	the
onboard	program.
An	onboard	program	also	pauses	automatically	when	it	executes	the
Start	Motion	VI	or	function	or	the	Blend	Motion	VI	or	function	on	an	axis
that	has	been	stopped	by	the	host,	or	when	an	axis	is	stopped	due	to	a
limit,	home,	software	limit,	or	following	error	condition.
Single-Stepping	Using	Pause
You	can	use	the	Pause/Resume	Program	VI	or	function	to	effectively
single-step	through	an	onboard	program.	To	single-step,	add	a
Pause/Resume	Program	call	after	each	function,	and	then	resume	the
onboard	program	from	the	host.

NI-MotionCReferenceHelp.chm::/flex_pause_prog.html
NI-MotionCReferenceHelp.chm::/flex_stop_prog.html
NI-MotionCReferenceHelp.chm::/flex_start.html
NI-MotionCReferenceHelp.chm::/flex_blend.html


Conditionally	Executing	Onboard	Programs
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

You	can	set	conditions	that	affect	the	execution	of	the	onboard	programs.
For	example,	you	may	want	the	onboard	program	to	wait	until	a	specific
event	occurs,	and	then	continue	executing.
The	Wait	on	Condition	VI	or	the	Wait	on	Event	function	allows	you	to
create	onboard	programs	that	wait	for	events,	such	as	move	complete
and	blend	complete.	These	onboard	programs	can	send	functions	to	start
moves	and	wait	for	moves	to	complete.	The	onboard	program	uses
almost	no	processor	time	while	waiting	for	an	event	such	as	move
complete.	When	the	move	is	complete,	the	trajectory	generator	enables
the	I/O	reaction	task,	which	causes	the	onboard	program	to	continue
executing	the	next	function	in	its	sequence,	as	shown	in	the	following
figure.

NI-MotionCReferenceHelp.chm::/flex_wait_on_event.html


Onboard	Program	Conditional	Execution	Algorithm
The	following	figure	shows	the	basic	algorithm	for	conditionally	executing
an	onboard	program	applicable	to	both	C/C++	and	LabVIEW	code.



Onboard	Program	Conditional	Execution
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to
conditionally	execute	an	onboard	program.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Begin	Program
Storage		

4		Load	Target
Position		

7		Start	Motion		

2		Set	Operation	Mode		 5		Select	MOMO		 8		End	Program
Storage		

3		Load	Velocity	in
RPM		

6		Wait	on	Condition		 9		Motion	Error
Handler		



Onboard	Program	Conditional	Execution	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;													//	Board	identification	number

			u8			axis;																//	Axis	number

			u16	csr			=	0;												//	Communication	status	register

			//	Variables	for	modal	error	handling

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	axis,	100.00,	0xFF);

			CheckError;

			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			//	Load	Target	Position	to	move	relative	5000	counts(steps)

			err	=	flex_load_target_pos(boardID,	axis,	5000,	0xFF);



			CheckError;

			//	Wait	for	line	1	on	port	1	to	go	active	to	finish	executing

			err	=		flex_wait_on_condition(boardID,	NIMC_IO_PORT1,	NIMC_WAIT,	NIMC_CONDITION_IO_PORT_MATCH,	(u8)(1<<1)/*Indicates	line	1*/,

																																				0,	NIMC_MATCH_ALL,	10000	/*time	out*/,	0);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete

			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	(u8)(1<<axis),

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Using	Onboard	Memory	and	Data
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

NI	motion	controllers	allow	you	to	access	the	onboard	RAM	and	FLASH
to	create	data	buffers	and	use	some	general-purpose	onboard	variables
for	data	manipulation.	You	can	use	this	memory	to	update	data	that	is
loaded	by	functions	that	are	executing	in	an	onboard	program.	You	also
can	synchronize	execution	or	data	between	the	host	computer	and	the
motion	controller.	For	example,	you	may	want	to	update	the	velocity	of	an
axis	based	on	the	analog	voltage	read	from	an	ADC	channel.	This
memory	is	statically	allocated.



Updating	Velocity	Based	on	ADC	Channel	Algorithm
The	following	figure	shows	the	basic	algorithm	for	updating	velocity
based	on	an	ADC	channel	using	an	onboard	program	applicable	to	both
C/C++	and	LabVIEW	code.

Before	you	execute	this	program,	set	the	operation	mode	of	the	axis	to
velocity	mode.



Updating	Velocity	Based	on	ADC	Channel
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	update
velocity	based	on	an	ADC	channel.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Load	Constant	to
Variable		

6		Read	ADC		 11		Start	Motion		

2		Load	Constant	to
Variable		

7		Multiply	Variables		 12		Read	Variable		

3		Begin	Program
Storage		

8		Subtract	Variables		 13		Jump	to	Label	on
Condition		

4		Set	Operation
Mode		

9		Jump	to	Label	on
Condition		

14		End	Program
Storage		

5		Insert	Program
Label		

10		Load	Velocity		 15		Motion	Error
Handler		



Updating	Velocity	Based	on	ADC	Channel	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;													//	Board	identification	number

			u8		axis;																//	Axis	number

			u16	csr			=	0;											//	Communication	status	register

			i32	constant;												//	Constant	multiplier

			//	Variables	for	modal	error	handling

			u16	commandID;											//	The	commandID	of	the	function

			u16	resourceID;										//	The	resource	ID

			i32	errorCode;											//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			axis	=	1;

			//		constant	to	multiply	the	ADC	value	read	to	calculate	the	required	velocity

			constant	=	10;

			////////////////////////////////

			//	Initialize	onboard	variable	4	to	0

			err	=	flex_load_var(boardID,	0,	4);

			CheckError;

			//	Initialize	onboard	variable	1	to	the	constant	multiplier

			err	=	flex_load_var(boardID,	constant,	1);

			CheckError;

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			//	Set	the	operation	mode	to	velocity

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_VELOCITY);

			CheckError;

			//	Insert	Label	number	1

			err	=	flex_insert_program_label(boardID,	1);



			CheckError;

			//	Read	ADC	channel	and	store	ADC	value	in	variable	2

			err	=	flex_read_adc(boardID,	NIMC_ADC1,	2);

			CheckError;

			//	Multiply	Variables	2	i.e.	the	ADC	value	with	1	i.e.	the	constant

			//	Save	the	result	in	variable	3

			err	=	flex_mult_vars(boardID,	1,	2,	3);

			CheckError;

			//	Subtract	value	in	variable	3	from	variable	4

			//	We	are	not	interested	in	the	result	-	just	want	to

			//	set	the	condition	on	board.

			err	=	flex_sub_vars(boardID,	3,	4,	0);

			CheckError;

			//	Jump	to	label	1	as	the	subtraction	above	set	the	condition

			//	to	"equal	to	zero"	which	implies	that	the	values	in	variable

			//	3	and	4	are	the	same

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_EQUAL,	0,		0,	NIMC_MATCH_ALL,	1/*label	number*/);

			//	Set	the	velocity	for	the	move	(in	counts/sec)	by	loading	the

			//	value	from	variable	3	which	is	(adc	value	*	constant)

			err	=	flex_load_velocity(boardID,	axis,	0,	3);

			CheckError;

			//	Start	the	move	to	update	the	velocity

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Save	the	value	in	variable	3	to	variable	4	for	use

			//	in	next	cycle

			err	=	flex_read_var(boardID,	3,	4);

			CheckError;

			//	Jump	back	to	label	1	unconditionally

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_TRUE,	0,		0,	NIMC_MATCH_ALL,	1/*label	number*/);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);

			//	To	execute	this	program	use	the	Run	Program	function

			return;						//	Exit	the	Application



			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Branching	Onboard	Programs
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

To	create	loops,	or	conditional	if	statements,	insert	labels	in	the	program
you	are	storing	and	use	the	Jump	to	Label	on	Condition	VI	or	the	Jump
on	Event	function	to	jump	to	that	label	based	on	the	condition.

NI-MotionCReferenceHelp.chm::/flex_jump_on_event.html


Branching	Onboard	Programs	Algorithm
The	following	figure	shows	an	onboard	program	waiting	for	an	I/O	line	to
go	active	before	starting	a	move	applicable	to	both	C/C++	and	LabVIEW
code.



Branching	Onboard	Programs	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	add
conditional	jumps	in	an	onboard	program.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Begin	Program
Storage		

6		Select	MOMO		 10		Wait	on	Condition		

2		Set	Operation
Mode		

7		Wait	on
Condition		

11		Jump	to	Label	on
Condition		

3		Load	Velocity	in
RPM		

8		Start	Motion		 12		End	Program	Storage		

4		Insert	Program
Label		

9		Select	MOMO		 13		Motion	Error	Handler		

5		Load	Target
Position		

				 				



Branching	Onboard	Programs	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8			boardID;													//	Board	identification	number

			u8			axis;																//	Axis	number

			u16	csr			=	0;												//	Communication	status	register

			//	Variables	for	modal	error	handling

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	axis,	100.00,	0xFF);

			CheckError;

			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			//	Insert	Label	number	1

			err	=	flex_insert_program_label(boardID,	1);

			CheckError;

			//	Load	Target	Position	to	move	relative	5000	counts(steps)



			err	=	flex_load_target_pos(boardID,	axis,	5000,	0xFF);

			CheckError;

			//	Wait	for	line	1	on	port	1	to	go	active	to	finish	executing

			err	=		flex_wait_on_condition(boardID,	NIMC_IO_PORT1,	NIMC_WAIT,	NIMC_CONDITION_IO_PORT_MATCH,	(u8)(1<<1)/*Indicates	line	1*/,

																																				0,	NIMC_MATCH_ALL,	10000	/*time	out*/,	0);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete

			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	(u8)(1<<axis),

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	Jump	unconditionally	to	label	1	and	check	IO	line	again

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_TRUE,	0,	0,	NIMC_MATCH_ALL,	1/*label	number*/);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application



}



Math	Operations
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

NI-Motion	always	performs	math	operations	on	values	stored	in	onboard
variables,	and	all	math	operations	set	a	global	condition	that	the	Jump	to
Label	on	Condition	VI	or	the	Jump	on	Event	function	uses	to	determine	if
the	operation	jumps	to	a	particular	label	in	the	onboard	program.
To	load	the	onboard	variables,	use	the	Load	Constant	to	Variable	VI	or
function	or	point	the	return	vector	in	the	Read	functions	to	the	onboard
variable	where	you	want	the	data	to	be	saved.	In	the	previous	example,
the	ADC	channel	is	read	to	onboard	variable	2.	This	value	is	then
multiplied	with	a	scale	factor	loaded	into	variable	1	using	the	Load
Constant	to	Variable	VI	or	function.
You	can	perform	Add,	Multiply,	Subtract,	Divide,	AND,	OR,	XOR,	NOT,
and	logical	shift	math	operations.	The	condition	code	always	reflects	the
last	math	operation	performed.	Less	Than	implies	less	than	zero,	Equal
implies	equal	to	zero,	and	so	on.

NI-MotionCReferenceHelp.chm::/flex_jump_on_event.html
NI-MotionCReferenceHelp.chm::/flex_load_var.html
NI-MotionCReferenceHelp.chm::/flex_load_var.html


Indirect	Variables
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

If	you	make	the	read	or	load	functions	point	to	variables	0x81	to	0xF8,
the	functions	use	the	value	loaded	in	variables	1	to	0x78	and	interpret
them	as	the	address	where	the	value	is	read	or	loaded.	This	creates	two
levels	of	indirection.
Making	the	return	vector	of	the	Read	Position	VI	or	function	point	to	0x81
causes	the	position	to	end	up	in	the	address	contained	in	onboard
variable	1,	as	shown.

Using	indirect	variables	can	be	very	useful	in	looping	in	onboard
programs,	as	well	as	dynamically	changing	the	input	values	to	functions.

NI-MotionCReferenceHelp.chm::/flex_read_pos.html


Onboard	Buffers
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

You	can	use	the	memory	on	the	NI	motion	controllers	to	create	general-
purpose	buffers	to	read	and	write	data,	as	shown	in	the	following	figure.

Buffers	are	created	from	a	dynamic	pool	of	memory,	so	you	must	free	the
memory	when	the	buffer	is	not	required.	This	same	pool	of	memory	is
used	to	store	onboard	programs	in	RAM.	As	the	number	or	size	of	buffers
increases,	the	available	memory	for	storing	onboard	programs
decreases.



Onboard	Buffers	Algorithm
The	following	figure	shows	the	algorithm	for	using	onboard	buffers	to
store	data	applicable	to	both	C/C++	and	LabVIEW	code.



Synchronizing	Host	Applications	with	Onboard
Programs

Note		This	section	applies	only	to	NI	73xx	motion	controllers.

The	host	and	the	onboard	program	can	write	to	the	move	complete	status
(MCS)	register	using	the	Set	User	Status	MOMO	VI	or	function.	This	VI
or	function	controls	the	upper	three	bits	in	the	MCS	register	using	the
MustOn/MustOff	(MOMO)	protocol.
Use	these	bits	to	synchronize	an	application	running	on	the	host
computer	with	an	onboard	program,	as	shown	in	the	following	figure.

For	example,	consider	a	host	application	that	reads	an	onboard	variable
that	has	been	updated	by	an	onboard	program.	Use	the	following
algorithm	to	synchronize	the	host	application	with	an	onboard	program,
and	read	an	onboard	variable	that	has	been	updated	by	an	onboard
program.

NI-MotionCReferenceHelp.chm::/flex_set_status_momo.html


Synchronizing	Host	Applications	with	Onboard	Programs
Algorithm
The	following	figure	shows	an	algorithm	for	using	an	onboard	program	to
synchronize	host	applications	applicable	to	both	C/C++	and	LabVIEW
code.



Synchronizing	Host	Applications	with	Onboard
Programs	LabVIEW	Diagram

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

This	example	moves	axis	1	between	target	positions	of	5000	and	​5000.
The	host	reads	the	target	position	only	after	the	move	has	completed,
and	the	new	target	position	has	been	calculated.	The	following	figure
shows	the	code	that	runs	as	an	onboard	program.

1		Load	Constant	to
Variable		

6		Insert	Program
Label		

11		Multiply	Variables		

2		Load	Constant	to
Variable		

7		Load	Target
Position		

12		Set	User	Status
MOMO		

3		Begin	Program
Storage		

8		Start	Motion		 13		Jump	to	Label	on
Condition		

4		Set	Operation	Mode		 9		Select	MOMO		 14		End	Program
Storage		

5		Load	Velocity		 10		Wait	on
Condition		

15		Motion	Error	Handler		

The	following	figure	shows	the	code	that	runs	on	the	host.



1		Read	Move	Complete
Status		

2		Set	User	Status
MOMO		

3		Read
Variable		

Note		As	the	host	is	polling	a	register	on	the	motion	controller,	it	is
not	invoking	the	Host	Communication	Task	on	the	real-time
operating	system	on	the	motion	controller.	Therefore,	the	onboard
programs	executing	are	not	preempted.	In	this	situation,	the
onboard	programs	run	deterministically.



Synchronizing	Host	Applications	with	Onboard
Programs	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;														//	Board	identification	number

			u8		axis;																	//	Axis	number

			u16	csr			=	0;												//	Communication	status	register

			i32	targetPosition;							//	Move	length

			i32	multiplier;											//	multiplier

			u16	axisStatus;											//	Axis	status

			u16	moveCompleteStatus;			//	Move	complete	status

			//	Variables	for	modal	error	handling

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			//	Set	the	move	length

			targetPosition	=	5000;

			//	Set	the	multiplier

			multiplier	=	-1;

			////////////////////////////////

			//--------------------------------------------------------

			//	Onboard	program.		This	onboard	moves	an	axis	back	and

			//	forth	between	targetPosition	and	-targetPosition.		Before

			//	reversing	directions	it	indicates	to	the	host	computer	that

			//	it	is	about	to	do	so.

			//--------------------------------------------------------

			//	Initialize	onboard	variable	2	to	the	multiplier	used	to	change	the

			//	target	position

			err	=	flex_load_var(boardID,	multiplier,	2);

			CheckError;



			//	Initialize	onboard	variable	1	to	the	target	position

			err	=	flex_load_var(boardID,	targetPosition,	1);

			CheckError;

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Set	the	velocity

			err	=	flex_load_velocity(boardID,	axis,	10000,	0xFF);

			CheckError;

			//	Insert	Label	number	1

			err	=	flex_insert_program_label(boardID,	1);

			CheckError;

			//	Load	Target	Position	from	onboard	variable	1

			err	=	flex_load_target_pos(boardID,	axis,	0,	1);

			CheckError;

			//	Start	the	move

			err	=	flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete

			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	(u8)(1<<axis)/*Indicates	axis	to	wait	on*/,

																																				0,	NIMC_MATCH_ALL,	3000	/*time	out*/,	0);

			CheckError;

			//	Multiply	Variables	1	i.e.	the	target	position	with	2	i.e.	the	multiplier

			//	Save	the	result	in	variable	1	-	this	calculates	the	negative	of	last	target	position

			err	=	flex_mult_vars(boardID,	1,	2,	1);

			CheckError;

			//	Set	the	13th	bit	in	the	move	complete	status	register	so	that	the	host

			//	knows	that	the	axis	is	about	to	reverse	direction

			err	=		flex_set_status_momo(boardID,	0x20,	0);

			CheckError;

			//	Jump	unconditionally	to	load	new	target	position

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_TRUE,	0,	0,	NIMC_MATCH_ALL,	1/*label	number*/);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);



			CheckError;

			//--------------------------------------------------------

			//	Host	program.		This	programs	monitors	the	13th	bit	in	the

			//	move	complete	status	register	and	records	the	position

			//	the	axis	is	going	to	move	to

			//--------------------------------------------------------

			do

			{

						//	Check	the	move	complete	status/following	error/axis	off	status

						err	=	flex_read_axis_status_rtn(boardID,	axis,	&axisStatus);

						CheckError;

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG)

						{

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Read	the	move	complete	status	register	and	once	the	13th	bit	is	set

						//	reset	the	bit	and	reads	the	target	position

						err	=	flex_read_mcs_rtn(boardID,	&moveCompleteStatus);

						CheckError;

						if(moveCompleteStatus	&	(1<<13)){

									i32	currentTargetPosition;

									//	Reset	the	13th	bit	in	the	move	complete	status	register

									err	=		flex_set_status_momo(boardID,	0,	0x20);

									CheckError;

									err	=	flex_read_var_rtn(boardID,	1,	&currentTargetPosition);

									CheckError;

						}

						Sleep	(50);	//	Check	every	50	ms

			}while	(!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

			return;						//	Exit	the	Application



			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Onboard	Subroutines
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

You	can	create	subroutines	to	run	as	onboard	programs	and	execute
them	from	within	an	onboard	program.



Onboard	Subroutine	Algorithm
The	following	figure	shows	an	onboard	program	algorithm	that	checks	the
I/O	line	state	to	determine	which	onboard	subroutine	to	execute
applicable	to	both	C/C++	and	LabVIEW	code.

If	the	I/O	line	is	active,	the	main	onboard	program	calls	an	onboard
subroutine	that	rotates	the	motor	clockwise.	If	the	I/O	line	is	inactive,	the
main	onboard	program	calls	an	onboard	subroutine	that	rotates	the	motor
counterclockwise.



Onboard	Subroutine	LabVIEW	Diagram
Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

The	following	figure	shows	the	main	onboard	program	used	to	determine
the	subroutine	call.

1		Begin	Program
Storage		

6		Wait	on	Condition		 10		Wait	on	Condition		

2		Insert	Program
Label		

7		Jump	to	Label	on
Condition		

11		Jump	to	Label	on
Condition		

3		Select	MOMO		 8		Insert	Program
Label		

12		End	Program
Storage		

4		Jump	to	Label	on
Condition		

9		Run	Program		 13		Motion	Error
Handler		

5		Run	Program		 				 				

The	following	figure	shows	the	subroutine	that	causes	the	motor	to	rotate
clockwise.



1		Begin	Program
Storage		

5		Load	Accel/Decel	in
RPS/sec		

8		Wait	on
Condition		

2		Set	Operation
Mode		

6		Start	Motion		 9		End	Program
Storage		

3		Load	Target
Position		

7		Select	MOMO		 10		Motion	Error
Handler		

4		Load	Velocity	in
RPM		

The	following	figure	shows	the	subroutine	that	causes	the	motor	to	rotate
counter	clockwise.

1		Begin	Program
Storage		

5		Load	Accel/Decel	in
RPS/sec		

8		Wait	on
Condition		



2		Set	Operation
Mode		

6		Start	Motion		 9		End	Program
Storage		

3		Load	Target
Position		

7		Select	MOMO		 10		Motion	Error
Handler		

4		Load	Velocity	in
RPM		



Onboard	Subroutine	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;														//	Board	identification	number

			u8		axis;																	//	Axis	number

			u16	csr			=	0;												//	Communication	status	register

			//	Variables	for	modal	error	handling

			u16	commandID;												//	The	commandID	of	the	function

			u16	resourceID;											//	The	resource	ID

			i32	errorCode;												//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			axis	=	1;

			////////////////////////////////

			//--------------------------------------------------------

			//	Onboard	program	2.		This	onboard	program	moves	axis	one

			//	clockwise	5000	counts	(steps).		This	onboard	program

			//	is	executed	by	onboard	program	one.

			//--------------------------------------------------------

			//	Begin	onboard	program	storage	-	program	number	2

			err	=	flex_begin_store(boardID,	2);

			CheckError;

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			//	Load	Target	Position	to	move	clockwise	5000	counts(steps)

			err	=	flex_load_target_pos(boardID,	axis,	5000,	0xFF);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	axis,	100.00,	0xFF);

			CheckError;



			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete

			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	2/*Indicates	axis	1*/,

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	2);

			CheckError;

			//--------------------------------------------------------

			//	Onboard	program	3.		This	onboard	program	moves	axis	one

			//	counter	clockwise	5000	counts	(steps).		This	onboard	program

			//	is	executed	by	onboard	program	one.

			//--------------------------------------------------------

			//	Begin	onboard	program	storage	-	program	number	3

			err	=	flex_begin_store(boardID,	3);

			CheckError;

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	axis,	NIMC_RELATIVE_POSITION);

			CheckError;

			//	Load	Target	Position	to	move	counter	clockwise	5000	counts(steps)

			err	=	flex_load_target_pos(boardID,	axis,	-5000,	0xFF);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	axis,	100.00,	0xFF);

			CheckError;

			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	axis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//	Start	the	move

			err	=		flex_start(boardID,	axis,	0);

			CheckError;

			//	Wait	for	move	to	complete



			err	=		flex_wait_on_condition(boardID,	0,	NIMC_WAIT,	NIMC_CONDITION_MOVE_COMPLETE,	2/*Indicates	axis	1*/,

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	3);

			CheckError;

			//--------------------------------------------------------

			//	Onboard	program	1.		The	main	onboard	program	monitors

			//	an	IO	line	and	based	on	state	of	the	IO	line	executes

			//	onboard	program	2	or	onboard	program	3

			//--------------------------------------------------------

			//	Begin	onboard	program	storage	-	program	number	1

			err	=	flex_begin_store(boardID,	1);

			CheckError;

			//	Insert	Label	number	1

			err	=	flex_insert_program_label(boardID,	1);

			CheckError;

			//	Jump	to	label	2	if	the	line	1	on	port	one	is	active

			err	=		flex_jump_label_on_condition	(boardID,	NIMC_IO_PORT1,	NIMC_CONDITION_IO_PORT_MATCH,	2/*Indicates	line	1*/,		0,	NIMC_MATCH_ALL,	2/*label	number*/);

			CheckError;

			//	If	the	above	jump	failed	i.e.	the	IO	line	is	not	active

			//	execute	program	#3

			err	=		flex_run_prog(boardID,	3);

			CheckError;

			//	Wait	for	program	#3	to	finish	executing

			err	=		flex_wait_on_condition(boardID,	3	/*program	#*/,	NIMC_WAIT,	NIMC_CONDITION_PROGRAM_COMPLETE,	0,	0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	Jump	unconditionally	to	label	1	and	check	IO	line	again

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_TRUE,	0,	0,	NIMC_MATCH_ALL,	1/*label	number*/);

			CheckError;

			//	Insert	Label	number	2

			err	=	flex_insert_program_label(boardID,	2);

			CheckError;

			//	Execute	program	#2

			err	=		flex_run_prog(boardID,	2);

			CheckError;

			//	Wait	for	program	#2	to	finish	executing



			err	=		flex_wait_on_condition(boardID,	2	/*program	#*/,	NIMC_WAIT,	NIMC_CONDITION_PROGRAM_COMPLETE,	0,

																																				0,	NIMC_MATCH_ALL,	1000	/*time	out*/,	0);

			CheckError;

			//	Jump	unconditionally	to	label	1	and	check	IO	line	again

			err	=		flex_jump_label_on_condition	(boardID,	0,	NIMC_CONDITION_TRUE,	0,	0,	NIMC_MATCH_ALL,	1/*label	number*/);

			CheckError;

//

//

			//	End	Program	Storage

			err	=	flex_end_store(boardID,	1);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Automatically	Starting	Onboard	Programs
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

You	can	configure	the	onboard	program	to	start	automatically	without
calling	the	Run	Program	VI	or	function.	The	onboard	program	runs	as
soon	as	the	motion	controller	exits	the	reset	state.
To	use	this	feature,	save	the	onboard	program	to	FLASH,	and	then	call
the	Enable	Auto	Start	VI	or	function.	The	motion	controller	checks	to	see
if	the	auto-start	flag	is	set	when	it	boots	up.	If	the	flag	is	set,	the	motion
controller	executes	the	onboard	program	configured	to	automatically
start.	The	auto-start	requires	no	host	interaction	after	it	is	set	up.
Automatically	starting	the	onboard	programs	is	very	useful	if	you	need	to
execute	monitoring	tasks	to	begin	as	soon	as	the	computer	and	controller
boot	up.

NI-MotionCReferenceHelp.chm::/flex_run_prog.html
NI-MotionCReferenceHelp.chm::/flex_enable_auto_start.html


Changing	a	Time	Slice
Note		This	section	applies	only	to	NI	73xx	motion	controllers.

Use	the	Load	Program	Time	Slice	VI	or	function	to	specify	the	minimum
time	an	onboard	program	has	to	be	run	per	watchdog	period,	with	a	total
of	20	ms	allowed	for	all	running	onboard	programs.	The	default	value	of	2
ms	allows	a	maximum	of	10	onboard	programs	running	simultaneously
with	equal	time	slices.
You	can	increase	the	time	slice	of	the	program	to	change	its
performance.	The	higher	you	set	the	time	slice,	the	more	the	program
can	execute,	because	it	commands	more	processor	time.
However,	because	the	processing	power	is	being	held	longer	by	the
onboard	program,	the	response	times	of	other	onboard	programs	are
slower.	Also,	increasing	the	time	slice	of	a	program	may	reduce	host
responsiveness	and	increase	I/O	reaction	time,	even	though	host
communications	and	I/O	reaction	have	higher	priorities	than	onboard
programs	because	the	motion	controller	must	guarantee	that	every
program	runs	for	its	allotted	time	per	watchdog	period.

NI-MotionCReferenceHelp.chm::/flex_load_program_time_slice.html


Creating	Applications	Using	NI-Motion
You	can	combine	the	moves,	input/output,	and	other	functionality
discussed	in	Programming	with	NI-Motion,	to	create	complete	motion
control	applications.
The	following	sections	show	examples	of	typical	motion	control
applications	and	how	they	are	implemented	using	NI-Motion.

Scanning
Rotating	Knife



Scanning
The	goal	of	the	scanning	application	is	to	inspect	a	wafer	under	a	fixed
laser.	Multiple	detectors	collect	the	scattered	laser	light	and	feed	the	data
to	an	analysis	system	that	maps	any	defects.
The	wafer	rests	on	an	XY	stage	that	moves	in	two	dimensions.	The
objective	of	the	scan	is	to	cover	as	much	space	on	the	wafer	as	possible
in	the	shortest	amount	of	time.	Scanning	a	greater	area	increases	the
chances	of	detecting	all	defects.	Shortening	the	scan	time	lowers	the
cycle	time,	and	increases	the	speed	of	the	production	or	testing.
You	can	perform	a	scanning	application	in	one	of	the	following	three
ways:

Move	the	stage	in	a	raster	by	connecting	several	straight-line	move
segments.
Use	blending	to	perform	the	scan	in	a	single	continuous	move.
Use	contouring	to	create	a	custom	scanning	path	for	the	stage.



Connecting	Straight-Line	Move	Segments
You	can	cover	the	entire	area	of	the	wafer	by	varying	the	size	of	the
raster	area.	You	can	increase	the	resolution	of	the	scanning	path	by
shortening	the	distance	of	the	vertical	straight-line	moves.	However,
remember	that	increasing	the	resolution	also	increases	the	cycle	time.



Raster	Scanning	Using	Straight	Lines	Algorithm
The	following	figure	shows	the	basic	algorithm	for	raster	scanning	for
straight-line	moves	applicable	to	both	C/C++	and	LabVIEW	code.

The	raster	scanning	algorithm	for	straight-line	moves	stops	the	motors
after	every	segment	of	the	move,	so	the	cycle	time	is	longer	than	other
methods.



Raster	Scanning	Using	Straight	Lines	LabVIEW
Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
raster	scanning	using	straight	lines.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

5		Load	S-Curve
Time		

9		Check	Move
Complete	Status		

2		Load	Velocity		 6		Set	Operation
Mode		

10		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

7		Load	Vector	Space
Position		

11		Read	per	Axis
Status		

4		Load
Acceleration/Deceleration		

8		Start	Motion		 12		Motion	Error
Handler		



Raster	Scanning	Using	Straight	Lines	C/C++
Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void){

			u8		boardID;												//	Board	identification	number

			u8		vectorSpace;								//	Vector	space	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			u16	status;

			u16	moveComplete;

			u32	i;

			i32	xPosition[11]	=	{5000,	5000,	0,	0,	5000,	5000,	0,	0,	5000,	5000,	0};

			i32	yPosition[11]	=	{0,	1000,	1000,	2000,	2000,	3000,	3000,	4000,	4000,	5000,	5000};

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1,	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	3);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);

			CheckError;



			

			//	Set	the	jerk	or	s-curve	in	sample	periods

			err	=	flex_load_scurve_time(boardID,	vectorSpace,	100,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Load	the	straight	line	segments	one	by	one	

			for	(i=0;	i<11;	i++){

			

						//	Load	Target	Position

						err	=	flex_load_vs_pos(boardID,	vectorSpace,	xPosition[i],	yPosition[i],	0,		0xFF);

						CheckError;

						

						//	Start	the	move

						err	=	flex_start(boardID,	vectorSpace,	0);

						CheckError;

						do

						{

									axisStatus	=	0;

									//Check	the	move	complete	status

									err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

									CheckError;

									

									//	Check	the	following	error/axis	off	status	for	axis	1

									err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

									CheckError;

									axisStatus	|=	status;

									//	Check	the	following	error/axis	off	status	for	axis	2

									err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

									CheckError;

									axisStatus	|=	status;

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									//	Check	the	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep(50);	//	Check	every	50	ms



						}while	(!moveComplete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

						

						if(	(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	||	(axisStatus	&	NIMC_AXIS_OFF_BIT)	){

									break;	//	Break	out	of	the	for	loop	as	an	axis	was	killed

						}

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Blending	Straight-Line	Move	Segments
Blending	the	straight-line	move	segments	enables	continuous	motion,
which	decreases	the	cycle	time	of	the	scan.	The	cycle	time	is	much	faster
because	the	motors	are	not	forced	to	stop	after	each	move	segment.	The
following	figure	shows	the	path	of	the	blended	move	segments.

Refer	to	Blending	for	information	about	using	blending	with	NI-Motion.



Raster	Scanning	Using	Blended	Straight	Lines	Algorithm
The	following	figure	shows	the	basic	algorithm	for	raster	scanning	using
blended	straight-line	moves	applicable	to	both	C/C++	and	LabVIEW
code.



Raster	Scanning	Using	Blended	Straight	Lines
LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
raster	scanning	using	blended	straight-line	moves.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector
Space		

6		Load	Blend
Factor		

10		Check	Move
Complete	Status		

2		Load	Velocity		 7		Set	Operation
Mode		

11		Read	per	Axis
Status		

3		Load
Acceleration/Deceleration		

8		Load	Vector	Space
Position		

12		Read	per	Axis
Status		

4		Load
Acceleration/Deceleration		

9		Start	Motion		 13		Motion	Error
Handler		

5		Load	S-Curve	Time		 				 				



Raster	Scanning	Using	Blended	Straight	Lines
C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may	not
compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-Motion
CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;												//	Board	identification	number

			u8		vectorSpace;								//	Vector	space	number

			u16	csr			=	0;										//	Communication	status	register

			u16	axisStatus;									//	Axis	status

			u16	status;

			u16	complete;											//	Move	or	blend	complete	status

			u32	i;

			i32	xPosition[11]	=	{5000,	5000,	0,	0,	5000,	5000,	0,	0,	5000,	5000,	0};

			i32	yPosition[11]	=	{0,	1000,	1000,	2000,	2000,	3000,	3000,	4000,	4000,	5000,	5000};

			//	Variables	for	modal	error	handling

			u16	commandID;										//	The	commandID	of	the	function

			u16	resourceID;									//	The	resource	ID

			i32	errorCode;										//	Error	code

						

			///////////////////////////////

			//	Set	the	board	ID

			boardID	=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1,	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	3);

			CheckError;

			//	Set	the	velocity	for	the	move	(in	counts/sec)

			err	=	flex_load_velocity(boardID,	vectorSpace,	10000,	0xFF);

			CheckError;

			

			//	Set	the	acceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_ACCELERATION,	100000,	0xFF);

			CheckError;

			

			//	Set	the	deceleration	for	the	move	(in	counts/sec^2)

			err	=	flex_load_acceleration(boardID,	vectorSpace,	NIMC_DECELERATION,	100000,	0xFF);



			CheckError;

			

			//	Set	the	jerk	or	s-curve	in	sample	periods

			err	=	flex_load_scurve_time(boardID,	vectorSpace,	100,	0xFF);

			CheckError;

			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Load	the	straight	line	segments	one	by	one	

			for	(i=0;	i<11;	i++){

			

						//	Load	Target	Position

						err	=	flex_load_vs_pos(boardID,	vectorSpace,	xPosition[i],	yPosition[i],	0,		0xFF);

						CheckError;

						

						if(i==0){

									//	Start	the	move

									err	=	flex_start(boardID,	vectorSpace,	0);

									CheckError;

						}else{

									//	Blend	the	move

									err	=	flex_blend(boardID,	vectorSpace,	0);

									CheckError;

						}

						do

						{

									axisStatus	=	0;

									if(i==10){

												//	Check	the	move	complete	status

												err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&complete);

												CheckError;

									}else{

												//	Check	the	blend	complete	status

												err	=	flex_check_blend_complete_status(boardID,	vectorSpace,	0,	&complete);

												CheckError;									

									

									}

									

									//	Check	the	following	error/axis	off	status	for	axis	1

									err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

									CheckError;

									axisStatus	|=	status;

									//	Check	the	following	error/axis	off	status	for	axis	2



									err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

									CheckError;

									axisStatus	|=	status;

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									//	Check	the	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}

									Sleep(50);	//	Check	every	50	ms

						}while	(!complete	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

						

						if(	(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	||	(axisStatus	&	NIMC_AXIS_OFF_BIT)	){

									break;	//	Break	out	of	the	for	loop	as	an	axis	was	killed

						}

			}

			return;						//	Exit	the	Application

			

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



User-Defined	Scanning	Path
You	can	create	a	custom	path	that	covers	the	maximum	scan	area	in	the
shortest	time	using	the	contoured	move	feature	of	the	NI	motion
controller.	This	way	you	bypass	the	trajectory	generator	and	send	exact
positions	to	the	motion	controller.	The	controller	then	interpolates	the
distance	between	the	given	points	using	a	cubic	spline	algorithm.	The
following	figure	shows	the	scanning	path	used	in	the	examples.

Using	the	contoured	move	gives	you	the	greatest	amount	of	flexibility
regarding	the	scan	area	and	speed.	However	you	lose	the	benefit	of	the
trajectory	generator	of	the	NI	motion	controller.	Refer	to	Contoured
Moves	for	information	about	using	contoured	moves	with	NI-Motion.



User-Defined	Scanning	Path	Algorithm
The	following	figure	shows	the	basic	algorithm	for	raster	scanning	using	a
user-defined	path	applicable	to	both	C/C++	and	LabVIEW	code.



User-Defined	Scanning	Path	LabVIEW	Diagram
The	following	block	diagram	demonstrates	using	NI-Motion	to	perform
scanning	using	a	contoured	move.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Vector	Space		 5		Start	Motion		 8		Clear	Buffer		
2		Set	Operation	Mode		 6		Check	Buffer		 9		Set	Operation	Mode		
3		Configure	Buffer		 7		Write	Buffer		 10		Motion	Error	Handler		
4		Write	Buffer		



User-Defined	Scanning	Path	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8		boardID;																//	Board	identification	number

			u8		vectorSpace;												//	Vector	space	number

			u16	csr			=	0;														//	Communication	status	register

			u16	axisStatus;													//	Axis	status

			u16	status;																	//	Temporary	copy	of	status

			u16	moveComplete;											//	Move	complete	status

			i32	i;

			i32	points[1994]	=			NIMC_SPIRAL_ARRAY;			//	Array	of	2D	points	to	move

			u32	numPoints	=	1994;							//	Total	number	of	points	to	contour	through

			i32	bufferSize	=	1000;						//	The	size	of	the	buffer	to	allocate	on	the	motion	controller

			f64	actualInterval;									//	The	interval	the	controller	can	really	contour	at

			i32*	downloadData	=	NULL;			//	The	temporary	array	that	is	created	to	download	the	points	to	the	controller

			u32	currentDataPoint	=	0;			//	Indicates	the	next	point	in	the	points	array	that	is	to	be	downloaded

			i32	backlog;																//	Indicates	the	available	space	to	download	more	points

			u16	bufferState;												//	Indicates	the	state	of	the	onboard	buffer

			u32	pointsDone;													//	Indicates	the	number	of	points	that	have	been	consumed

			u32	dataCopied	=	0;									//	Keeps	tack	of	the	points	copied

			//	Variables	for	modal	error	handling

			u16	commandID;														//	The	commandID	of	the	function

			u16	resourceID;													//	The	resource	ID

			i32	errorCode;														//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			vectorSpace	=	NIMC_VECTOR_SPACE1;

			////////////////////////////////

			//	Configure	a	2D	Vector	Space	comprising	of	axes	1	and	2

			err	=	flex_config_vect_spc(boardID,	vectorSpace,	1,	2,	3);

			CheckError;

			//	Set	the	operation	mode	to	absolute	position

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_CONTOURING);

			CheckError;



			//	Configure	buffer	on	motion	controller	memory	(RAM)

			//	Note	requested	time	interval	is	hardcoded	to	10	milliseconds

			err	=	flex_configure_buffer(boardID,	1	/*buffer	number*/,	vectorSpace,	NIMC_POSITION_DATA,	bufferSize,

																																						numPoints,	NIMC_TRUE,	10,	&actualInterval);

			//	Send	the	first	1000	points	of	the	data

			downloadData	=	malloc(sizeof(i32)*bufferSize);

			for(i=0;i<bufferSize;i++){

						downloadData[i]	=	points[i];

						currentDataPoint++;

			}

			err	=	flex_write_buffer(boardID,	1/*buffer	number*/,	bufferSize,	0,	downloadData,	0xFF);

			free(downloadData);

			downloadData	=	NULL;

			CheckError;

			//	Start	Motion

			err	=	flex_start(boardID,	vectorSpace,	0);

			CheckError;

			for(;;){

						axisStatus	=	0;

						//	Check	for	available	space	and	download	remaining	points	every	50	milliseconds

						Sleep(50);

						//	Check	to	see	if	we	have	more	points	to	download

						if(currentDataPoint	<	numPoints){

									err	=	flex_check_buffer_rtn(boardID,	1/*buffer	number*/,	&backlog,	&bufferState,	&pointsDone);

									CheckError;

									if(backlog	>=	300){

												downloadData	=	malloc(sizeof(i32)*backlog);

												dataCopied	=	0;

												for(i=0;i<backlog;i++){

															if(currentDataPoint	>	numPoints)	break;

															downloadData[i]	=	points[currentDataPoint];

															currentDataPoint++;

															dataCopied++;

												}

												err	=	flex_write_buffer	(boardID,	1	/*buffer	number*/,	dataCopied,	0,	downloadData,	0xFF);

												free(downloadData);

												downloadData	=	NULL;

												CheckError;

									}

						}



						//	Check	the	move	complete	status

						err	=	flex_check_move_complete_status(boardID,	vectorSpace,	0,	&moveComplete);

						CheckError;

						if(moveComplete)	break;

						//	Check	for	axis	off	status/following	error	or	any	modal	errors

						//	Read	the	communication	status	register	and	check	the	modal	errors

						err	=	flex_read_csr_rtn(boardID,	&csr);

						CheckError;

						//	Check	the	modal	errors

						if	(csr	&	NIMC_MODAL_ERROR_MSG){

									err	=	csr	&	NIMC_MODAL_ERROR_MSG;

									CheckError;

						}

						//	Check	the	motor	off	status	on	all	the	axes	or	axis

						err	=	flex_read_axis_status_rtn(boardID,	1,	&status);

						CheckError;

						axisStatus	|=	status;

						err	=	flex_read_axis_status_rtn(boardID,	2,	&status);

						CheckError;

						axisStatus	|=	status;

						if(	(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	||	(axisStatus	&	NIMC_AXIS_OFF_BIT)	){

									break;//	Break	out	of	the	for	loop	as	an	axis	was	killed

						}

			}

			//	Set	the	mode	back	to	absolute	mode	to	get	the	controller	out	of	contouring

			//	mode

			err	=	flex_set_op_mode(boardID,	vectorSpace,	NIMC_ABSOLUTE_POSITION);

			CheckError;

			//	Free	the	buffer	allocated	on	the	controller	memory

			err	=	flex_clear_buffer(boardID,	1/*buffer	number*/);

			CheckError;

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors



			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);

						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Rotating	Knife
The	purpose	of	this	application	is	to	cut	a	web	with	a	rotating	knife.
The	blade	must	cut	precisely	between	labels	on	the	web.	Because	the
web	material	can	stretch	under	certain	conditions,	it	is	not	enough	to	cut
the	web	at	constant	length,	because	the	length	of	each	label	can	vary.	To
accomplish	this	task,	the	web	is	marked	one	time	per	cycle	at	the
required	cutting	location.	The	motion	controller	reads	this	mark	using	a
sensor	and	performs	the	necessary	correction.
To	simplify	this	example,	assume	that	the	length	of	the	cut	is	equal	to	the
circumference	of	the	knife.	Under	ideal	conditions,	the	mark	should	be
read	when	the	blade	is	at	position	A,	as	shown	in	the	figure	below.
Therefore,	the	motor	should	move	one	revolution	without	any	correction
before	causing	the	cut.

Tip		Refer	to	Electronic	Gearing	and	Camming	for	information
about	superimposed	moves/registration	applications.



Solution
The	rotary	knife	is	electronically	geared	to	the	web	with	a	gear	ratio	of
1:1,	which	ensures	that	at	the	time	of	cut,	the	speed	of	the	web	and	the
knife	is	the	same.	The	speed	of	each	must	be	the	same	to	make	a	clean
cut	without	stretching	the	web.	Also,	under	ideal	conditions,	the	web	and
rotating	knife	move	the	exact	same	distance.	For	example,	the	length	of
the	cut	might	be	one	revolution,	which	is	equal	to	2,000	counts.
The	sensor	reading	the	mark	is	connected	to	one	of	the	high-speed
capture	lines	on	the	motion	controller.	Because	the	elasticity	of	the	web
material	results	in	varying	label	lengths,	the	mark	can	be	read	before	the
blade	is	at	position	A	or	after	it	is	at	position	A.	The	application	must
correct	the	position	where	the	blade	of	the	rotary	knife	should	be	when
the	high-speed	capture	occurs.	This	correction	must	occur	after	the	blade
has	crossed	position	A	so	that	the	current	cut	is	not	damaged.	To
accomplish	this	goal,	mark	the	correction	point	to	be	at	position	B,	as
shown	in	the	following	figure.

A		Synchronization	Point		 B		Correction	Point		



Rotating	Knife	Algorithm
The	following	figure	shows	the	basic	algorithm	for	the	rotating	knife
application	applicable	to	both	C/C++	and	LabVIEW	code.



Rotating	Knife	LabVIEW	Diagram
The	following	block	diagrams	demonstrate	using	NI-Motion	to	program
the	rotating	knife	application.

Tip		Refer	to	NI-Motion\Documentation\Examples\NI-Motion	User
Manual\	for	the	LabVIEW	VIs	for	these	examples.

1		Configure	Gear
Master		

4		Load	Accel/Decel	in
RPS/s		

7		Enable	High-Speed
Capture		

2		Load	Gear	Ratio		 5		Set	Operation
Mode		

8		Read	High-Speed
Capture	Status		

3		Load	Velocity	in
RPM		

6		Enable	Gearing
Single	Axis		

9		Motion	Error	Handler		

The	following	figures	show	the	remaining	cases	for	the	block	diagram
above.

1		Read	Captured	Position		 2		Load	Target	Position		



1		Read	Position		 2		Start	Motion		



Rotating	Knife	C/C++	Code
The	following	example	code	is	not	necessarily	complete,	and	may
not	compile	if	copied	exactly.	Refer	to	the	examples	folder	on	the	NI-
Motion	CD	for	files	that	are	complete	and	compile	as	is.

//	Main	function

void	main(void)

{

			u8	boardID;																							//	Board	identification	number

			u8	slaveAxis;																					//	Slave	axis	number

			u8	master;																								//	Gear	master

			u16	csr			=	0;																				//	Communication	status	register

			i32	synchronizationPosition	=	0;		//	Synchronization	position

			i32	correctionPoint	=	500;								//	Point	where	the	correction	can	be	applied

			i32	cyclePosition	=	2000;									//	One	revolution	is	2000	counts

			i32	currentPosition;														//	The	current	slave	position

			i32	capturedPosition;													//	The	position	at	which	the	trigger	happens

			u16	axisStatus;

			//	Variables	for	modal	error	handling

			u16	commandID;																				//	The	commandID	of	the	function

			u16	resourceID;																			//	The	resource	ID

			i32	errorCode;																				//	Error	code

			///////////////////////////////

			//	Set	the	board	ID

			boardID=	1;

			//	Set	the	axis	number

			slaveAxis	=	1;

			//	Master	is	encoder	4

			master	=	NIMC_ENCODER4;

			////////////////////////////////

			//--------------------------------------------------------

			//	Set	up	the	gearing	configuration	for	the	slave	axis

			//--------------------------------------------------------

			//	Configure	Gear	Master

			err	=	flex_config_gear_master(boardID,	slaveAxis,	master);

			CheckError;

			//	Load	Gear	Ratio	1:1

			err	=		flex_load_gear_ratio(boardID,	slaveAxis,	NIMC_ABSOLUTE_GEARING,

																														1/*	ratioNumerator*/,	1/*	ratioDenominator*/,	0xFF);

			CheckError;

			//--------------------------------------------------------



			//	Set	up	the	move	parameters	for	the	superimposed	move

			//	to	be	done	on	registration

			//--------------------------------------------------------

			//	Set	the	operation	mode	to	relative

			err	=	flex_set_op_mode(boardID,	slaveAxis,	NIMC_RELATIVE_TO_CAPTURE);

			CheckError;

			//	Load	Velocity	in	RPM

			err	=	flex_load_rpm(boardID,	slaveAxis,	100.00,	0xFF);

			CheckError;

			//	Load	Acceleration	and	Deceleration	in	RPS/sec

			err	=	flex_load_rpsps(boardID,	slaveAxis,	NIMC_BOTH,	50.00,	0xFF);

			CheckError;

			//--------------------------------------------------------

			//	Enable	Gearing	on	slave	axis

			//--------------------------------------------------------

			err	=	flex_enable_gearing_single_axis	(boardID,	slaveAxis,	NIMC_TRUE);

			CheckError;

			//--------------------------------------------------------

			//	Wait	for	trigger	to	do	the	registration	move

			//--------------------------------------------------------

			for(;;){

						//	Enable	High	speed	capture	for	slave	axis

						err	=	flex_enable_hs_capture(boardID,	slaveAxis,	NIMC_TRUE);

						CheckError;

						do

						{

									//	Check	the	high	speed	capture	status/following	error/axis	off	status

									err	=	flex_read_axis_status_rtn(boardID,	slaveAxis,	&axisStatus);

									CheckError;

									//	Read	the	communication	status	register	and	check	the	modal	errors

									err	=	flex_read_csr_rtn(boardID,	&csr);

									CheckError;

									//	Check	the	modal	errors

									if	(csr	&	NIMC_MODAL_ERROR_MSG)

									{

												err	=	csr	&	NIMC_MODAL_ERROR_MSG;

												CheckError;

									}



						}while	(!(axisStatus	&	NIMC_HIGH_SPEED_CAPTURE_BIT)	&&	!(axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	&&	!(axisStatus	&	NIMC_AXIS_OFF_BIT));	//	

						if((axisStatus	&	NIMC_FOLLOWING_ERROR_BIT)	||	(axisStatus	&	NIMC_AXIS_OFF_BIT)){

									break;	//	Break	out	of	the	for	loop

						}

						//	Update	the	variables	for	this	cycle

						synchronizationPosition	+=	cyclePosition;

						correctionPoint	+=	cyclePosition;

						//	Read	the	captured	position

						err	=	flex_read_cap_pos_rtn(boardID,	slaveAxis,	&capturedPosition);

						CheckError;

						//	Load	the	target	position	for	the	registration	(superimposed)	move

						err	=	flex_load_target_pos(boardID,	slaveAxis,	(synchronizationPosition-capturedPosition),	0xFF);

						CheckError;

						//	Wait	until	we	have	passed	the	correction	point	before	we	apply	the	correction

						currentPosition	=	0;

						while	(currentPosition	<	correctionPoint){

									err	=	flex_read_pos_rtn(boardID,	slaveAxis,	&currentPosition);

									CheckError;

						}

						//	Start	registration	move	on	the	slave

						err	=	flex_start(boardID,	slaveAxis,	0);

						CheckError;

			}//	For	loop

			return;						//	Exit	the	Application

			/////////////////////////////////////////////////////////////////////////

			//	Error	Handling

			//

			nimcHandleError;	//NIMCCATCHTHIS:

			

			//	Check	to	see	if	there	were	any	Modal	Errors

			if	(csr	&	NIMC_MODAL_ERROR_MSG){

						do{

									//	Get	the	command	ID,	resource	and	the	error	code	of	the	modal

									//	error	from	the	error	stack	on	the	board

									flex_read_error_msg_rtn(boardID,&commandID,&resourceID,&errorCode);

									nimcDisplayError(errorCode,commandID,resourceID);

									//	Read	the	Communication	Status	Register

									flex_read_csr_rtn(boardID,&csr);



						}while(csr	&	NIMC_MODAL_ERROR_MSG);

			}

			else							//	Display	regular	error

						nimcDisplayError(err,0,0);

			return;				//	Exit	the	Application

}



Tuning	Servo	Systems
When	your	motion	control	system	includes	a	servo	motor,	you	must	tune
and	calibrate	the	system	to	ensure	proper	performance.	This	chapter
covers	general	information	about	tuning	and	calibrating	your	servo
system	using	control	loop	parameters.	Refer	to	the	Tuning	Servo	Motors
section	of	the	Measurement	&	Automation	Explorer	Help	for	Motion	for
more	information	about	and	instructions	for	tuning	servo	motors	in
Measurement	&	Automation	Explorer	(MAX).

Note		This	section	does	not	apply	if	you	are	using	the	NI
SoftMotion	Controller	because	the	control	loop	is	implemented	on
the	drive.	Refer	to	the	drive	documentation	for	information	about
tuning	the	servo	motors	you	are	using	with	the	CANopen	drive.

javascript:LaunchHelp('nimotion.chm', 'Motion_ServoTune.html')


Using	Control	Loops	to	Tune	Servo	Motors
Tuning	maximizes	the	performance	of	your	servo	motors.	A	servo	system
uses	feedback	to	compensate	for	errors	in	position	and	velocity.	For
example,	when	the	servo	motor	reaches	the	desired	position,	it	cannot
stop	instantaneously.	There	is	a	normal	overshoot	that	must	be
corrected.	The	controller	turns	the	motor	in	the	opposite	direction	for	the
amount	of	distance	equal	to	the	detected	overshoot.	However,	this
corrective	move	also	exhibits	a	small	overshoot,	which	must	also	be
corrected	in	the	same	manner	as	the	first	overshoot.
A	properly	tuned	servo	system	exhibits	overshoot	as	shown	the	following
figure.

The	amount	of	time	required	for	the	motors	to	settle	on	the	commanded
position	is	called	the	settling	time.	By	tuning	the	servo	motors,	you	can
affect	the	settling	time,	the	amount	of	overshoot,	and	various	other
performance	characteristics.



Control	Loop
NI	motion	servo	control	uses	control	loops	to	continuously	correct	errors
in	position	and	velocity.	You	can	configure	the	control	loop	to	perform	a
Proportional,	Integral	and	Derivative	(PID)	loop	or	a	more	advanced
control	loop,	such	as	the	velocity	feedback	(PIV)	or	velocity	feedforward
(PIVff)	loops.



PID	Loop	Descriptions
The	following	are	common	variables	relating	to	the	PID	control	loop.
Kp	(Proportional	Gain)
The	proportional	gain	(Kp)	determines	the	contribution	of	restoring	force
that	is	directly	proportional	to	the	position	error.	This	restoring	force
functions	in	much	the	same	way	as	a	spring	in	a	mechanical	system.
Each	sample	period,	the	PID	loop	calculates	the	position	error,	which	is
the	difference	between	the	instantaneous	trajectory	position	and	the
primary	feedback	position,	and	multiplies	the	position	error	by	Kp	to
produce	the	proportional	component	of	the	16-bit	DAC	command	output.
An	axis	with	too	small	a	value	of	Kp	is	unable	to	hold	the	axis	in	position
and	is	very	soft.	Increasing	Kp	stiffens	the	axis	and	improves	its
disturbance	torque	rejection.	However,	too	large	a	value	of	Kp	often
results	in	instability.
Ki	(Integral	Gain)
The	integral	gain	(Ki)	determines	the	contribution	of	restoring	force	that
increases	with	time,	ensuring	that	the	static	position	error	in	the	servo
loop	is	forced	to	zero.	This	restoring	force	works	against	constant	torque
loads	to	help	achieve	zero	position	error	when	the	axis	is	stopped.
Each	sample	period,	the	position	error	is	added	to	the	accumulation	of
previous	position	errors	to	form	an	integration	sum.	This	integration	sum
is	scaled	by	dividing	by	256	prior	to	being	multiplied	by	Ki.
In	applications	with	small	static	torque	loads,	this	value	can	be	left	at	its
default	value	of	zero	(0).	For	systems	having	high	static	torque	loads,	this
value	should	be	tuned	to	minimize	position	error	when	the	axis	is
stopped.
Although	non-zero	values	of	Ki	cause	reduced	static	position	error,	they
tend	to	cause	increased	position	error	during	acceleration	and
deceleration.	This	effect	can	be	mitigated	through	the	use	of	the
Integration	Limit	parameter.	Too	high	a	value	of	Ki	often	results	in	servo
loop	instability.	National	Instruments	therefore	recommends	that	you
leave	Ki	at	its	default	value	of	zero	until	the	servo	system	operation	is
stable.	Then	you	can	add	a	small	amount	of	Ki	to	minimize	static	position
errors.



Kd	(Derivative	Gain)
The	derivative	gain	(Kd)	determines	the	contribution	of	restoring	force
proportional	to	the	rate	of	change	(derivative)	of	position	error.	This	force
acts	much	like	viscous	damping	in	a	damped	spring	and	mass
mechanical	system.	A	shock	absorber	is	an	example	of	this	effect.
The	PID	loop	computes	the	derivative	of	position	error	every	derivative
sample	period.	A	non-zero	value	of	Kd	is	required	for	all	systems	that	use
torque	block	amplifiers,	where	the	command	output	is	proportional	to
motor	torque,	for	the	servo	loop	operation	to	be	stable.	Too	small	a	Kd
value	results	in	servo	loop	instability.
With	velocity	block	amplifiers,	where	the	command	output	is	proportional
to	motor	velocity,	it	is	typical	to	set	Kd	to	zero	or	a	very	small	positive
value.
Kv	(Velocity	Feedback)
You	can	use	a	primary	or	secondary	feedback	encoder	for	velocity
feedback.	Setting	the	velocity	feedback	gain	(Kv)	to	a	value	other	than
zero	(0)	enables	velocity	feedback	using	the	secondary	encoder,	if
configured,	or	the	primary	encoder	if	a	secondary	encoder	is	not
configured.
Kv	is	used	to	scale	this	velocity	feedback	before	it	is	added	to	the	other
components	in	the	16-bit	DAC	command	output.	Kv	is	similar	to
derivative	gain	(Kd)	except	that	it	scales	the	velocity	estimated	from
encoder	resources	only.	The	derivative	gain	scales	the	derivative	of	the
position	error,	which	is	the	difference	between	the	instantaneous
trajectory	position	and	the	primary	feedback	position.	Like	the	Kd	term,
the	velocity	feedback	derivative	is	calculated	every	derivative	sample
period	and	the	contribution	is	updated	every	PID	sample	period.
Velocity	feedback	is	estimated	through	a	combination	of	speed-
dependent	algorithms.	Velocity	is	measured	based	on	the	time	elapsed
between	each	encoder	count.
Vff	(Velocity	Feedforward)
The	velocity	feedforward	gain	(Vff)	determines	the	contribution	in	the	16-
bit	DAC	command	output	that	is	directly	proportional	to	the	instantaneous
trajectory	velocity.	This	value	is	used	to	minimize	following	error	during
the	constant	velocity	portion	of	a	move	and	can	be	changed	at	any	time
to	tune	the	PID	loop.



Velocity	feedforward	is	an	open-loop	compensation	technique	and	cannot
affect	the	stability	of	the	system.	However,	if	you	use	too	large	a	value	for
Vff,	following	error	can	reverse	during	the	constant	velocity	portion,	thus
degrading	performance,	rather	than	improving	it.
Velocity	feedforward	is	typically	used	when	operating	in	PIVff	mode	with
either	a	velocity	block	amplifier	or	substantial	amount	of	velocity	feedback
(Kv).	In	these	cases,	the	uncompensated	following	error	is	directly
proportional	to	the	desired	velocity.	You	can	reduce	this	following	error	by
applying	velocity	feedforward.	Increasing	the	integral	gain	(Ki)	also
reduces	the	following	error	during	constant	velocity	but	only	at	the
expense	of	increased	following	error	during	acceleration	and	deceleration
and	reduced	system	stability.	For	these	reasons,	increasing	Ki	is	not	a
recommended	solution.

Tip		In	PIVff	mode,	the	Kd	and	Kv	gains	are	set	to	zero.

Velocity	feedforward	is	rarely	used	when	operating	in	PID	mode	with
torque	block	amplifiers.	In	this	case,	because	the	following	error	is
proportional	to	the	torque	required,	rather	than	the	velocity,	it	is	typically
much	smaller	and	does	not	require	velocity	feedforward.
Aff	(Acceleration	Feedforward)
The	acceleration	feedforward	gain	(Aff)	determines	the	contribution	in	the
16-bit	DAC	command	output	that	is	directly	proportional	to	the
instantaneous	trajectory	acceleration.	Aff	is	used	to	minimize	following
error	(position	error)	during	acceleration	and	deceleration	and	can	be
changed	at	any	time	to	tune	the	PID	loop.
Acceleration	feedforward	is	an	open-loop	compensation	technique	and
cannot	affect	the	stability	of	the	system.	However,	if	you	use	too	large	a
value	of	Aff,	following	error	can	reverse	during	acceleration	and
deceleration,	thus	degrading	performance,	rather	than	improving	it.
Kdac
Kdac	is	the	Digital	to	Analog	Converter	(DAC)	gain.	Use	the	following
equation	to	calculate	Kdac:

20	V	represents	the	±10	V	range	in	the	motion	controller.
Ga



Ga	is	the	Amplifier	Gain.
Kt
Kt	is	the	Torque	Constant	of	the	motor.	Kt	is	represented	in	Newton
Meters	per	Amp.
1/J
1/J	represents	the	motor	plus	load	inertia	of	the	motion	system.
Ke
Ke	represents	the	conversion	factor	to	revolutions.	This	may	involve	a
scaling	factor.



Dual	Loop	Feedback
Motion	control	systems	often	use	gears	to	increase	output	torque,
increase	resolution,	or	convert	rotary	motion	to	linear	motion.	The	main
disadvantage	of	using	gears	is	the	backlash	created	between	the	motor
and	the	load.	This	backlash	can	cause	a	loss	of	position	accuracy	and
system	instability.
The	control	loop	on	the	motion	system	corrects	for	errors	and	maintains
tight	control	over	the	trajectory.	The	control	loop	consists	of	three	main
parts—proportional,	integral	and	derivative—known	as	PID	parameters.
The	derivative	part	estimates	motor	velocity	by	differentiating	the
following	error	(position	error)	signal.	This	velocity	signal	adds,	to	the
loop,	damping	and	stability.	If	backlash	is	present	between	the	motor	and
the	position	sensor,	the	positions	of	the	motor	and	the	sensor	are	no
longer	the	same.	This	difference	causes	the	derived	velocity	to	become
ineffective	for	loop	damping	purposes,	which	creates	inaccuracy	in
position	and	system	instability.
Using	two	position	sensors	for	an	axis	can	help	solve	the	problems
caused	by	backlash.	As	shown	in	the	following	figure,	one	position
sensor	resides	on	the	load	and	the	other	on	the	motor	before	the	gears.
The	motor	sensor	is	used	to	generate	the	required	damping	and	the	load
sensor	for	position	feedback.	The	mix	of	these	two	signals	provides	the
correct	position	feedback	with	damping	and	stability.

Tip		You	can	enable	dual-loop	feedback	on	the	NI	motion	controller
by	mapping	an	encoder	as	the	secondary	feedback	for	the	axis,
and	then	using	the	velocity	feedback	gain	instead	of	the	derivative
gain	to	dampen	and	stabilize	the	system,	as	shown	in	the	following
figure.





Velocity	Feedback
You	can	configure	the	NI	motion	controller	for	velocity	feedback	using	the
Kv	(velocity	feedback)	gain.	Using	Kv	creates	a	minor	velocity	feedback
loop.	This	is	very	similar	to	the	traditional	analog	servo	control	method	of
using	a	tachometer	for	closing	the	velocity	loop.	This	type	of	feedback	is
necessary	for	systems	where	precise	speed	control	is	essential.
You	can	use	a	less	expensive	standard	torque,	or	current	mode,	amplifier
with	the	velocity	feedback	loop	on	NI	motion	controllers	to	achieve	the
same	results	you	would	get	from	using	velocity	amplifiers,	as	shown	in
the	following	figure.

Setting	any	non-zero	value	for	Kv	allows	you	to	use	the	Kv	term	instead
of	or	in	addition	to	the	Kd	term	to	stabilize	the	system.
Velocity	feedback	gain	(Kv)	is	similar	to	derivative	gain	(Kd)	except	that	it
scales	the	velocity	estimated	from	encoder	resources	only.	The	derivative
gain	scales	the	derivative	of	the	position	error,	which	is	the	difference
between	the	instantaneous	trajectory	position	and	the	primary	feedback
position.	Like	the	Kd	term,	the	velocity	feedback	derivative	is	calculated
every	derivative	sample	period,	and	the	contribution	is	updated	every	PID
sample	period,	as	shown	in	the	following	figure.





NI	Motion	Controllers	with	Velocity	Amplifiers
Velocity	amplifiers	close	the	velocity	loop	using	a	tachometer	on	the
amplifier	itself,	as	shown	in	the	following	figure.	In	this	case,	the	controller
must	ensure	that	the	voltage	output	is	proportional	to	the	velocity.	Use
the	velocity	feedforward	term	(Vff)	to	ensure	that	there	is	minimum
following	error	during	the	constant	velocity	profiles.

The	following	figure	describes	how	to	use	NI	motion	controllers	with
velocity	amplifiers.

You	typically	use	velocity	feedforward	when	using	controllers	with	velocity
amplifiers.	The	uncompensated	following	error	is	directly	proportional	to
the	specified	velocity.	You	can	reduce	the	following	error	by	applying
velocity	feedforward.	Increasing	the	integral	gain	(Ki)	also	reduces	the
following	error	during	constant	velocity,	but	at	the	expense	of	increased
following	error	during	acceleration	and	deceleration	and	reduced	system
stability.

Note		National	Instruments	does	not	recommend	increasing	Ki.

Velocity	feedforward	is	rarely	used	when	operating	in	PID	mode	with
torque	block	amplifiers.	In	this	case,	following	error	is	typically	much
smaller	because	it	is	proportional	to	the	torque	required	rather	than	to	the
velocity.	When	operating	in	PID	mode	with	torque	block	amplifiers,
velocity	feedforward	is	not	required.



Sinusoidal	Commutation	for	Brushless	Servo
Motion	Control
Sinusoidal	commutation	allows	you	to	use	less	expensive	servo	motor
drives	with	NI	motion	controllers	that	support	this	feature.

Phase	Initialization
Determining	the	Counts	per	Electrical	Cycle	of	the	Motor
Commutation	Frequency
Troubleshooting	Hall	Effect	Sensor	Connections



Phase	Initialization
When	the	system	is	first	powered	on,	the	controller	must	determine	the
initial	commutation	phase.	NI	motion	controllers	support	several	methods
of	phase	initialization,	including	Hall	effect	sensors,	shake	and	wake,	and
direct	set.



Hall	Effect	Sensors
The	controller	can	use	Hall	effect	sensors	to	estimate	the	commutation
phase	based	on	the	state	of	the	sensors.	After	a	Hall	effect	state
transition	occurs,	the	controller	recalculates	the	phase	angle	based	on
the	transition	location.	To	obtain	maximum	torque	at	the	beginning	of	the
move,	perform	a	move	that	is	1/6th	of	the	magnetic	cycle	after	system
initialization.	Refer	to	the	hardware	documentation	for	Hall	effect	sensor
types	and	connection	schemes.



Shake	and	Wake
"Shake	and	wake"	is	an	initialization	method	where	the	motion	controller
outputs	a	specified	voltage	for	a	specified	duration.	This	drives	the
system	to	the	zero-degree	phase	position	and	allows	you	to	establish	the
position	as	a	baseline	for	all	other	phase	positions.
During	this	process,	the	motor	moves	to	the	zero-degree	position	with
high	torque.	Ensure	the	system	is	away	from	any	limits	before	performing
shake	and	wake	initialization.
If	the	system	has	load	or	is	moving	against	gravity,	increase	the	shake
and	wake	voltage.	If	there	is	significant	jitter	as	the	axis	approaches	zero,
increase	the	duration.



Direct	Set
Direct	set	is	an	initialization	method	where	the	controller	sets	the	current
position	as	the	specified	phase	angle.	This	initialization	method	is
recommended	only	for	a	custom	system	with	known	initial	phase	angle.
Whenever	the	axis	is	enabled,	the	controller	must	perform	the	phase
initialization	procedure	to	determine	the	phase.



Determining	the	Counts	per	Electrical	Cycle	of
the	Motor
The	controller	needs	to	know	the	counts	per	electrical	cycle	of	the	motor
to	determine	the	commutation	phase.	The	motor	manufacturer	usually
gives	this	specification.	In	many	cases,	the	information	also	may	be
specified	as	the	number	of	poles.
To	convert	from	the	number	of	poles	to	the	number	of	counts	per
electrical	cycle,	use	the	following	formula:

counts	per	electrical	cycle	=	
Caution		Counts	per	electrical	cycle	must	be	set	correctly	to	avoid
overheating	and	damaging	your	motor.



Commutation	Frequency
The	controller	updates	the	command	voltage	and	the	commutation	phase
every	update	period.	To	commutate	brushless	motors	smoothly,	the
controller	must	update	the	phase	at	least	six	times	per	electrical	cycle.
Therefore,	the	commutation	frequency	is	limited	by	the	update	rate	of	the
control	loop.	To	calculate	the	maximum	commutation	frequency
supported	at	a	particular	PID	update	rate,	use	the	following	formula:

commutation	frequency	=	



Troubleshooting	Hall	Effect	Sensor	Connections
Complete	the	following	steps	if	you	have	problems	with	Hall	effect	sensor
connections.

1.	 Check	the	manuals	that	shipped	with	the	hardware	for	connection
procedures.

2.	 Perform	a	"shake	and	wake"	phase	initialization.	During	this
process,	the	motor	is	driven	to	the	zero	degree	phase	position
with	the	commanded	voltage.	Make	sure	the	motor	is	clear	of	any
limits	before	you	start.

3.	 Record	the	Hall	effect	sensors	states	by	reading	the	DIO	lines
connected	to	the	Hall	sensors.	Refer	to	the	hardware
documentation	for	the	Hall	effect	sensor	lines.	This	is	the	state	of
the	Hall	effect	sensors	at	the	zero-degree	phase	position.

4.	 Command	the	motor	to	move	forward	at	a	slow	velocity.	Record
the	state	of	the	Hall	effect	sensors	at	each	state	transition.	The
state	of	the	Hall	effect	sensors	should	return	to	the	state	recorded
in	step	2	after	six	state	transitions.

5.	 Use	the	Hall	sensors	transition	state	as	the	Hall	sensors	diagram.
Refer	to	the	hardware	documentation	for	more	information	on	Hall
sensor	diagrams.	Follow	the	procedure	outlined	in	the	hardware
documentation.



Switching	Feedback	on	the	Fly	(NI	7350	Only)
NI	7350	devices	allow	switching	between	feedback	devices	without
disabling	the	axis,	such	as	when	switching	between	encoder	and	analog
feedback.	Complete	the	following	steps	to	configure	your	system	for
switching	feedback	devices	on	the	fly:

1.	 Tune	the	system	with	the	first	feedback	device	in	MAX.
2.	 Tune	the	system	with	the	second	feedback	device	in	MAX.
3.	 Store	the	first	set	of	PID	gains	using	the	Load	All	PID	Parameters

VI	or	function.
4.	 Store	the	second	set	of	PID	gains	using	the	Load	All	PID

Parameters	VI	or	function,	following	the	instructions	in	the
Loading	a	Second	Set	of	PID	Parameters	section	of	the	topic.

5.	 Enable	the	controller	to	use	the	second	set	of	PID	parameters
when	switching	feedback	on	the	fly	using	the	Load	Advanced
Control	Parameter	VI	or	function.

6.	 Use	the	Configure	Axis	Resources	VI	or	function	to	configure	the
axis	to	use	the	first	feedback	device.

To	switch	between	the	first	and	second	feedback	devices,	call	Configure
Axis	Resources	with	the	other	feedback	device	when	the	axis	is	not
moving.

NI-MotionCReferenceHelp.chm::/flex_load_pid_parameters.html
NI-MotionCReferenceHelp.chm::/flex_load_advanced_control_parameter.html
NI-MotionCReferenceHelp.chm::/flex_config_axis.html


Initializing	the	Controller	Programmatically
You	can	initialize	the	motion	controller	from	within	a	LabVIEW,	Visual
Basic,	or	C/C++	program,	in	addition	to	initializing	controllers	in
Measurement	&	Automation	Explorer	(MAX).
Refer	to	the	following	table	for	the	steps	you	must	take	to	initialize	a
controller	programmatically	and	the	functions	and	VIs	you	use	for	each
step.

Step Function	and/or	VI
1.	 Clear	the

power-up
state.

Use	the	Clear	Power	Up	Status	VI	or	function.

2.	 Review	any
errors	that
occurred	on
the	controller
to	determine
how	best	to
handle	them.

Use	the	Read	Error	Message	VI	or	function.

3.	 Make	sure	all
axes	are
stopped	and
disabled.

Use	the	Stop	Motion	VI	or	function	and	Enable
Axes	VIs	or	functions.	In	the	Stop	Motion	VI	or
function,	set	Stop	Type	(Decel)	set	to	Halt.	In	the
Enable	Axes	VI	or	function,	set	Axis	Bitmap	to
False	for	each	axis	you	want	to	disable.

4.	 Unconfigure
vector
spaces.

Use	the	Configure	Vector	Space	VI	or	function	with
the	X	Axis,	Y	Axis,	and	Z	Axis	inputs	set	to	None.

5.	 Configure
resources	for
axes.

Use	the	Configure	Axis	Resources	VI	or	function.

6.	 Load	all	axis
configuration
options	you
want	to	use.

Use	the	Axis	&	Resource	Configuration	VIs	or
functions.

javascript:LaunchHelp('nimotion.chm', 'eISLinitializationPreferencesTab.html')
NI-MotionCReferenceHelp.chm::/flex_clear_pu_status.html
NI-MotionCReferenceHelp.chm::/flex_read_error_msg_rtn.html
NI-MotionCReferenceHelp.chm::/flex_stop_motion.html
NI-MotionCReferenceHelp.chm::/flex_enable_axis.html
NI-MotionCReferenceHelp.chm::/flex_config_vect_spc.html
NI-MotionCReferenceHelp.chm::/flex_config_axis.html
NI-MotionCReferenceHelp.chm::/AxisResourceConfigurationFunctions.html


7.	 Initialize
encoders
and	ADCs,
as
appropriate.

Use	the	appropriate	VIs	or	functions	on	the	Analog
&	Digital	I/O	palette.

8.	 Enable	the
axes,	but
leave	them
deactivated.

Use	the	Enable	Axes	VI	or	function.

9.	 Load	the
appropriate
control	loop
parameters.

Use	the	Load	Advanced	Control	Parameter	VI	or
function	and	either	Load	Single	PID	Parameter	VI
or	function	or	Load	All	PID	Parameters	VI	or
function.

10.	 Call	halt	on
all	axes	to
activate
them.

Use	the	Stop	Motion	VI	or	function	with	Stop	Type
(Decel)	set	to	Halt	stop.

11.	 Configure
capture	and
compare
settings.

Use	the	VIs	or	functions	on	the	Motion	I/O	palette
to	configure	the	capture	and	compare	settings.

12.	 Configure
the	following
optional
settings:

Configure
trajectory
settings
Configure	find
reference
settings
Configure
DIO	settings
Configure

Use	the	following	palettes	or	VIs/functions	to
configure	the	optional	settings:

Trajectory	Control	VIs	or	functions
Find	Reference	VIs	or	functions
Analog	&	Digital	I/O	VIs	or	functions
Configure	PWM	Output	VI	or	function	and
Load	PWM	Duty	Cycle	VI	or	function
Gearing	VIs	or	functions

NI-MotionCReferenceHelp.chm::/AnalogDigitalIOFunctions.html
NI-MotionCReferenceHelp.chm::/flex_load_advanced_control_parameter.html
NI-MotionCReferenceHelp.chm::/flex_load_single_pid_parameter.html
NI-MotionCReferenceHelp.chm::/flex_load_pid_parameters.html
NI-MotionCReferenceHelp.chm::/MotionI_OFunctions.html
NI-MotionCReferenceHelp.chm::/TrajectoryControlFunctions.html
NI-MotionCReferenceHelp.chm::/FindReferenceFunctions.html
NI-MotionCReferenceHelp.chm::/AnalogDigitalIOFunctions.html
NI-MotionCReferenceHelp.chm::/flex_configure_pwm_output.html
NI-MotionCReferenceHelp.chm::/flex_load_pwm_duty.html
NI-MotionCReferenceHelp.chm::/GearingFunctions.html


PWM	settings
Gearing



Using	the	Motion	Controller	with	the	LabVIEW
Real-Time	Module
Using	NI-Motion	on	a	real-time	(RT)	system	is	designed	to	be	almost
transparent	for	anyone	familiar	with	NI-Motion.	Using	NI-Motion	with	RT
requires	the	following	hardware	and	software:

NI	PXI	chassis	with	an	available	PXI	slot
NI	PXI	Motion	controller
Host	computer
LabVIEW	Real-Time	Module
One	of	the	following	motion	software	options:

NI-Motion	(73xx	controller	support)
NI	SoftMotion	Controller

Refer	to	the	Remote	Systems	and	NI-Motion	topic	in	the	Measurement	&
Automation	Explorer	Help	for	Motion	for	detailed	instructions	about
configuring	the	NI	motion	controller	on	a	remote	PXI	chassis.

javascript:LaunchHelp('nimotion.chm', 'MotionRT.html')


Glossary
Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 J 	

K 	 L 	 M 	 N 	 O 	 P 	 Q 	 R 	 S 	 T 	 U 	 V 	 W 	 Z



Prefixes
Symbol Prefix Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega 10	6

G giga 10	9

T tera 10	12



Numbers/Symbols
nV nanovolts 10-9	volts

µV microvolts 10-6	volts

µΩ microohms 10-6	ohms

mΩ milliohms 10-3	ohms

MΩ megaohms 106	ohms

pA picoamps 10-12	amperes

nA nanoamps 10-9	amperes

µA microamps 10-6	amperes

mA milliamps 10-3	amperes



A 	

A amperes
A/D analog-to-digital
absolute	mode Treat	the	target	position	loaded	as	position

relative	to	zero	(0)	while	making	a	move.
absolute	position Position	relative	to	zero.
acceleration/deceleration Measurement	of	the	change	in	velocity	as	a

function	of	time.	Acceleration	and
deceleration	describes	the	period	when
velocity	is	changing	from	one	value	to
another,	such	as	from	a	stop	(zero	velocity)	to
a	specified	speed	(target	velocity)	or	vice
versa.	Deceleration	is	also	considered
negative	acceleration.

active	closed A	signal	is	active	when	current	is	flowing
through	the	optocoupled	input.

active	high Signal	is	active	when	its	value	goes	high	(1).
See	also	non-inverting.

active	low Signal	is	active	when	its	value	goes	low	(0).
See	also	inverting.

active	open A	signal	is	active	when	current	is	not	flowing
through	the	optocoupled	input.

ADC analog-to-digital	converter
address Character	code	that	identifies	a	specific

location,	or	series	of	locations,	in	memory	or
on	a	host	PC	bus	system.

amplifier Drive	that	delivers	power	to	operate	the	motor
in	response	to	control	signals.	In	general,	the
amplifier	is	designed	to	operate	with	a
particular	motor	type.	For	example,	you
cannot	use	a	stepper	drive	to	operate	a	DC
brush	motor.

API application	programming	interface



axis Unit	that	controls	a	motor	or	any	similar
motion	or	control	device.



B 	

b bit—One	binary	digit,	either	0	or	1.
base
address

Memory	address	that	serves	as	the	starting	address	for
programmable	or	I/O	bus	registers.	All	other	addresses	are
located	by	adding	to	the	base	address.

binary Number	system	with	a	base	of	2.
blending Blending	connects	move	segments	while	maintaining	velocity

within	the	given	physical	constraints.	These	constraints	are	the
specific	move	segments	being	blended,	for	example,	velocity,
acceleration,	deceleration,	and	s-curve	for	each	move.

buffer Temporary	storage	for	acquired	or	generated	data	(in
software).

bus Group	of	conductors	that	interconnect	individual	circuitry	in	a
computer.	Typically,	a	bus	is	the	expansion	vehicle	to	which
I/O	or	other	devices	are	connected.	Examples	of	PC	buses	are
the	ISA	and	PCI	bus.

byte Eight	related	bits	of	data,	an	8-bit	binary	number.	Also	used	to
denote	the	amount	of	memory	required	to	store	one	byte	of
data.



C 	

CCW counterclockwise—Implies	the	direction	the	motor	rotates
in.

closed-loop Broadly	applied	term	relating	to	any	system	where	output
is	measured	and	compared	to	input.	The	output	is	then
adjusted	to	reach	the	appropriate	condition.	In	motion
control	this	term	applies	to	a	motion	system	that	uses	a
feedback	device	to	provide	position	and	velocity	data	for
status	reporting	and	accurately	controlling	position	and
velocity.

commutation Sequential	control	of	switched	waveforms	from	the	power
driver	amplifier	into	the	motor	phase	windings	that	causes
rotation	or	linear	motion	depending	on	motor	type.	Brush
type	motors	auto-commutate	due	to	the	brush	contact	with
the	motor	windings.	Brushless	type	motors	require	the
advance	information	of	position	and	direction	to	accurately
provide	correct	waveform	switching	sequences.	Brushless
motors	typically	use	hall-effect	type	sensors	to	generate
the	commutation	control	waveforms.

control
system
bandwidth

Measure	of	a	closed-loop	system's	response	and	is
typically	represented	as	a	frequency	range	or	an	update
period	for	the	PID	loop	in	a	digital	servo	controller.	For
example,	if	a	PID	loop	has	an	update	rate	of	250	µs,	it
would	have	a	bandwidth	of	4	kHz.

CPU central	processing	unit
CSR communications	status	register
CW clockwise—Implies	the	direction	the	motor	rotates	in.



D 	

DAC digital-to-analog	converter
data
acquisition

The	process	of	collecting	and	measuring	electrical	signals
from	sensors,	transducers,	and	test	probes	or	fixtures	and
inputting	them	to	a	computer	for	processing.

DC direct	current
DGND digital	ground
digital	I/O
port

Group	of	digital	input/output	signals.

DIP dual	inline	package
DLL Dynamic	link	library	for	Windows.	Provides	the	API	for	the

motion	control	devices.
drive Electronic	signal	amplifier	that	converts	motor	control

command	signals	into	higher-voltage	signals	suitable	for
driving	motors.

driver Software	that	controls	a	specific	hardware	device	such	as	a
DAQ	board	or	a	motion	controller.



E 	

encoder Device	that	translates	mechanical	motion	into	electrical
signals;	used	for	monitoring	position	or	velocity	in	a	closed-
loop	system.

encoder
resolution

Number	of	encoder	lines	between	consecutive	encoder
marker	or	Z-bit	indexes.	If	the	encoder	does	not	have	an
index	output	the	encoder	resolution	can	be	referred	to	as
lines	per	revolution.



F 	

F farad
FIFO First-in-first-out	memory	buffer—the	first	data	stored	is	the

first	data	sent	to	the	acceptor.	FIFOs	are	often	used	on
DAQ	devices	to	temporarily	store	incoming	or	outgoing	data
until	that	data	can	be	retrieved	or	output.	For	example,	an
analog	input	FIFO	stores	the	results	of	A/D	conversions
until	the	data	can	be	retrieved	into	system	memory,	a
process	that	requires	the	servicing	of	interrupts	and	often
the	programming	of	the	DMA	controller.	This	process	can
take	several	milliseconds	in	some	cases.	During	this	time,
data	accumulates	in	the	FIFO	for	future	retrieval.	With	a
larger	FIFO,	longer	latencies	can	be	tolerated.	In	the	case
of	analog	output,	a	FIFO	permits	faster	update	rates,
because	the	waveform	data	can	be	stored	on	the	FIFO
ahead	of	time.	This	again	reduces	the	effect	of	latencies
associated	with	getting	the	data	from	system	memory	to	the
DAQ	device.

filter
parameters

Indicates	the	control	loop	parameter	gains	(PID	gains)	for	a
given	axis.

filtering Type	of	signal	conditioning	that	filters	unwanted	signals
from	the	signal	being	measured.

flash	ROM Type	of	electrically	reprogrammable	read-only	memory.
following
error	trip
point

The	difference	between	the	instantaneous	commanded
trajectory	position	and	the	feedback	position.	If	the	following
error	increases	beyond	the	maximum	allowable	value
entered—referred	to	as	the	following	error	trip	point—the
motor	trips	on	following	error	and	is	killed,	preventing	the
axis	from	running	away.

freewheel Condition	of	a	motor	when	power	is	de-energized	and	the
motor	shaft	is	free	to	turn	with	only	frictional	forces	to
impede	it.

full-step Full-step	mode	of	a	stepper	motor—For	a	two-phase	motor,
this	refers	to	energizing	two	windings	or	phases
simultaneously.



G 	

Gnd ground
GND ground



H 	

half-step Mode	of	a	stepper	motor—For	a	two	phase	motor,	this
refers	to	alternately	energizing	two	windings	and	then	only
one.	In	half	step	mode,	alternate	steps	are	strong	and
weak,	but	there	is	significant	improvement	in	low-speed
smoothness	over	the	full-step	mode.

hex hexadecimal
holding
torque

Force	that	a	motor	can	provide	or	withstand	while	still
remaining	in	a	fixed	stop	location	without	any	rotation,
translation	or	movement.

home
switch/home
position
(input)

Reference	position	in	a	motion	control	system	derived
from	a	mechanical	datum	or	switch.	Often	designated	as
the	zero	position	in	an	absolute	position	frame	of
reference.	The	motion	controller	halts	the	motor	if	it	finds
this	switch	active	while	performing	a	find	home	sequence.

host
computer

Computer	in	which	the	motion	controller	is	installed,	or	that
is	controlling	the	remote	system	in	which	the	motion
controller	is	installed.

hybrid
stepper
motor

Motor	type	designed	to	move	in	discrete	step	increments,
(typically	specified	in	degrees).	Hybrid	stepper	motors
have	permanent	magnet	rotor	elements	with	a	coil	wound
stator	(outer	shell)	and	no	brushes	contacting	between	the
two.	The	current	through	the	coil	phases	is	switched	in	a
predetermined	sequence	(commutated)	to	produce	the
appropriate	motion	in	a	given	direction.

Hz hertz—the	number	of	scans	read	or	updates	written	per
second.



I 	

I/O input/output—The	transfer	of	data	to	and	from	a	computer
system	involving	communications	channels,	operator	interface
devices,	data	acquisition,	and/or	motion	control	interfaces.

ID identification
import
library

Windows-specific	file	that	contains	information	about	the	VIs
contained	in	a	companion	dynamic	link	library	(DLL).	Windows
applications	are	typically	linked	to	one	or	more	import	libraries.

in inches
index Marker	between	consecutive	encoder	revolutions.
inverting Defines	the	polarity	of	a	switch	(limit	switch,	home	switch,	and

so	on)	when	it	is	in	its	active	state.	If	these	inputs	are	active
low	they	are	said	to	have	inverting	polarity.	See	also	active
low.

IRQ interrupt	request
ISA industry-standard	architecture



J
jerk Derivative	of	acceleration	(change	of	acceleration	per	unit	time)

measured	in	units	of	counts	(steps)/s3.



K 	

k kilo—The	standard	metric	prefix	for	1,000,	or	103,	used	with	units	of
measure	such	as	volts,	hertz,	and	meters.

K kilo—The	prefix	for	1,024,	or	210,	used	with	B	in	quantifying	data	or
computer	memory.



L 	

latching Signal	that	maintains	its	value	while	in	a	given	state,	as
opposed	to	a	signal	that	momentarily	pulses	when
entering	or	exiting	a	state.

LIFO last-in,	first-out
limit	switch/end-
of-travel
position	(input)

Sensors	that	alert	the	control	electronics	that	the
physical	end	of	travel	is	near	and	that	the	motion	must
stop.



M 	

m meters
MCS Move	Complete	Status
microstep Proportional	control	of	energy	in	the	coils	of	a	stepper	motor

that	allows	the	motor	to	move	to	or	stop	at	locations	other
than	the	fixed	magnetic/mechanical	pole	positions
determined	by	the	motor	specifications.	This	capability
facilitates	the	subdivision	of	full	mechanical	steps	on	a
stepper	motor	into	finer	microstep	locations	that	greatly
smooth	motor	running	operation	and	increase	the	resolution
or	number	of	discrete	positions	that	a	stepper	motor	can
attain	in	each	revolution.

modulo
position

Treat	the	position	as	if	it	is	within	the	range	of	total
quadrature	counts	per	revolution	for	an	axis.

MustOff State	or	bit	that	is	forced	off	(False)	or	must	be	off	to	satisfy	a
condition.

MustOn State	or	bit	that	is	forced	on	(True)	or	must	be	on	to	satisfy	a
condition.



N 	

noise An	undesirable	electrical	signal.	Noise	comes	from	external
sources	such	as	the	AC	power	line,	motors,	generators,
transformers,	fluorescent	lights,	soldering	irons,	CRT	displays,
computers,	electrical	storms,	welders,	radio	transmitters,	and
internal	sources	such	as	semiconductors,	resistors,	and
capacitors.	Noise	corrupts	signals	you	are	trying	to	send	or
receive.

non-
inverting

Defines	the	polarity	of	a	switch	(limit	switch,	home	switch,	and
so	on)	when	it	is	in	its	active	state.	If	these	inputs	are	active
high	they	are	said	to	have	non-inverting	polarity.	See	also
active	high.



O 	

open
collector

Method	of	output	capable	of	sinking	current,	but	not	sourcing
current.

open-
loop

Refers	to	a	motion	control	system	where	no	external	sensors,
or	feedback	devices,	are	used	to	provide	position	or	velocity
correction	signals.



P 	

packets Command	and	data	sent	as	a	group	over	a	computer
bus.

PCI peripheral	component	interconnect—A	high-performance
expansion	bus	architecture	originally	developed	by	Intel
to	replace	ISA	and	EISA.	PCI	is	achieving	widespread
acceptance	as	a	standard	for	PCs	and	workstations;	it
offers	a	theoretical	maximum	transfer	rate	of	132	MB/s.

phase
angle/phase
margin

Value	presented	in	PID	Loop	Tuning	Bode	Plot	analysis
that	represents	the	advance	or	lead	of	an	input	signal	to
the	output	signal	in	a	closed-loop	servo	controller.	Used
to	determine	closed-loop	system	stability	at	a	given
crossover	frequency.

PID	control
loop

proportional-integral-derivative	control	loop—A	control
method	in	which	the	controller	output	is	proportional	to
the	error,	the	error	time	history,	and	the	rate	at	which	the
error	is	changing.	The	error	is	the	difference	between	the
observed	and	the	commanded	values	of	a	variable	that	is
under	control	action.

PID	loop
tuning/servo
compensation

Flexible	adjustment	of	the	Proportional,	Integral,	and
Derivative	Gain	Parameters	along	with	loop	update	rate
or	frequency	to	assure	stable	operation	and	appropriate
dynamic	response	of	a	closed-loop	servo	system.

PIVff	control
loop

proportional-integral-velocity	feed	forward	control	loop—
A	control	method	that	operates	with	zero	derivative	gain
and	either	velocity	feedback	or	a	velocity	block	amplifier.

port 1.	 Communications	connection	on	a	computer	or	a
remote	controller.

2.	 Digital	port,	consisting	of	four	or	eight	lines	of
digital	input,	and/or	output.

position
breakpoint

Allows	a	motor	to	stop	at	a	given	point	so	that	another
action,	such	as	a	data	acquisition	or	an	image
acquisition,	can	take	place.	You	can	set	position
breakpoints	in	absolute	or	relative	quadrature	counts.



When	the	encoder	reaches	a	position	breakpoint,	the
associated	breakpoint	output	immediately	transitions.

position
resolution

Typically	determined	by	the	smallest	increment	of	motion
that	can	be	controlled.	In	stepper	motor	systems,	it	is
determined	by	the	number	of	steps	per	revolution,
typically	as	a	limitation	of	the	stepper	driver
microstepping	value	or	of	the	feedback	device	resolution.
In	servo	motor	systems,	it	is	entirely	determined	by	the
resolution	of	the	feedback	device	in	counts	per	revolution
of	the	motor.

power	cycling Turning	the	host	computer	off	and	then	back	on.	This
resets	the	motion	controller.

profile Instantaneous	position	versus	time	output	of	a	trajectory
generator.

pull-in	move When	stepper	motors	are	run	in	closed-loop	mode,	the
encoder	feedback	is	used	to	verify	the	position	of	an	axis
when	the	motion	ends.	The	motion	controller	then
commands	the	axis	to	do	a	final	move	so	that	it	is	at	the
specified	target	position.

PWM pulse	width	modulation—Method	of	controlling	the
average	current	in	a	motor	phase	winding	by	varying	the
on-time	(duty	cycle)	of	transistor	switches.

PXI PCI	eXtensions	for	Instrumentation



Q 	

quadrature
counts

Encoder	line	resolution	times	four.	The	encoder	resolution	is
the	number	of	encoder	lines	between	consecutive	encoder
indexes	(marker	or	Z-bit).	If	the	encoder	does	not	have	an
index	output	the	encoder	resolution	can	be	referred	to	as
lines	per	revolution,	lines	per	inch,	lines	per	millimeter,	and
so	on.



R 	

RAM random-access	memory
RDB return	data	buffer
relative
breakpoint

Sets	the	position	breakpoint	for	an	encoder	in	relative
quadrature	counts.

relative
position

Destination	or	target	position	for	motion	specified	with
respect	to	the	current	location,	regardless	of	its	value.

relative
position
mode

Treat	the	target	position	loaded	as	position	relative	to	current
position	while	making	a	move.

ribbon
cable

Flat	cable	in	which	the	conductors	are	side	by	side.

ROM read-only	memory—non-volatile	memory	used	for	storing
code,	programs,	and	data.

rotary	axis Axis	for	which	rotary	counts	are	loaded.	The	axis	moves	to
the	target	position	by	taking	the	shortest	path,	either	forward
or	backwards,	while	remaining	within	the	one	revolution
defined	by	the	loaded	modulo	value.

RPM revolutions	per	minute—Units	for	velocity.
RPSPS	or
RPS/S

revolutions	per	second	squared—Units	for	acceleration	and
deceleration.

RTR Ready	to	Receive
RTSI real-time	system	integration	bus—the	National	Instruments

timing	bus	that	connects	controllers	directly,	by	means	of
connectors	on	top	of	the	controllers,	for	precise
synchronization	of	functions.



S 	

s,	sec seconds
servo 1.	 Specifies	an	axis	that	controls	a	servo	motor.

2.	 Specifies	when	a	servo	motor	becomes	active.

sinusoidal
commutation

Method	of	controlling	current	in	the	windings	of	a
brushless	servo	motor	by	using	the	pattern	of	a	sine	wave
to	shape	the	smooth	delivery	of	current	to	three	motor
inputs,	each	120°	out	of	phase	from	the	next.

slot Position	where	a	module	can	be	inserted	into	an	ISA	or
PCI	backplane.

step	output
rate

The	frequency	of	the	step	output	control	pulses	generated
by	a	controller/indexer	and	provided	to	an	amplifier	driver.
The	combination	of	step	output	rate	(steps/s),	steps	per
revolution	(steps/rev),	and	time	(60	s/minute)	provide	a
basic	representation	of	motor	velocity	in	RPM.	Linear
speed	may	be	further	derived	by	additional	mechanical
data,	lead	screw	revolutions	per	inch,	and	so	on.

stepper Specifies	an	axis	that	controls	a	stepper	motor.



T 	

toggle Changing	state	from	high	to	low,	back	to	high,	and	so	on.
torque Force	tending	to	produce	rotation.
totem	pole Method	of	output	capable	of	sinking	and	sourcing	current.
trapezoidal
profile

Typical	motion	trajectory,	where	a	motor	accelerates	up	to
the	programmed	velocity	using	the	programmed
acceleration,	traverses	at	the	programmed	velocity,	and
then	decelerates	at	the	programmed	acceleration	to	the
target	position.

trigger Any	event	that	causes	or	starts	some	form	of	data	capture.
trigger
buffer
inputs

Digital	signal	that	begins	the	execution	of	a	sequence	of
motion	commands	stored	on	the	controller/indexer	allowing
the	commands	to	fully	execute	until	the	end	of	the	sequence
is	reached.

TTL transistor-transistor	logic



U
UOM unit	of	measure



V 	

V volts
velocity	mode Move	the	axis	continuously	at	a	specified	velocity.



W 	

watchdog Timer	task	that	shuts	down,	or	resets,	the	motion	control
device	if	any	serious	error	occurs.

word Standard	number	of	bits	that	a	processor	or	memory
manipulates	at	one	time,	typically	8-bit,	16-bit,	or	32-bit.



Z
Z-bit Marker	or	index	between	consecutive	encoder	revolutions.



Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR



APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Discussion
Forums	at	ni.com/forums.	National	Instruments	Applications
Engineers	make	sure	every	question	receives	an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	662	457990-0
Belgium 32	(0)	2	757	0020
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	6555	7838
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 385	(0)	9	725	72511
France 33	(0)	1	48	14	24	24
Germany 49	89	7413130
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	413091
Japan 81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	(0)	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	(0)	348	433	466
New	Zealand 0800	553	322
Norway 47	(0)	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	495	783	6851
Singapore 1800	226	5886
Slovenia 386	3	425	42	00



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	(0)	8	587	895	00
Switzerland 41	56	2005151
Taiwan 886	02	2377	2222
Thailand 662	278	6777
Turkey 90	212	279	3031
United	Kingdom 44	(0)	1635	523545
United	States	(Corporate) 512	683	0100


	NI-Motion Help
	Related Documentation
	Using Help
	Conventions
	Navigating Help
	Searching Help
	Printing Help File Topics

	Introduction
	About NI-Motion
	NI Motion Controller Architecture
	NI Motion Controller Functional Components
	NI 73xx Controller Architecture
	NI SoftMotion Controller Architecture
	NI SoftMotion Controller Communication Watchdog



	Creating NI-Motion Applications

	Programming with NI-Motion
	What You Need to Know about Moves
	Move Profiles
	Trapezoidal
	S-Curve

	Basic Moves
	Coordinate Space
	Trajectory Parameters
	NI 73xx Velocity in RPM
	NI 73xx Velocity in Counts/s or Steps/s
	NI 73xx Acceleration in Counts/s^2
	NI 73xx Acceleration in RPS/s
	NI 73xx Velocity Override in Percent
	NI 73xx Arc Angles in Degrees

	NI 73xx Arc Move Limitations
	Timing Loops

	Straight-Line Moves
	Position-Based Straight-Line Moves
	Straight-Line Move LabVIEW Diagram
	Straight-Line Move C/C++ Code

	Velocity-Based Straight-Line Moves
	Velocity-Based Straight-Line Move LabVIEW Diagram
	Velocity-Based Straight-Line Move C/C++ Code

	Velocity Profiling Using Velocity Override
	Velocity Profiling Using Velocity Override LabVIEW Diagram
	Velocity Profiling Using Velocity Override C/C++ Code


	Arc Moves
	Circular Arcs
	Circular Arc Move LabVIEW Diagram
	Circular Arc Move C/C++ Code

	Spherical Arcs
	Spherical Arc Move LabVIEW Diagram
	Spherical Arc Move C/C++ Code

	Helical Arcs
	Helical Arc Move LabVIEW Diagram
	Helical Arc Move C/C++ Code


	Contoured Moves
	Contoured Move LabVIEW Diagram
	Contoured Move C/C++ Code

	Reference Moves
	Reference Move LabVIEW Diagram
	Reference Move C/C++ Code

	Blending
	Blend Factors
	Superimpose Two Moves
	Blend after First Move Is Complete
	Blend after Delay

	Blended Move LabVIEW Diagram
	Blended Move C/C++ Code

	Electronic Gearing and Camming
	Gearing
	Electronic Gearing LabVIEW Diagram
	Electronic Gearing C/C++ Code

	Camming
	Camming Application Example
	Slave Offset
	Master Offset

	Electronic Camming LabVIEW Diagram
	Electronic Camming C/C++ Code


	Acquiring Time-Sampled Position and Velocity Data
	Acquire Data LabVIEW Diagram
	Acquire Data C/C++ Code

	Synchronization
	Absolute Breakpoints
	Buffered Breakpoints (NI 7350 only)
	Buffered Breakpoint LabVIEW Diagram
	Buffered Breakpoint C/C++ Code

	Single Position Breakpoints
	Single Position Breakpoint LabVIEW Diagram
	Single Position Breakpoint C/C++ Code


	Relative Position Breakpoints
	Relative Position Breakpoints LabVIEW Diagram
	Relative Position Breakpoints C/C++ Code

	Periodically Occurring Breakpoints
	Periodic Breakpoints (NI 7350 only)
	Periodic Breakpoint LabVIEW Diagram
	Periodic Breakpoint C/C++ Code

	Modulo Breakpoints (NI 7330, NI 7340, and NI 7390 only)
	Modulo Breakpoints LabVIEW Diagram
	Modulo Breakpoints C/C++ Code


	Configuring the Breakpoint Pulse Width (NI 7350 only)
	High-Speed Capture
	Buffered High-Speed Capture (NI 7350 only)
	Buffered High-Speed Capture LabVIEW Diagram
	Buffered High-Speed Capture C/C++ Code

	Non-Buffered High-Speed Capture
	High-Speed Capture LabVIEW Diagram
	High-Speed Capture C/C++ Code


	Real-Time System Integration Bus (RTSI)
	RTSI Implementation on the Motion Controller
	RTSI Input and Output


	Torque Control
	Analog Feedback
	Torque Control Using Analog Feedback LabVIEW Diagram
	Torque Control Using Analog Feedback C/C++ Code

	Monitoring Force
	Torque Control Using Monitoring Force LabVIEW Diagram
	Torque Control Using Monitoring Force C/C++ Code

	Speed Control Based on Analog Value
	Speed Control Based on Analog Feedback LabVIEW Diagram
	Speed Control Based on Analog Feedback C/C++ Code


	Onboard Programs
	Using Onboard Programs with the NI SoftMotion Controller
	Using Onboard Programs with NI 73xx Motion Controllers
	Writing Onboard Programs
	Onboard Program LabVIEW Diagram
	Onboard Program C/C++ Code

	Running, Stopping, and Pausing Onboard Programs
	Conditionally Executing Onboard Programs
	Onboard Program Conditional Execution LabVIEW Diagram
	Onboard Program Conditional Execution C/C++ Code

	Using Onboard Memory and Data
	Updating Velocity Based on ADC Channel LabVIEW Diagram
	Updating Velocity Based on ADC Channel C/C++ Code

	Branching Onboard Programs
	Branching Onboard Programs LabVIEW Diagram
	Branching Onboard Programs C/C++ Code

	Math Operations
	Indirect Variables
	Onboard Buffers
	Synchronizing Host Applications with Onboard Programs
	Synchronizing Host Applications with Onboard Programs LabVIEW Diagram
	Synchronizing Host Applications with Onboard Programs C/C++ Code

	Onboard Subroutines
	Onboard Subroutine LabVIEW Diagram
	Onboard Subroutine C/C++ Code

	Automatically Starting Onboard Programs
	Changing a Time Slice


	Creating Applications Using NI-Motion
	Scanning
	Connecting Straight-Line Move Segments
	Raster Scanning Using Straight Lines LabVIEW Diagram
	Raster Scanning Using Straight Lines C/C++ Code

	Blending Straight-Line Move Segments
	Raster Scanning Using Blended Straight Lines LabVIEW Diagram
	Raster Scanning Using Blended Straight Lines C/C++ Code

	User-Defined Scanning Path
	User-Defined Scanning Path LabVIEW Diagram
	User-Defined Scanning Path C/C++ Code


	Rotating Knife
	Rotating Knife LabVIEW Diagram
	Rotating Knife C/C++ Code


	Glossary
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

