
Control	Design	and	Simulation	Module
June	2008,	371894C-01
Simulation	is	a	process	that	involves	using	software	to	recreate	and
analyze	the	behavior	of	dynamic	systems.	You	use	the	simulation
process	to	lower	product	development	costs	by	accelerating	product
development.	You	also	use	the	simulation	process	to	provide	insight	into
the	behavior	of	dynamic	systems	you	cannot	replicate	conveniently	in	the
laboratory.	For	example,	simulating	a	jet	engine	saves	time,	labor,	and
money	compared	to	building,	testing,	and	rebuilding	an	actual	jet	engine.
You	can	use	the	LabVIEW	Control	Design	and	Simulation	Module	to
simulate	a	dynamic	system	or	a	component	of	a	dynamic	system.	For
example,	you	can	simulate	only	the	plant	while	using	hardware	for	the
controller,	actuators,	and	sensors.
If	you	are	new	to	the	Control	Design	and	Simulation	Module,	consider
completing	the	Getting	Started	with	Simulation	tutorial.
In	addition	to	the	topics	contained	in	this	help	file,	the	LabVIEW	Control
Design	User	Manual	contains	information	about	using	LabVIEW	to
design,	analyze,	and	deploy	controllers	for	dynamic	systems.
The	following	table	describes	the	tasks	you	can	perform	with	the	Control
Design	and	Simulation	Module	and	the	components	you	use	for	these
tasks.

Task Component
Design,	analyze,	and	deploy	controllers
for	dynamic	system	models

Control	Design	VIs	and
functions.	You	also	can	use
the	Control	Design
MathScript	functions	to
design	and	analyze
controllers.

Configure	simulation	parameters,
including	the	ordinary	differential	equation
(ODE)	solver,	and	define	the	simulation	as
part	of	a	LabVIEW	block	diagram

Simulation	Loop

Build,	simulate,	and	deploy
dynamic	system	models,	including
models	developed	with	the

Simulation	functions

lvsimhowto.chm::/SIM_H_GS.html
javascript:AcrobatLink('../manuals/CD_User_Manual.pdf');
lvctrldsgn.chm::/control_design_VIs.html
lvcdtextmath.chm::/CDMC_cdt.html
lvsim.chm::/SIM_Simulation_Loop.html
lvsim.chm::/Simulation.html


LabVIEW	System	Identification
Toolkit	or	the	Control	Design	and
Simulation	Module.
Execute	offline,	Rapid	Control
Prototype	(RCP),	and	Hardware-
in-the-Loop	(HIL)	configurations
Generate	and	combine	input	and
feedback	signals
Collect	and	display	simulation
data

Trim	and	linearize	a	nonlinear	dynamic
system	model

Trim	&	Linearize	VIs;
Linearize	Subsystem	dialog
box

Determine	the	optimal	parameters	for	a
dynamic	system	model,	given	a	set	of
constraints

Optimal	Design	VIs

Convert	a	model	developed	in	The
MathWorks,	Inc.	Simulink®	application
software	into	LabVIEW	block	diagram
code

Simulation	Model	Converter

©	2002–2008	National	Instruments	Corporation.	All	rights	reserved.

lvsim.chm::/SIM_TrimLin.html
lvsim.chm::/LinearizeSubsystem.html
lvsim.chm::/SIM_Optimization_pal.html
lvsimhowto.chm::/SIM_H_ConvMdl.html
lvsim.chm::/SIM_SimTrans.html


Version	8.6	Features	(Control	Design	and
Simulation	Module)
Refer	to	the	LabVIEW	8.6	Features	and	Changes	topic	for	information
about	new	features	in	LabVIEW	8.6.
Refer	to	the	readme_ControlandSim.html	file,	located	in	the	labview\readme
directory,	for	a	complete	list	of	new	features	and	changes,	information
about	upgrade	and	compatibility	issues	specific	to	different	versions	of
the	Control	Design	and	Simulation	Module,	and	information	about	known
issues	with	the	Control	Design	and	Simulation	Module	8.6.

lvupgrade.chm::/LabVIEW_Features.html


Using	Simulation	Subsystems	Outside	a	Simulation	Loop
You	now	can	place	a	simulation	subsystem	on	a	block	diagram	outside	a
Simulation	Loop.	If	you	run	a	simulation	subsystem	on	a	block	diagram
outside	a	Simulation	Loop,	the	simulation	subsystem	executes	one	step
of	the	ordinary	differential	equation	solver	each	time	the	simulation
subsystem	is	called.



Placing	Constraints	on	an	MPC	Controller
Use	the	CD	Create	MPC	Controller	VI	to	create	an	MPC	controller	model
with	constraints	defined	using	either	the	dual	optimization	or	barrier
function	method.	Use	the	CD	Update	MPC	Window	VI	to	provide	setpoint
and	disturbance	profiles	to	the	MPC	controller	during	implementation.
You	also	can	use	the	CD	Set	MPC	Controller	VI	to	update	specified
parameters,	including	any	constraints,	of	an	MPC	controller	at	run	time.
Refer	to	the	LabVIEW	Control	Design	User	Manual	for	more	information
about	setting	constraints	for	an	MPC	controller.

lvctrldsgn.chm::/CD_CreateMPC.html
lvctrldsgn.chm::/CD_UpdateMPCWindow.html
lvctrldsgn.chm::/CD_SetMPC.html
javascript:AcrobatLink('../manuals/CD_User_Manual.pdf');


Implementation	Palette	Changes
The	Control	Design»Implementation	palette	has	the	following	changes:

The	CD	Discrete	Stochastic	State-Space	function	replaces	the
CD	Discrete	Stochastic	State-Space	(External)	function	and	the
CD	Discrete	Stochastic	State-Space	(Internal)	function.	Use	the
CD	Discrete	Stochastic	State-Space	function	outside	a
Simulation	Loop.	Use	the	new	Discrete	Stochastic	State-Space
function	inside	a	Simulation	Loop.
The	CD	Discrete	Observer	function	replaces	the	CD	Predictive
Observer	function,	the	CD	Current	Observer	Corrector	VI,	and
the	CD	Current	Observer	Predictor	VI.	The	CD	Current	Observer
Corrector	VI	and	the	CD	Current	Observer	Predictor	VI	no	longer
are	on	the	palette	but	still	work	in	VIs	you	created	in	a	previous
version	of	the	Control	Design	and	Simulation	Module.	Use	the
CD	Discrete	Observer	function	outside	a	Simulation	Loop.	Use
the	new	Discrete	Observer	function	inside	a	Simulation	Loop.
The	CD	Discrete	Kalman	Filter	function	replaces	the	CD	Discrete
Recursive	Kalman	Corrector	VI	and	the	CD	Discrete	Recursive
Kalman	Predictor	VI.	The	CD	Discrete	Recursive	Kalman
Corrector	VI	and	the	CD	Discrete	Recursive	Kalman	Predictor	VI
no	longer	are	on	the	palette	but	still	work	in	VIs	you	created	in	a
previous	version	of	the	Control	Design	and	Simulation	Module.
Use	the	CD	Discrete	Kalman	Filter	function	outside	a	Simulation
Loop.	Use	the	new	Discrete	Kalman	Filter	function	inside	a
Simulation	Loop.

The	Simulation»CD	Implementation	palette	has	been	removed.	The
changes	to	the	Control	Design»Implementation	palette	also	apply	to
the	Simulation»CD	Implementation	palette.	Additionally,	the	CD
Continuous	Observer	function	and	the	CD	Continuous	Recursive	Kalman
Filter	function	now	are	on	the	Simulation»Continuous	Linear	Systems
palette.

lvctrldsgn.chm::/CD_DiscStochSS.html
lvsim.chm::/SIM_DiscStochSS.html
lvctrldsgn.chm::/CD_DiscObserver.html
lvsim.chm::/SIM_DiscObserver.html
lvctrldsgn.chm::/CD_DiscKalmanFilter.html
lvsim.chm::/SIM_DiscKalmanFilter.html


LabVIEW	Control	Design	Assistant	3.0
Use	the	interactive	LabVIEW	Control	Design	Assistant	to	develop	models
that	reflect	the	behavior	of	single-input	single-output	(SISO)	systems.
Using	the	Control	Design	Assistant,	you	can	load	or	create	a	model	of	a
plant,	analyze	the	time	or	frequency	response,	and	then	synthesize	a
controller.	The	Control	Design	Assistant	has	windows	in	which	you	can
immediately	see	the	mathematical	equation	and	graphical	representation
that	describe	the	model.	You	also	can	view	the	response	data	and	the
configuration	of	the	controller.	Select	Tools»Control	Design	and
Simulation»Launch	Control	Design	Assistant	to	launch	the	Control
Design	Assistant	from	LabVIEW.



MathScript	Node	on	the	Simulation	Diagram
You	now	can	place	a	MathScript	Node	directly	on	a	simulation	diagram.

gmath.chm::/MathScript_Node.html


Related	Documentation	(Control	Design	and
Simulation	Module)
The	following	documents	contain	information	that	you	might	find	helpful
as	you	use	the	LabVIEW	Control	Design	and	Simulation	Module.

Getting	Started	with	LabVIEW—This	manual	contains	an	in-depth
introduction	to	LabVIEW,	including	several	tutorials	that
showcase	LabVIEW	features.
LabVIEW	Fundamentals—This	manual	provides	information
about	LabVIEW	programming	concepts,	techniques,	features,
VIs,	and	functions	you	can	use	to	create	many	types	of
applications.
LabVIEW	Control	Design	User	Manual—This	manual	contains
information	about	using	LabVIEW	to	design,	analyze,	and	deploy
controllers	for	dynamic	systems.
Getting	Started	with	the	LabVIEW	Real-Time	Module—This
manual	introduces	the	concepts	necessary	to	create	real-time
simulations.
Real-Time	Execution	Trace	Toolkit	documentation.
NI-CAN	Hardware	and	Software	Manual
NI-DAQmx	Help
LabVIEW	Control	Design	and	Simulation	Module	Readme—Use
this	file	to	learn	important	last-minute	information,	including
installation	and	upgrade	issues,	compatibility	issues,	changes
from	the	previous	version,	and	known	issues	with	the	Control
Design	and	Simulation	Module.	Open	this	readme	by	selecting
Start»All	Programs»National	Instruments»LabVIEW»Readme
and	opening	readme_ControlandSim.html	or	by	navigating	to	the
labview\readme	directory	and	opening	readme_ControlandSim.html.
LabVIEW	Control	Design	and	Simulation	Module	example	VIs—
Refer	to	the	labview\examples\Control	and	Simulation	directory	for
example	VIs	that	demonstrate	common	tasks	using	the	Control
Design	and	Simulation	Module.	You	also	can	access	these	VIs	by
selecting	Help»Find	Examples	and	selecting	Toolkits	and
Modules»Control	and	Simulation	in	the	NI	Example	Finder
window.

javascript:AcrobatLink('../manuals/LV_Getting_Started.pdf');
lvconcepts.chm::/LabVIEW_Fundamentals.html
javascript:AcrobatLink('../manuals/CD_User_Manual.pdf');
javascript:AcrobatLink('../manuals/RT_Getting_Started.pdf');
lvsimconcepts.chm::/SIM_C_RTSim.html
lvtracehelp.chm::/LV_TraceToolkit_Help.html
lvhowto.chm::/Finding_Example_VIs.html


Additional	LabVIEW	documentation.
You	must	have	Adobe	Reader	6.0.1	or	later	installed	to	view	or	search
the	PDF	versions	of	these	manuals.
Refer	to	the	Adobe	Systems	Incorporated	Web	site	to	download	Acrobat
Reader.	Refer	to	the	National	Instruments	Product	Manuals	Library	for
updated	documentation	resources.
You	must	install	the	PDFs	to	access	them	from	this	help	system.

Note		The	following	resources	offer	useful	background	information
on	the	general	concepts	discussed	in	this	documentation.	These
resources	are	provided	for	general	informational	purposes	only
and	are	not	affiliated,	sponsored,	or	endorsed	by	National
Instruments.	The	content	of	these	resources	is	not	a
representation	of,	may	not	correspond	to,	and	does	not	imply
current	or	future	functionality	in	the	Control	Design	and	Simulation
Module	or	any	other	National	Instruments	product.
Åström,	K.,	and	T.	Hagglund.	1995.	PID	controllers:	theory,
design,	and	tuning.	2d	ed.	ISA.
Balbis,	Luisella.	2006.	Predictive	control	tool	kit.	UKACC	control,
2006.	Mini	symposia:	87–96.
Bertsekas,	Dimitri	P.	1999.	Nonlinear	Programming.	2d	ed.
Belmont,	MA:	Athena	Scientific.
Dorf,	R.	C.,	and	R.	H.	Bishop.	2001.	Modern	control	systems.	9th
ed.	Upper	Saddle	River,	NJ:	Prentice	Hall.
Franklin,	G.	F.,	J.	D.	Powell,	and	A.	Emami-Naeini.	2002.
Feedback	control	of	dynamic	systems.	4th	ed.	Upper	Saddle
River,	NJ:	Prentice	Hall.
Franklin,	G.	F.,	J.	D.	Powell,	and	M.	L.	Workman.	1998.	Digital
control	of	dynamic	systems.	3d	ed.	Menlo	Park,	CA:	Addison
Wesley	Longman,	Inc.
Kuo,	Benjamin	C.	1992.	Digital	Control	Systems.	2d	ed.	Ft.
Worth:	Saunders	College.
Nise,	Norman	S.	2000.	Control	systems	engineering.	3d	ed.	New
York:	John	Wiley	&	Sons,	Inc.
Ogata,	Katsuhiko.	1995.	Discrete-time	control	systems.	2d	ed.
Englewood	Cliffs,	N.J.:	Prentice	Hall.

lvconcepts.chm::/LabVIEW_Documentation_Resources.html
lvhowto.chm::/Searching_PDFs.html
javascript:WWW(WWW_Adobe)
javascript:WWW(WWW_Manuals)
lvhowto.chm::/Install_LV_PDFs.html


Ogata,	Katsuhiko.	2001.	Modern	control	engineering.	4th	ed.
Upper	Saddle	River,	NJ:	Prentice	Hall.
Zhou,	Kemin,	and	John	C.	Doyle.	1998.	Essentials	of	robust
control.	Upper	Saddle	River,	NJ:	Prentice	Hall.

The	following	books	contain	information	about	the	ordinary	differential
equation	(ODE)	solvers	the	Control	Design	and	Simulation	Module	uses.

Ascher,	U.	M.,	and	L.	R.	Petzold.	1998.	Computer	methods	for
ordinary	differential	equations	and	differential-algebraic
equations.	Philadelphia:	Society	for	Industrial	and	Applied
Mathematics.
Shampine,	Lawrence	F.	1994.	Numerical	solution	of	ordinary
differential	equations.	New	York:	Chapman	&	Hall,	Inc.

lvanlsconcepts.chm::/Solving_ODEs.html


Ordinary	Differential	Equation	Solvers	(Control
Design	and	Simulation	Module)
Because	many	dynamic	system	models	consist	of	differential	equations,
you	must	solve	these	differential	equations	to	observe	the	behavior	of	the
simulated	system.	LabVIEW	includes	several	ordinary	differential
equation	(ODE)	solvers	that	solve	these	equations.	Before	you	simulate	a
dynamic	system	model,	you	must	specify	and	configure	the	ODE	solver
for	that	simulation.
ODE	solvers	use	methods	to	approximate	the	solution	to	a	differential
equation.	The	ODE	solvers	implement	these	methods	in	a	variety	of
ways,	each	with	various	strengths	and	weaknesses.	Defining
characteristics	of	an	ODE	solver	include	the	following	qualities:

Accuracy	or	order
Stability
Computational	speed
Use	of	a	fixed	time	step	size	versus	a	variable	time	step	size
Use	of	a	single	step	versus	multiple	steps
Suitability	for	stiff	problems

lvanlsconcepts.chm::/Solving_ODEs.html
lvanlsconcepts.chm::/ODE_Solvers_in_LabVIEW.html
lvsimhowto.chm::/SIM_H_ODE.html
lvanlsconcepts.chm::/ODE_Solver_Accuracy_and_Order.html
lvanlsconcepts.chm::/Vble_vs_Fixed_Step_Size_ODE.html
lvanlsconcepts.chm::/Single_vs_Multi_Step_ODE.html
lvanlsconcepts.chm::/Stiff_Problems.html


Considerations	for	Embedded	Targets	(Control
Design	and	Simulation	Module)
If	you	install	LabVIEW	for	a	particular	embedded	target,	you	can	use	the
LabVIEW	Control	Design	and	Simulation	Module	to	develop	and	execute
simulations	on	that	target.	Refer	to	the	documentation	for	the	target	you
purchased	for	information	about	developing	and	executing	VIs	on	that
target.
When	developing	a	simulation	for	an	embedded	target,	take	the	following
factors	into	consideration:

You	cannot	use	the	Trim	&	Linearize	VIs	or	Optimal	Design	VIs
when	developing	on	an	embedded	target.	Therefore,	LabVIEW
does	not	display	these	palettes	when	you	are	in	an	embedded
context.
You	can	use	a	Conditional	Disable	structure	to	enable	real-world
I/O	when	the	simulation	is	on	the	embedded	target	and	simulated
I/O	when	the	same	simulation	is	running	on	a	Windows	computer.
Using	this	method,	you	do	not	have	to	modify	the	VI	manually	to
use	different	I/O	code	when	you	switch	targets.
Use	as	few	Simulation	functions	as	possible.	Combine	as	many
sequential	transformations	as	possible	into	a	single	Simulation
function.	For	example,	instead	of	using	three	State-Space
functions	to	describe	a	controller	model,	combine	those	functions
into	a	single	State-Space	function.

Note		You	can	use	the	Model	Interconnection	VIs	to
combine	dynamic	system	models.

Consider	the	speed/memory	trade-off	when	using	simulation
subsystems.	Using	fewer	simulation	subsystems	might	increase
execution	speed	but	might	require	you	to	duplicate	code
elsewhere	on	the	simulation	diagram.
Consider	using	fixed	step-size	ordinary	differential	equation
(ODE)	solvers,	that	is,	the	solvers	not	marked	(variable).	Variable
step-size	ODE	solvers	introduce	computational	overhead	when
changing	step	sizes.

Note		The	Control	Design	and	Simulation	Module	does	not
guarantee	accuracy	when	using	the	BDF	or	Rosenbrock

lvsim.chm::/SIM_TrimLin.html
lvsim.chm::/SIM_Optimization_pal.html
glang.chm::/Conditional_Disable_Structure.html
lvsim.chm::/SIM_StateSpace.html
lvctrldsgn.chm::/model_interconnect.html
lvanlsconcepts.chm::/Vble_vs_Fixed_Step_Size_ODE.html
lvanlsconcepts.chm::/Solving_ODEs.html


ODE	solvers	on	embedded	targets.	If	these	solvers	appear
to	produce	inaccurate	results	on	an	embedded	target,
choose	another	ODE	solver.



Glossary	(Control	Design	and	Simulation
Module)
A B C D E F H I L M N O P R S T

LabVIEW	Glossary

lvconcepts.chm::/glossary.html


A
Ackermann A	technique	for	placing	poles	in	a	system	model.	Use	the

CD	Ackermann	VI	to	implement	this	technique.
actuator A	physical	device	that	applies	the	control	action	to	the	plant.
auto-
covariance

A	measure	of	how	closely	a	value	of	a	stochastic	process,
such	as	noise,	varies	with	the	subsequent	value	of	that
process.	

lvctrldsgn.chm::/Ackermann.html


B
balanced
system
model

A	system	model	with	identical	controllability	and	observability
diagonal	Grammians.	Use	the	CD	Balance	State-Space
Model	(Diagonal)	VI	and	the	CD	Balance	State-Space	Model
(Grammians)	VI	to	balance	a	state-space	system	model.

Bode
plot

A	plot	that	shows	the	gain	and	phase	margins	of	a	system
model	for	a	common	frequency	range.	Bode	plots	show	how
close	a	system	model	is	to	instability.	Use	the	CD	Bode	VI	to
create	a	Bode	plot	for	a	system	model.

lvctrldsgn.chm::/Balance_SS_Models_Diag.html
lvctrldsgn.chm::/Balance_SS_Models_Gram.html
lvctrldsgn.chm::/Bode.html


C
CGD Common	Graph	Description.	The	format	the	Simulation

Model	Converter	uses	to	store	each	system,	subsystem,
block,	and	line	from	a	model	developed	in	The	MathWorks,
Inc.	Simulink®	simulation	environment.

constraints See	inequality	constraints.
continuous
model

A	dynamic	system	model	that	represents	real-world	signals,
which	vary	continuously	with	time.	You	characterize	a
continuous	model	by	differential	equations.	See	also
discrete	model.

controller A	device	that	regulates	the	operation	of	a	dynamic	system.
cost The	scalar	value	that	results	from	solving	a	cost	function.
cost
function

A	performance	measure	you	want	to	minimize	when
designing	optimal	parameters.	A	cost	function	is	a	functional
equation	that	maps	a	set	of	points	in	a	time	series	to	a
single	scalar	value.

lvsim.chm::/SIM_SimTrans.html
lvsimconcepts.chm::/SIM_C_Opt.html


D
design See	optimal	design.
direct
feedthrough

A	relationship	between	a	function	input	and	a	function
output	in	which	the	function	uses	the	input	at	the	current
step	to	calculate	the	output	at	the	current	step.	See	also
indirect	feedthrough.

discrete
model

A	dynamic	system	model	that	represents	signals	that	are
sampled	at	discontinuous	intervals	in	time.	You
characterize	a	discrete	model	by	difference	equations.	See
also	continuous	model.

distributed
parameter
model

A	physical	model	that	you	can	describe	with	partial
differential	equations.	See	also	lumped	parameter	model.

dynamic
system

A	system	whose	behavior	varies	with	time.

dynamic
system
model

A	differential	or	difference	equation	that	represents	the
behavior	of	all	or	part	of	a	dynamic	system.



E
empirical
modeling

A	modeling	technique	in	which	you	use	experimental	data	to
define	a	dynamic	system	model.	See	also	physical	modeling.



F
feedback
cycle

A	cycle	in	which	data	flow	originates	from	an	output	of	a
function	or	subsystem	and	terminates	as	an	input	of	the	same
function	or	subsystem.	See	also	indirect	feedthrough.



H
HIL Hardware-in-the-loop.	A	simulation	configuration	in	which	you	test

a	controller	implementation	with	a	simulated	system.	See	also
RCP.



I
indirect
feedthrough

A	relationship	between	a	function	input	and	a	function
output	in	which	the	function	does	not	use	the	input	at	the
current	step	to	compute	the	output	at	the	current	step.	See
also	direct	feedthrough.

inequality
constraints

Any	restrictions	you	place	on	how	the	optimal	design
process	determines	optimal	parameter	values.	You	can
define	inequality	constraints	for	the	control	action,	the
output,	the	rate	of	change	of	the	control	action,	and	the
rate	of	change	of	the	output.

Input	Node A	collection	of	input	terminals	attached	to	the	Simulation
Loop.	Use	the	Input	Node	to	configure	simulation
parameters	programmatically.	See	also	Output	Node.

lvsim.chm::/SIM_Simulation_Loop.html


L
linear	model A	dynamic	system	model	that	obeys	the	principles	of

superposition	and	homogeneity.	See	also	nonlinear
model.

linearize A	procedure	that	approximates	the	behavior	of	a	nonlinear
model.	See	also	trim.

lumped
parameter
model

A	physical	model	you	can	describe	with	an	ordinary
differential	equation.	See	also	distributed	parameter
model.

lvsimconcepts.chm::/SIM_C_TrimLin.html


M
model See	dynamic	system	model.



N
nonlinear
model

A	dynamic	system	model	that	does	not	obey	the	principles	of
superposition	or	homogeneity.	See	also	linear	model.



O
offline A	simulation	configuration	in	which	you	use	software	to	simulate

the	controller	and	the	system	you	want	to	control.	No	hardware
is	involved	in	an	offline	simulation.

optimal
design

The	process	of	selecting	parameter	values	that	maximize	a
measure	of	performance.

Output
Node

An	output	terminal	on	the	Simulation	Loop.	Use	the	Output
Node	to	view	any	errors	the	simulation	diagram	generates.	See
also	Input	Node.

lvsim.chm::/SIM_Simulation_Loop.html


P
parameter
bounds

Any	restrictions	you	place	on	possible	parameter	values
during	the	optimal	design	process.	The	optimal	design
process	does	not	consider	any	parameter	values	outside	the
bounds	you	define.

parameter
design

See	optimal	design.

parameter
mesh

A	set	of	points	that	defines	the	distribution	patterns	of	sets	of
parameter	values	and	the	number	of	sets	to	generate.

period The	amount	of	time	in	which	a	discrete	linear	Simulation
function	must	complete.

physical
modeling

A	modeling	technique	in	which	you	use	the	laws	of	physics	to
define	a	dynamic	system	model.	See	also	empirical
modeling.

plant A	dynamic	system	whose	behavior	you	want	to	observe,
replicate,	or	manipulate.

lvsim.chm::/Discrete_Systems.html


R
RCP Rapid	control	prototype.	A	simulation	configuration	in	which	you

test	plant	hardware	with	a	software	model	of	the	controller.	See
also	HIL.



S
simulation
diagram

A	LabVIEW	diagram	that	allows	you	to	use	Simulation
functions	within	a	Simulation	Loop	or	simulation	subsystem.
A	simulation	diagram,	like	other	LabVIEW	diagrams,	has	the
following	semantic	properties:	The	order	of	operations	is	not
completely	specified	by	the	user.	The	order	of	operations	is
implied	by	data	interdependencies.	A	function	can	execute
only	after	all	necessary	inputs	have	become	available.
Outputs	are	generated	after	a	function	completes	execution.

Simulation
Loop

The	structure	that	executes	the	simulation	diagram	over
multiple	time	steps.

skew The	amount	of	time	by	which	you	want	to	delay	the
execution	of	a	discrete	linear	Simulation	function.

SQP Sequential	Quadratic	Programming.	A	general-purpose
numerical	optimization	algorithm.

subsystem A	section	of	a	simulation	diagram	you	represent	with	a
single	icon	instead	of	multiple	Simulation	functions	and
wires.

lvsim.chm::/Simulation.html
lvsim.chm::/SIM_Simulation_Loop.html
lvsimconcepts.chm::/SIM_C_SubsysTop.html
lvsim.chm::/Discrete_Systems.html
gmath.chm::/Constrained_Nonlinear_Optimization.html


T
time-
invariant
model

A	dynamic	system	model	whose	parameters	do	not	change
with	time.

time-
variant
model

A	dynamic	system	model	whose	parameters	change	with	time.

trim A	procedure	that	searches	for	the	values	of	states	and	inputs
that	produce	output	and/or	state	derivative	conditions	you
specify.	See	also	linearize.

lvsimconcepts.chm::/SIM_C_TrimLin.html


Building	and	Configuring	Simulations	(Control
Design	and	Simulation	Module)
Use	the	LabVIEW	Control	Design	and	Simulation	Module	to	build	a
simulation	diagram,	which	graphically	displays	a	dynamic	system	model
in	LabVIEW.	You	build	and	execute	a	simulation	diagram	by	placing
Simulation	functions	and	other	LabVIEW	VIs	and	structures	inside	the
Simulation	Loop.	The	simulation	diagram	then	uses	an	ordinary
differential	equation	(ODE)	solver	to	compute	the	behavior	of	the
dynamic	system	model.
The	simulation	diagram	supports	standard	LabVIEW	debugging
techniques.	You	can	use	execution	highlighting,	breakpoints,	probes,
custom	probes,	and	single-stepping	on	the	simulation	diagram.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

lvsimconcepts.chm::/SIM_C_Models.html
lvsim.chm::/Simulation.html
lvsim.chm::/SIM_Simulation_Loop.html
lvanlsconcepts.chm::/Solving_ODEs.html
lvconcepts.chm::/Debug_Techniques.html


Concepts
Use	this	book	to	learn	about	concepts	in	the	LabVIEW	Control	Design
and	Simulation	Module.	Refer	to	the	How-To	book	for	step-by-step
instructions	for	using	the	Control	Design	and	Simulation	Module.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.



Understanding	Dynamic	System	Models	(Control
Design	and	Simulation	Module)
A	dynamic	system	model	is	a	mathematical	representation	of	the
dynamics	between	the	inputs	and	outputs	of	a	dynamic	system.	You
generally	represent	dynamic	system	models	with	differential	or	difference
equations.	The	following	figure	shows	a	sample	dynamic	system.

The	dynamic	system	in	the	previous	figure	represents	a	closed-loop
system,	also	known	as	a	feedback	system.	In	closed-loop	systems,	the
controller	monitors	the	output	of	the	plant	and	adjusts	the	actuators	to
achieve	a	specified	response.
You	can	use	physical	laws	or	experimental	data	to	develop	a	dynamic
system	model.	The	following	sections	describe	features	of	both	the
physical	modeling	and	the	empirical	modeling	techniques.



Physical	Models
The	laws	of	physics	define	the	physical	model	of	a	system.	The	following
sections	describe	various	classifications	and	features	of	physical	models.
Lumped	versus	Distributed	Parameter	Models
If	you	can	use	an	ordinary	differential	equation	to	describe	a	physical
system,	the	resulting	model	is	a	lumped	parameter	model.	If	you	can	use
a	partial	differential	equation	to	describe	a	system,	the	resulting	model	is
a	distributed	parameter	model.
Linear	versus	Nonlinear	Models
Dynamic	system	models	are	either	linear	or	nonlinear.	A	linear	model
obeys	the	principle	of	superposition	and	homogeneity.	The	following
equations	are	true	for	linear	models.
y1	=	f(u1)

y2	=	f(u2)

f(u1	+	u2)	=	f(u1)	+	f(u2)	=	y1	+	y2
f(au1)	=	af(u1)	=	ay1
where	u1	and	u2	are	the	system	inputs,	y1	and	y2	are	the	system	outputs,
and	a	is	a	constant.
Conversely,	nonlinear	models	do	not	obey	the	principles	of	superposition
or	homogeneity.	Nonlinear	effects	in	real-world	systems	include
saturation,	dead-zone,	friction,	backlash,	and	quantization	effects;	relays;
switches;	and	rate	limiters.	Many	real-world	systems	are	nonlinear,
though	you	can	linearize	nonlinear	models	to	simplify	a	design	or
analysis	procedure.
Time-Variant	versus	Time-Invariant	Models
Dynamic	system	models	are	either	time-variant	or	time-invariant.	The
parameters	of	a	time-variant	model	change	with	time.	For	example,	you
can	use	a	time-variant	model	to	describe	the	mass	of	an	automobile.
As	fuel	burns,	the	mass	of	the	vehicle	changes	with	time.
Conversely,	the	parameters	of	a	time-invariant	model	do	not	change	with
time.	For	an	example	of	a	time-invariant	model,	consider	a	simple	robot.
Generally,	the	dynamic	characteristics	of	robots	do	not	change	over	short

lvsim.chm::/Nonlinear_Systems.html
lvsim.chm::/SIM_Saturation.html
lvsim.chm::/SIM_DeadZone.html
lvsim.chm::/SIM_Friction.html
lvsim.chm::/SIM_Backlash.html
lvsim.chm::/SIM_Quantizer.html
lvsim.chm::/SIM_Relay.html
lvsim.chm::/SIM_Switch.html
lvsim.chm::/SIM_RateLimiter.html


periods	of	time.
Continuous	versus	Discrete	Models
Dynamic	system	models	are	either	continuous	or	discrete.	Both
continuous	and	discrete	system	models	can	be	linear	or	nonlinear	and
time-invariant	or	time-variant.	Continuous	models	describe	how	the
behavior	of	a	system	varies	continuously	with	time,	which	means	you	can
obtain	the	properties	of	a	system	at	any	certain	moment	from	the
continuous	model.	Discrete	models	describe	the	behavior	of	a	system	at
separate	time	instants,	which	means	you	cannot	obtain	the	behavior	of
the	system	between	any	two	sampling	points.
Continuous	system	models	are	analog.	You	derive	continuous	models	of
a	physical	system	from	differential	equations	of	the	system.	The
coefficients	of	continuous	models	have	clear	physical	meanings.	For
example,	you	can	derive	the	continuous	transfer	function	of	a	resistor-
capacitor	(RC)	circuit	if	you	know	the	details	of	the	circuit.	The
coefficients	of	the	continuous	transfer	function	are	the	functions	of	R	and
C	in	the	circuit.	You	use	continuous	models	if	you	need	to	match	the
coefficients	of	a	model	to	some	physical	components	in	the	system.
Discrete	system	models	are	digital.	You	derive	discrete	models	of	a
physical	system	from	difference	equations	or	by	converting	continuous
models	to	discrete	models.	In	computer-based	applications,	signals	and
operations	are	digital.	Therefore,	you	can	use	discrete	models	to
implement	a	digital	controller	or	to	simulate	the	behavior	of	a	physical
system	at	discrete	instants.	You	also	can	use	discrete	models	in	the
accurate	model-based	design	of	a	discrete	controller	for	a	plant.



Empirical	Models
Empirical	models	use	data	gathered	from	experiments	to	define	the
mathematical	model	of	a	system.	To	some	degree,	physical	models	are
empirical	because	you	experimentally	determine	certain	constants	used
to	develop	the	model.	A	variety	of	empirical	modeling	methods	exist.	One
method	of	empirical	modeling	uses	tables	of	experimental	data	that
represent	the	system	you	want	to	model.	Another	method	for	developing
models	uses	system	identification	methods.	System	identification
methods	use	measured	data	to	create	differential	or	difference	equation
representations	that	model	the	data.

Note		You	can	use	the	LabVIEW	System	Identification	Toolkit	to
construct	models	by	using	system	identification	methods.



Linear	Model	Forms
You	can	use	the	Control	Design	and	Simulation	Module	to	represent
continuous	and	discrete	linear	models	in	the	following	three	forms:

Transfer	Function—These	models	use	polynomial	functions	to
define	the	relationship	between	the	inputs	and	outputs	of	a
dynamic	system.	You	analyze	transfer	function	models	in	the
frequency	domain.
Zero-Pole-Gain—These	models	are	transfer	function	models
that	you	rewrite	to	show	the	gain	and	the	locations	of	the	zeros
and	poles	of	the	dynamic	system.	You	analyze	zero-pole-gain
models	in	the	frequency	domain.
State-Space—These	models	represent	the	dynamic	system	in
terms	of	physical	states.	Continuous	state-space	models	use
first-order	differential	equations	to	describe	the	dynamic	system,
whereas	discrete	state-space	models	use	first-order	difference
equations.	You	analyze	state-space	models	in	the	time	domain.

lvsim.chm::/Linear_Systems.html
lvsim.chm::/Discrete_Systems.html


SISO	vs.	MIMO	Models
When	you	configure	a	continuous	or	discrete	transfer	function,	zero-pole-
gain,	or	state-space	function,	you	can	use	the	configuration	dialog	box	to
specify	whether	a	function	is	single-input	single-output	(SISO)	or	multiple-
input	multiple-output	(MIMO).	SISO	models	have	only	one	input	and	one
output,	whereas	MIMO	models	have	two	or	more	inputs	or	outputs.	You
make	this	choice	by	selecting	the	appropriate	option	from	the
Polymorphic	instance	pull-down	menu.



Configuring	Simulation	Parameters	(Control
Design	and	Simulation	Module)
The	Simulation	Loop,	shown	in	the	following	figure,	contains	the
parameters	that	define	the	behavior	of	the	simulation.

You	can	configure	these	simulation	parameters	by	using	the	following	two
methods:

Using	the	Configure	Simulation	Parameters	dialog	box
Wiring	values	to	the	Input	Node

You	also	can	use	a	combination	of	these	two	methods	in	the	same
simulation	diagram.	However,	values	that	you	programmatically	configure
override	any	equivalent	settings	that	you	make	in	the
Configure	Simulation	Parameters	dialog	box.

Tip		Use	the	Output	Node	to	view	any	errors	that	occur	during	the
execution	of	the	Simulation	Loop.	Use	the	Get	Simulation
Parameters	function	to	display	the	parameters	you	configure	for
the	simulation.

The	Simulation	Loop	is	a	version	of	the	Timed	Loop.	Both	loops	can
iterate	deterministically	according	to	a	period	and	priority	you	define.
However,	the	Simulation	Loop	also	executes	the	simulation	diagram
according	to	the	ordinary	differential	equation	(ODE)	solver	you	choose.
The	inside	of	the	Simulation	Loop	also	has	a	pale	yellow	background	to
distinguish	the	simulation	diagram	from	the	LabVIEW	block	diagram.

lvsim.chm::/SIM_Simulation_Loop.html
lvsim.chm::/SIM_ConfigParams.html
lvsim.chm::/SIM_SimParams.html
glang.chm::/Timed_Loop.html
lvanlsconcepts.chm::/Solving_ODEs.html


Similar	to	other	loops	and	structures,	you	can	use	tunnels	to	pass	data	in
and	out	of	the	Simulation	Loop.

lvconcepts.chm::/Loops_and_Structures.html


Configuring	Simulation	Parameters	Programmatically
The	following	figure	shows	how	you	configure	a	simulation	diagram
programmatically.

The	previous	figure	shows	how	the	gray	boxes	on	the	Input	Node	display
any	values	that	you	configure	in	the	Configure	Simulation	Parameters
dialog	box.	Values	that	you	configure	programmatically	do	not	have	gray
boxes.



Using	Simulation	Functions	and	VIs	(Control
Design	and	Simulation	Module)
The	LabVIEW	Control	Design	and	Simulation	Module	includes	both
functions	and	VIs.	The	Simulation	functions	are	the	elements	that
comprise	a	simulation	model.	Use	these	functions	to	perform	tasks	such
as	defining	dynamic	system	models,	generating	and	combining	input
signals,	and	analyzing	and	displaying	simulation	data.
You	can	configure	most	Simulation	functions	using	the	configuration
dialog	box	of	that	function.	After	you	place	a	Simulation	function	on	the
simulation	diagram,	double-click	that	function	to	launch	its	configuration
dialog	box.	You	also	can	launch	this	dialog	box	by	right-clicking	the
Simulation	function	and	selecting	Configuration	from	the	shortcut	menu.
For	example,	the	following	figure	shows	the	configuration	dialog	box	for
the	Sine	Signal	function.

The	Parameters	section	lists	all	the	parameters	that	you	can	configure

lvcdsimshrd.chm::/SIM_CD_Shared.html
lvsim.chm::/Simulation.html
lvsim.chm::/Signal_Generation.html
lvsim.chm::/Signal_Arithmetic.html
lvsim.chm::/Utilities_functions.html
lvsim.chm::/SIM_GraphUtil.html
lvsim.chm::/SIM_SineWave.html


for	the	Sine	Signal	function.	When	you	select	a	parameter	from	the
Parameters	section,	the	Parameter	Information	section	displays	a
control	you	can	use	to	set	the	value	of	that	parameter.
Use	the	Parameter	source	control	to	specify	the	source	of	the	parameter
value.	If	you	select	Configuration	Dialog	Box,	LabVIEW	removes	that
input	from	the	simulation	diagram.	You	then	must	set	the	value	for	this
parameter	in	the	configuration	dialog	box.	If	you	select	Terminal,
LabVIEW	displays	an	input	terminal	for	that	parameter	on	the	simulation
diagram,	and	you	can	wire	values	to	this	input	to	configure	the	Simulation
function.
The	parameters	you	specify	for	a	Simulation	function	are	unique	to	that
function.	If	you	create	multiple	instances	of	the	same	function,	you	can
set	different	parameter	values	for	each	instance.

Note		Discrete	simulation	functions	have	additional	parameters
you	use	to	configure	the	period	and	skew	of	the	function.

In	addition	to	the	Simulation	functions,	the	Control	Design	and	Simulation
Module	includes	VIs.	Use	these	VIs	to	perform	tasks	indirectly	related	to
the	simulation,	such	as	trimming	and	linearizing	a	dynamic	system	model
or	designing	optimal	parameters	for	a	dynamic	system	model.

lvsim.chm::/Discrete_Systems.html
lvsim.chm::/SIM_TrimLin.html
lvsim.chm::/SIM_Optimization_pal.html


Dynamic	Simulation	Functions
The	following	Simulation	functions	are	dynamic	elements	that	depend	on
the	ordinary	differential	equation	(ODE)	solver	you	specify.

Integrator
Transfer	Function
Zero-Pole-Gain
State-Space

lvanlsconcepts.chm::/Solving_ODEs.html
lvsimhowto.chm::/SIM_H_ODE.html
lvsim.chm::/SIM_Integrator.html
lvsim.chm::/SIM_TransferFunction.html
lvsim.chm::/SIM_ZeroPoleGain.html
lvsim.chm::/SIM_StateSpace.html


Configuring	Discrete	Simulation	Functions
(Control	Design	and	Simulation	Module)
The	Discrete	Linear	Systems	functions	have	a	sample	period	(s)
parameter	and	a	sample	skew	(s)	parameter.	These	parameters	are
located	in	the	configuration	dialog	box	of	that	function.	The
sample	period	(s)	parameter	sets	the	length	of	the	step	size	of	that
function.	The	sample	skew	(s)	parameter	delays	the	execution	of	that
function.	The	following	figure	shows	how	these	two	parameters	affect	the
execution	of	a	discrete	Simulation	function.

The	sample	period	(s)	of	a	discrete	function	must	be	a	multiple	of	the
discrete	step	size	of	the	simulation.	To	configure	this	overall	discrete	step
size,	double-click	the	Input	Node	of	the	Simulation	Loop	to	launch	the
Configure	Simulation	Parameters	dialog	box.	On	the
Simulation	Parameters	page,	you	can	enter	the	Discrete	Step	Size	(s)
or	automatically	configure	the	discrete	step	size	of	the	simulation.

Note		If	you	enter	a	value	of	–1	for	the	sample	period	(s)
parameter	of	a	Simulation	function,	that	function	inherits	the	same
step	size	as	defined	in	the	Configure	Simulation	Parameters
dialog	box.

lvsim.chm::/Discrete_Systems.html
lvsim.chm::/SIM_Simulation_Loop.html
lvsim.chm::/SIM_ConfigParams.html
lvsimhowto.chm::/SIM_H_CalcDisc.html


Generating,	Collecting,	and	Displaying
Simulation	Data	(Control	Design	and	Simulation
Module)
The	LabVIEW	Control	Design	and	Simulation	Module	includes	several
functions	you	use	to	generate,	collect,	and	display	simulation	data.	The
following	sections	provide	information	about	using	these	functions.



Generating	and	Combining	Signals
Use	the	Signal	Generation	functions	to	generate	many	different	types	of
signals,	including	sine,	ramp,	step,	pulse,	and	chirp	signals.	These
functions	are	useful	when	you	want	to	see	how	a	dynamic	system
responds	to	a	particular	type	of	input.	For	example,	the	Step	Signal
function	generates	a	step	signal,	which	you	commonly	use	to	test
controller	performance.	Each	Signal	Generation	function	has
configuration	options	you	can	use	to	fit	the	needs	of	a	particular	situation.
Use	the	Signal	Arithmetic	functions	to	add,	subtract,	multiply,	and	divide
signals.

lvsim.chm::/Signal_Generation.html
lvsim.chm::/SIM_SineWave.html
lvsim.chm::/SIM_Ramp.html
lvsim.chm::/SIM_Step.html
lvsim.chm::/SIM_Pulse.html
lvsim.chm::/SIM_ChirpSignal.html
lvsim.chm::/SIM_Step.html
lvsim.chm::/Signal_Arithmetic.html


Collecting	and	Indexing	Simulation	Data
To	store	all	or	part	of	a	signal	history	over	the	entire	simulation	for	later
analysis,	use	the	Collector	function.	This	function	stores	values	in	an
array,	similar	to	the	auto-indexing	output	tunnel	of	a	For	Loop.	However,
whereas	LabVIEW	indexes	For	Loop	arrays	by	the	loop	iteration,	the
Control	Design	and	Simulation	Module	indexes	Collector	arrays	by
simulation	time.	Therefore,	after	the	simulation	finishes,	you	can	see	the
values	that	correspond	with	certain	points	in	time.
The	opposite	of	the	Collector	function	is	the	Indexer	function,	which	takes
an	array	of	data	and	returns	the	correct	value	based	on	the	simulation
time.	For	example,	you	can	define	an	arbitrary	signal	as	an	array	of
timestamps	and	values	at	each	timestamp.	You	then	wire	this	array	to	the
Input	input	of	an	Indexer	function.	When	you	run	the	simulation,	this
function	returns	the	correct	array	value	at	the	correct	time.	If	you	do	not
define	a	value	for	a	specific	time,	this	function	linearly	interpolates	the
expected	result	according	to	several	options	you	can	specify.	The	Indexer
function	operates	similarly	to	the	auto-indexing	input	tunnel	of	a	For
Loop,	except	LabVIEW	indexes	For	Loop	arrays	by	loop	iteration	instead
of	simulation	time.

lvsim.chm::/SIM_Collector.html
glang.chm::/For_Loop.html
lvsim.chm::/SIM_Indexer.html
lvanlsconcepts.chm::/Introduction_to_Curve_Fitting.html#Applications_of_Curve_Fitting


Displaying	Simulation	Data
The	SimTime	Waveform	function	and	Buffer	XY	Graph	function	operate
similarly	to	the	LabVIEW	Waveform	Chart	and	XY	Graph	objects.
However,	whereas	LabVIEW	displays	the	loop	iteration	on	the	x-axis	of
these	objects,	the	Simulation	versions	of	these	functions	properly	display
simulation	time	on	the	x-axis.	This	distinction	is	important	when	you	are
using	a	variable	step-size	ordinary	differential	equation	(ODE)	solver.	In
this	situation,	the	simulation	might	not	return	a	value	at	every	loop
iteration,	due	to	changes	in	the	step	size.	However,	the	LabVIEW
Waveform	Chart	still	plots	a	value	every	loop	iteration.	The	SimTime
Waveform	function	corrects	this	behavior	and	properly	displays	unevenly-
spaced	values	on	the	x-axis.
The	following	figure	shows	how	a	SimTime	Waveform	Chart	and	a
LabVIEW	Waveform	Chart	display	the	output	of	the	Pulse	Signal
function	when	simulated	for	30	seconds	using	a	variable	step-size	ODE
solver.

lvsim.chm::/SIM_SimTimeWaveform.html
lvsim.chm::/SIM_BufferXYGraph.html
lvconcepts.chm::/Types_of_Graphs_and_Charts.html#Waveform_Charts
lvconcepts.chm::/Types_of_Graphs_and_Charts.html#XY_Graphs
lvanlsconcepts.chm::/Vble_vs_Fixed_Step_Size_ODE.html
lvanlsconcepts.chm::/Solving_ODEs.html
lvsim.chm::/SIM_Pulse.html


Notice	the	irregularities	in	the	LabVIEW	Waveform	Chart	when
compared	to	the	SimTime	Waveform	Chart.

Note		When	you	place	a	SimTime	Waveform	function	or	Buffer	XY
Graph	function	on	the	simulation	diagram,	LabVIEW	automatically
creates	a	chart	or	graph	object	connected	to	the	function	output.



Storing	Precalculated	Data	in	Lookup	Tables
Lookup	tables	are	useful	for	defining	sets	of	experimental	data,	such	as
the	result	of	a	function,	and	then	retrieving	that	data	without	calculating
the	function.	If	you	store	the	data	in	a	lookup	table,	the	simulation	does
not	have	to	compute	the	function	every	time	step.	Instead,	you	call	the
lookup	table	to	obtain	the	appropriate	value.	In	this	situation,	you	improve
computation	performance	by	reducing	the	need	to	calculate	functions	at
each	iteration	of	the	Simulation	Loop.
A	lookup	table	consists	of	two	data	sets:	a	set	of	table	values	and	a
corresponding	set	of	data	values.	When	you	specify	an	input	value,	the
lookup	table	matches	that	input	value	to	a	table	value	and	returns	the
appropriate	data	value.
For	example,	consider	a	lookup	table	with	table	values	of	[0	1	5]	and	data
values	of	[4	2	8].	If	you	specify	an	input	value	of	0,	the	lookup	table
returns	4.	If	you	specify	an	input	value	of	5,	the	lookup	table	returns	8.
You	also	can	configure	how	the	lookup	table	operates	if	you	specify	an
input	value	that	does	not	exist	as	a	table	value.	For	example,	you	can
configure	a	lookup	table	to	interpolate	or	extrapolate	the	appropriate	data
value	from	the	available	table	values.	Use	the	Method	parameter	of	the
Lookup	Tables	functions	to	define	this	behavior.
This	example	uses	a	one-dimensional	lookup	table;	however,	the	Control
Design	and	Simulation	Module	also	includes	functions	that	implement
two-	and	three-dimensional	lookup	tables.

lvsim.chm::/SIM_Simulation_Loop.html
lvanlsconcepts.chm::/Introduction_to_Curve_Fitting.html#Applications_of_Curve_Fitting
lvsim.chm::/Lookup_Tables.html
lvsim.chm::/SIM_Look-upTable1D.html
lvsim.chm::/SIM_LookupTable2D.html
lvsim.chm::/SIM_LookupTable3D.html


Transferring	Data	Between	Simulation	Loop	Iterations
Use	the	Memory	function	to	transfer	the	value	of	a	signal	from	one
iteration	of	the	Simulation	Loop	to	the	next.	This	function	behaves
similarly	to	a	shift	register	you	can	place	on	a	While	Loop.	This	function	is
polymorphic	and	accepts	any	data	type	you	wire	to	the	Initial	Value
input.	To	implement	a	fixed-time	delay,	use	the	Discrete	Unit	Delay
function.

lvsim.chm::/SIM_Memory.html
lvhowto.chm::/Using_Shift_Registers_to_R.html
glang.chm::/While_Loop.html
lvsim.chm::/SIM_DiscUnitDel.html


Changing	Function	Icon	Styles	(Control	Design
and	Simulation	Module)
You	can	change	the	icon	style	of	a	Simulation	function	on	the	simulation
diagram.	Right-click	a	Simulation	function	and	select	Icon	Style	from	the
shortcut	menu	to	display	the	following	options:

Static—Displays	the	Simulation	function	as	a	standard	VI.
Dynamic—Displays	the	Simulation	function	as	an	object	that	you
can	resize.	Dynamic	icons	also	display	a	preview	of	their
contents.	For	example,	a	Sine	Signal	function	with	a	dynamic
icon	displays	a	sine	wave	with	the	frequency,	amplitude,	and
phase	that	you	configure.
Text	Only—Displays	the	Simulation	function	as	a	list	of
parameter	values.
Express—Displays	the	Simulation	function	with	a	list	of
parameters	below	the	icon.	You	can	resize	the	parameter	list	to
display	more	inputs	and	outputs.	This	icon	style	also	shows
parameter	values	directly	on	the	simulation	diagram.

lvsim.chm::/Simulation.html


Determining	Feedthrough	Behavior	and	Defining
Feedback	Cycles	(Control	Design	and
Simulation	Module)
The	relationship	between	a	function	input	and	output	defines	the
feedthrough	behavior	of	that	I/O	pair.	An	I/O	pair	can	have	indirect,	direct,
or	parameter-dependent	feedthrough	behavior.	If	an	I/O	pair	has	indirect
feedthrough	behavior,	you	can	create	a	feedback	cycle	between	that
input	and	output.	An	I/O	pair	with	direct	feedthrough	behavior	does	not
allow	a	feedback	cycle.	The	following	sections	provide	more	information
about	these	behaviors.



Indirect	Feedthrough	and	Feedback	Cycles
Whereas	LabVIEW	VIs	execute	only	after	receiving	the	value	of	all	inputs
to	that	VI,	many	Simulation	functions	can	execute	without	receiving	the
value	of	certain	inputs.	Consider	a	Simulation	function	with	input	u	and
output	y.	At	any	time	step,	if	the	function	does	not	require	the	value	of	u
to	compute	the	value	of	y,	u	has	indirect	feedthrough	to	y.
When	indirect	feedthrough	exists	between	u	and	y,	you	can	create	a
feedback	cycle	between	these	parameters.	In	a	feedback	cycle,	the	value
of	y	at	time	t	relies	on	the	value	of	u	at	time	t	–	dt,	t	–	dt2,	and	so	on.

For	example,	the	input	parameter	of	the	Integrator	function	has	indirect
feedthrough	to	the	output	parameter.	You	can	create	a	feedback	cycle
between	this	input	and	output.	The	following	figure	shows	this	behavior:

You	can	use	one	or	more	Simulation	functions	and	other	LabVIEW
functions	in	a	feedback	cycle	as	long	as	at	least	one	Simulation	function
in	the	feedback	cycle	has	indirect	feedthrough	behavior.	The	indirect
feedthrough	function	can	start	the	data	flow	by	executing	the	function
output	at	the	current	step	before	receiving	an	input	from	the	cycle	at	the
current	step.	Therefore,	the	input	at	the	current	step	and	the	output	at	the
current	step	must	not	depend	on	each	other	directly	in	at	least	one
function	in	the	cycle.
The	following	Simulation	functions	have	at	least	one	I/O	pair	with	indirect
feedthrough.

Discrete	Kalman	Filter
Discrete	Observer

lvsim.chm::/Simulation.html
lvsim.chm::/SIM_DiscKalmanFilter.html
lvsim.chm::/SIM_DiscObserver.html


Discrete	Stochastic	State-Space
Discrete	Unit	Delay
Integrator
Memory
Transport	Delay

lvsim.chm::/SIM_DiscStochSS.html
lvsim.chm::/SIM_DiscUnitDel.html
lvsim.chm::/SIM_Integrator.html
lvsim.chm::/SIM_Memory.html
lvsim.chm::/SIM_TransportDelay.html


Direct	Feedthrough
If	a	function	output	y	requires	an	input	u	in	order	to	execute,	u	has	direct
feedthrough	to	y.	You	cannot	create	a	feedback	cycle	between	inputs	and
outputs	with	direct	feedthrough.
For	example,	the	initial	condition	parameter	of	the	Integrator	function
has	direct	feedthrough	behavior	to	the	output	parameter.	This	function
requires	a	value	for	the	initial	condition	parameter	in	order	to	calculate
the	output	parameter.	Other	functions,	such	as	Friction,	require	the
values	of	all	inputs	in	order	to	execute.
If	you	attempt	to	create	a	feedback	cycle	between	an	input	and	output
with	direct	feedthrough,	the	wire	appears	broken.	The	following	figure
shows	this	behavior:

Notice	the	difference	between	the	previous	figure	and	the	figure	showing
the	feedback	cycle.

lvsim.chm::/SIM_Friction.html


Parameter-Dependent	Feedthrough
Several	functions	have	feedthrough	behavior	that	depends	on	how	you
configure	the	parameters	of	that	function.	For	example,	consider	the
Transfer	Function	function.	The	feedthrough	behavior	of	this	function
depends	on	the	order	of	the	numerator	and	denominator	polynomial
equations	you	specify.	The	following	Simulation	functions	have	at	least
one	I/O	pair	with	parameter-dependent	feedthrough.

Transfer	Function
Zero-Pole-Gain
State-Space
Discrete	Filter
Discrete	Integrator
Discrete	Transfer	Function
Discrete	Zero-Pole-Gain
Discrete	State-Space

If	you	use	the	configuration	dialog	box	to	define	the	parameters	of	these
functions,	such	as	the	numerator	and	denominator	of	a	transfer	function,
LabVIEW	automatically	determines	the	appropriate	feedthrough	behavior
and	displays	this	choice	in	the	Feedthrough	pull-down	menu.	However,	if
you	use	block	diagram	terminals	to	define	the	parameters	of	these
functions,	you	must	set	the	feedthrough	behavior	manually.
All	Simulation	functions	not	mentioned	in	this	section	or	in	the	Indirect
Feedthrough	and	Feedback	Cycles	section	have	direct	feedthrough.

lvsim.chm::/SIM_TransferFunction.html
lvsim.chm::/SIM_ZeroPoleGain.html
lvsim.chm::/SIM_StateSpace.html
lvsim.chm::/SIM_DiscreteFilter.html
lvsim.chm::/SIM_DiscInt.html
lvsim.chm::/SIM_DiscreteTF.html
lvsim.chm::/SIM_DiscreteZPK.html
lvsim.chm::/SIM_DiscreteSS.html


Placing	LabVIEW	VIs,	Functions,	and	Structures
on	the	Simulation	Diagram	(Control	Design	and
Simulation	Module)
You	can	use	a	majority	of	LabVIEW	VIs	and	functions	to	describe	a
dynamic	system	model.	However,	you	cannot	place	certain	structures,
such	as	the	While	Loop,	For	Loop,	or	Event	structure,	directly	on	the
simulation	diagram.	Instead,	you	can	place	these	structures	in	a	subVI,
which	you	then	place	on	the	simulation	diagram.
By	default,	the	Control	Design	and	Simulation	Module	executes	VIs	and
Express	VIs	as	continuous	functions.	You	can	change	this	behavior	by
using	the	SubVI	Node	Setup	dialog	box.	To	launch	this	dialog	box,	right-
click	the	object	and	select	SubVI	Node	Setup	from	the	shortcut	menu.
You	can	configure	a	VI	to	execute	at	only	major	time	steps	of	the	ODE
solver,	at	both	major	and	minor	time	steps	of	the	ODE	solver,	as	a
discrete	function,	or	at	initialization	of	the	simulation	diagram.

lvsimconcepts.chm::/SIM_C_Models.html
glang.chm::/While_Loop.html
glang.chm::/For_Loop.html
glang.chm::/Event_Structure.html
lvconcepts.chm::/Creating_SubVIs.html
lvdialog.chm::/SubVI_Node_Setup_DB.html


Using	Case	Structures	on	the	Simulation	Diagram
You	can	place	a	Case	structure	directly	on	the	simulation	diagram.	The
value	you	wire	to	the	selector	terminal	determines	which	model	to
evaluate.	If	an	input-output	pair	on	any	subdiagram	of	the	case	structure
contains	direct	feedthrough,	you	cannot	create	a	feedback	cycle	between
that	input	and	output.
National	Instruments	recommends	you	use	a	fixed	step-size	ordinary
differential	equation	(ODE)	solver	when	using	a	Case	structure	on	the
simulation	diagram.

Note		You	cannot	place	front	panel	terminals	inside	a	Case
structure	on	a	simulation	diagram.

glang.chm::/Case_Structure.html
lvsimconcepts.chm::/SIM_C_Feedthrough.html#direct
lvsimconcepts.chm::/SIM_C_Feedthrough.html#indirect
lvanlsconcepts.chm::/Vble_vs_Fixed_Step_Size_ODE.html
lvanlsconcepts.chm::/Solving_ODEs.html
lvconcepts.chm::/FP_Controls_Indicators.html


How-To
This	book	contains	step-by-step	instructions	and	other	information	that
might	be	useful	as	you	use	the	LabVIEW	Control	Design	and	Simulation
Module.	Refer	to	the	Concepts	book	to	learn	about	related	concepts.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.



Modularizing	the	Simulation	Diagram	(Control
Design	and	Simulation	Module)
The	LabVIEW	Control	Design	and	Simulation	Module	supports	simulation
subsystems,	which	you	use	to	modularize	and	encapsulate	portions	of
the	simulation	diagram.	You	create	simulation	subsystems	similarly	to
creating	subVIs.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

lvsimhowto.chm::/SIM_H_SubsysSA.html


Types	of	Simulation	Subsystems	(Control
Design	and	Simulation	Module)
Simulation	subsystems	provide	a	way	to	modularize	simulation	diagram
code.	By	combining	several	functions	into	a	subsystem,	you	reduce	the
amount	of	space	needed	on	the	simulation	diagram,	making	the
simulation	easier	to	navigate	visually.	Simulation	subsystems	also	are
useful	for	validating,	distributing,	and	reusing	portions	of	the	simulation
diagram.
You	can	use	many	Simulation	VIs	and	functions	only	on	a	simulation
diagram,	such	as	within	a	Simulation	Loop.	Because	simulation
subsystems	modularize	simulation	diagram	code,	you	can	use	the
Simulation	VIs	and	functions	in	simulation	subsystems	as	well.	The	entire
block	diagram	of	a	simulation	subsystem	is	pale	yellow	like	the	inside	of	a
Simulation	Loop.	When	you	use	Simulation	VIs	and	functions	in	a
simulation	subsystem,	you	place	the	VIs	and	functions	directly	on	the
subsystem	block	diagram	rather	than	within	a	Simulation	Loop.
You	can	run	simulation	subsystems	as	stand-alone	VIs,	within	a
Simulation	Loop	or	another	simulation	subsystem,	or	on	a	block	diagram
outside	a	Simulation	Loop.

lvsim.chm::/Simulation.html
lvsim.chm::/SIM_Simulation_Loop.html


Running	a	Subsystem	as	a	Stand-Alone	VI
When	you	run	a	simulation	subsystem	as	a	stand-alone	VI,	you	configure
the	simulation	parameters	by	selecting	Operate»Configure	Simulation
Parameters	to	launch	the	Configure	Simulation	Parameters	dialog	box.
You	also	can	configure	the	execution	and	appearance	of	the	subsystem
by	selecting	File»VI	Properties.
When	running	a	simulation	subsystem	as	a	stand-alone	VI,	you	can	use
standard	LabVIEW	debugging	techniques,	such	as	execution
highlighting,	breakpoints,	probes,	and	single-stepping.	You	cannot	use
these	techniques	on	a	subsystem	that	is	within	another	Simulation	Loop.
You	also	cannot	step	into	the	subsystem.	However,	you	can	set	a
breakpoint	on	the	entire	subsystem	by	right-clicking	the	subsystem	and
selecting	Breakpoint»Set	Breakpoint	from	the	shortcut	menu.	You	also
can	use	a	probe	or	a	custom	probe	to	monitor	the	subsystem	output.
The	following	figure	shows	the	simulation	diagram	of	a	simulation
subsystem	Newton.vi,	which	obtains	the	position	of	a	mass	by	using
Newton's	Second	Law	of	Motion.

In	the	previous	figure,	this	subsystem	has	front	panel	controls	and
indicators,	so	you	can	run	this	subsystem	by	clicking	the	Run	button.
Because	Newton.vi	does	not	have	a	Simulation	Loop,	you	configure	the

lvsim.chm::/SIM_ConfigParams.html
lvconcepts.chm::/Debug_Techniques.html
lvhowto.chm::/Execution_Highlighting.html
lvhowto.chm::/Breakpoints.html
lvhowto.chm::/Using_the_Probe_Tool.html
lvhowto.chm::/Single_Step_Mode.html


parameters	of	this	subsystem	by	selecting	Operate»Configure
Simulation	Parameters.



Running	a	Subsystem	in	a	Simulation	Loop
If	you	run	a	simulation	subsystem	inside	a	Simulation	Loop,	the
simulation	subsystem	inherits	the	parameters	from	the	Simulation	Loop.
The	following	figure	shows	Newton.vi	included	within	the	Simulation	Loop
of	another	simulation	diagram.

In	the	previous	figure,	the	parameters	of	the	Simulation	Loop	override
any	parameters	you	configured	specifically	for	Newton.vi.

Note		You	create	this	subsystem	and	this	VI	in	the	Getting	Started
with	Simulation	tutorial.

lvsimhowto.chm::/SIM_H_GS.html


Running	a	Subsystem	Outside	a	Simulation	Loop
If	you	run	a	simulation	subsystem	on	a	block	diagram	outside	a
Simulation	Loop,	the	simulation	subsystem	executes	one	step	of	the
ordinary	differential	equation	(ODE)	solver	each	time	the	simulation
subsystem	is	called.	For	example,	if	you	place	the	simulation	subsystem
in	a	Timed	Loop,	one	step	of	the	ODE	solver	executes	at	each	iteration	of
the	loop.	You	can	use	only	fixed	step-size	ODE	solvers	for	a	simulation
subsystem	outside	a	Simulation	Loop.	Specify	the	time	step	using	the
Step	Size	(s)	configuration	option	of	the	subsystem.

Tip		If	you	create	an	application	with	a	simulation	subsystem	inside
a	Timed	Loop	and	then	deploy	the	application	to	a	real-time	target,
set	the	Step	Size	(s)	of	the	subsystem	equal	to	the	period	of	the
Timed	Loop.

When	you	place	a	simulation	subsystem	on	a	block	diagram	outside	a
Simulation	Loop,	the	icon	of	the	simulation	subsystem	appears	in	the
Express	style	by	default.	You	can	wire	values	to	the	parameters	of	the
simulation	subsystem	to	configure	the	simulation	subsystem
programmatically.

Note		The	Static	and	Dynamic	icon	styles	are	disabled	for
subsystems	outside	a	Simulation	Loop.

You	also	can	configure	the	parameters	of	the	simulation	subsystem
interactively.	Double-click	the	simulation	subsystem	to	launch	the
configuration	dialog	box	of	that	simulation	subsystem.	In	this
configuration	dialog	box,	you	can	configure	the	specific	parameters	of	the
simulation	subsystem	as	well	as	the	following	general	simulation
parameters:

Initial	Time	(s)—Specifies	the	time	at	which	to	start	the	ODE
solver.
ODE	Solver—Specifies	the	type	of	ODE	solver	the	simulation
uses.
Nan/Inf	Check—Specifies	that	you	want	the	Control	Design	and
Simulation	Module	to	check	the	simulation	values	for	not	a
number	(NaN)	and	infinite	(Inf)	values.	The	Control	Design	and
Simulation	Module	returns	an	error	if	it	encounters	a	NaN	or	Inf
value.

glang.chm::/Timed_Loop.html
lvconcepts.chm::/Block_Diagram_Objects.html#Symbolic_Numeric_Values


Step	Size	(s)—Specifies	the	interval,	in	seconds,	between	the
times	at	which	the	ODE	solver	evaluates	the	model	and	updates
the	model	output.
Discrete	Step	Size	(s)—Specifies	the	base	time	step	size,	in
seconds,	for	the	simulation.
Auto	Discrete	Time—Automatically	calculates	the	Discrete
Step	Size	(s).

These	parameters	are	identical	to	parameters	you	can	configure	in	the
Configure	Simulation	Parameters	dialog	box	of	a	Simulation	Loop.	In
the	configuration	dialog	box	of	a	simulation	subsystem,	these	parameters
appear	as	sub-items	of	the	Simulation	Parameters	item	in	the
Parameters	tree.	If	the	simulation	subsystem	already	contains	a
parameter	with	the	same	name	as	one	of	the	general	simulation
parameters	listed	above,	LabVIEW	appends	the	general	simulation
parameter	name	with	an	underscore.
The	following	figure	shows	Newton.vi	on	a	block	diagram	outside	a
Simulation	Loop.



In	the	previous	figure,	the	Timed	Loop	determines	when	Newton.vi
executes	the	next	step	of	the	ODE	solver.	Because	Newton.vi	is	outside	a
Simulation	Loop,	you	can	configure	the	simulation	parameters,	including
the	ODE	solver	to	use,	by	double-clicking	the	simulation	subsystem.
If	you	run	a	simulation	subsystem	outside	a	Simulation	Loop,	you	can
reinitialize	the	simulation	subsystem	by	setting	the	Initialize	input	of	the
simulation	subsystem	to	TRUE.	This	input	restarts	the	ODE	solver	from
the	specified	Initial	Time	(s).	The	Initialize	input	is	available	for	a
simulation	subsystem	only	when	the	subsystem	is	not	inside	a	Simulation
Loop	or	another	simulation	subsystem.



Polymorphic	Subsystems
If	you	create	one	or	more	subsystems	that	perform	the	same	operation
on	different	data	types,	you	can	package	those	subsystems	together	to
create	a	polymorphic	subsystem.	A	polymorphic	subsystem	is	a	single	VI
that	points	to	one	or	more	subsystems,	called	instances.	Each	instance
accepts	a	different	data	type	for	a	single	input	or	output	terminal.
LabVIEW	automatically	selects	the	correct	instance	based	on	the	input
data	type.
For	example,	one	subsystem	could	operate	on	a	double-precision	floating
point	number,	while	another	subsystem	performs	the	same	operation	on
a	16-bit	integer.	Instead	of	placing	both	subsystems	on	the	simulation
diagram,	you	can	create	a	polymorphic	subsystem	that	automatically
chooses	the	correct	instance.
For	a	polymorphic	subsystem	to	work,	each	instance	of	the	polymorphic
subsystem	must	be	a	simulation	subsystem.	You	cannot	create	a
polymorphic	subsystem	with	both	VIs	and	subsystems	as	instances.
Also,	each	subsystem	must	have	an	identical	connector	pane	pattern.
Additionally,	the	names	of	corresponding	input	parameters	for	each
instance	must	be	identical.

lvconcepts.chm::/Creating_SubVIs.html#Polymorphic_VIs
lvsimhowto.chm::/SIM_H_SubsysSA.html#poly
lvhowto.chm::/Selecting_a_Connector_Pane.html


Trimming	and	Linearizing	Nonlinear	Models
(Control	Design	and	Simulation	Module)
Many	real-world	dynamic	system	models	are	nonlinear.	If	you	want	to
design	a	controller	for	a	nonlinear	model,	you	must	first	linearize	that
model.	Linearizing	a	nonlinear	model	involves	approximating	the
behavior	of	that	model	around	an	operating	point.	The	operating	point	is
the	set	of	the	inputs	and	states	of	the	model.	When	you	linearize	a
model,	the	result	is	a	linear	time-invariant	(LTI)	state-space	model.

Note		You	can	design	a	controller	for	LTI	models	using	the	Control
Design	VIs	and	functions.

Trimming	a	model	involves	searching	for	values	of	model	inputs	and
states	that	satisfy	any	conditions	you	specify.	For	example,	you	can
specify	that	the	model	outputs	or	state	derivatives	must	have	a	certain
value.	Trimming	the	model	using	these	conditions	returns	the	values	of
the	inputs	and	states	that,	when	given	to	the	model,	produce	the	outputs
and	state	derivatives	you	specified.	You	also	can	trim	a	model	to
determine	an	operating	point	about	which	you	linearize	the	model.
The	LabVIEW	Control	Design	and	Simulation	Module	provides	several
methods	for	trimming	and	linearizing	models.	You	can	interactively	trim
and	linearize	a	model.	You	also	can	programmatically	trim	and
programmatically	linearize	a	model.

Note		The	above	methods	operate	on	continuous	simulation
subsystems.	Therefore,	you	must	create	a	simulation	subsystem
that	represents	the	model	before	trimming	or	linearizing	that
model.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

lvsimconcepts.chm::/SIM_C_Models.html#Linear_versus_Nonlinear_Models
lvsimconcepts.chm::/SIM_C_Models.html#Linear_versus_Nonlinear_Models
lvsimconcepts.chm::/SIM_C_Models.html#Time-Variant_versus_Time-Invariant_Models
lvsimconcepts.chm::/SIM_C_Models.html#Linear_Model_Forms
lvctrldsgn.chm::/control_design_VIs.html
lvsimhowto.chm::/SIM_H_ITL.html
lvsimhowto.chm::/SIM_H_TrimProg.html
lvsimhowto.chm::/SIM_H_LinProg.html
lvsimhowto.chm::/SIM_H_SubsysSA.html


Executing	Simulations	in	Real	Time	(Control
Design	and	Simulation	Module)
You	can	use	the	LabVIEW	Control	Design	and	Simulation	Module	with
the	LabVIEW	Real-Time	Module	and	various	National	Instruments	real-
time	(RT)	targets	to	implement	simulations	and	controllers	in	real	time
with	real-world	inputs	and	outputs.	For	example,	you	can	combine	this
software	and	hardware	to	design	and	implement	a	rapid	control	prototype
(RCP)	or	hardware-in-the-loop	(HIL)	configuration.	You	configure	the
timing	Simulation	Loop	according	to	the	needs	of	the	simulation.
The	Control	Design	and	Simulation	Module	can	execute	VIs	on	hardware
targets	running	the	real-time	operating	system	(RTOS)	of	the	Ardence
Phar	Lap	Embedded	Tool	Suite	(ETS)	or	Wind	River	VxWorks.

Note		The	Control	Design	and	Simulation	Module	supports	only
ETS	and	VxWorks	targets	with	at	least	32	MB	of	RAM.

The	Real-Time	Module	includes	the	Getting	Started	with	the	LabVIEW
Real-Time	Module	manual,	which	introduces	the	concepts	necessary	to
create	real-time	applications.	The	Real-Time	Module	documentation	also
includes	topics	about	organizing	and	managing	projects,	creating
deterministic	applications,	and	sharing	data	in	deterministic	applications.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.

lvsimhowto.chm::/SIM_H_LoopTiming.html
lvsimconcepts.chm::/SIM_C_ETSRTX.html
javascript:AcrobatLink('../manuals/RT_Getting_Started.pdf');
lvrtconcepts.chm::/OrganizingManaging_ProjRT.html
lvrtconcepts.chm::/BuildDeterApps_RT.html
lvrtconcepts.chm::/RTShareDataDeterm.html


Offline,	RCP,	and	HIL	Configurations	(Control
Design	and	Simulation	Module)
The	following	sections	provide	an	overview	of	the	process	you	might	use
to	simulate	a	dynamic	system.	The	following	sections	also	describe
examples	of	offline	simulations,	rapid	control	prototyping	(RCP)
configurations,	and	hardware-in-the-loop	(HIL)	configurations.



Offline	Simulation
An	offline	simulation	is	one	that	is	not	connected	to	any	hardware.	You
use	the	LabVIEW	Control	Design	and	Simulation	Module	to	simulate	all
parts	of	the	dynamic	system,	including	the	controller,	the	system	you
want	to	control,	and	any	inputs	or	outputs.	The	following	figure	represents
a	simulation	of	an	offline	control	system.

If	you	are	running	an	offline	simulation	on	a	Windows	computer,	National
Instruments	recommends	you	place	a	checkmark	in	the	Synchronize
Loop	to	Timing	Source	checkbox	on	the	Timing	Parameters	page	of
the	Configure	Simulation	Parameters	dialog	box	for	optimal	performance.

lvsim.chm::/SIM_ConfigParams.html


Rapid	Control	Prototype	Configuration
An	RCP	configuration	replaces	the	simulated	system	with	an	actual
system.	Use	this	configuration	to	test	multiple	controller	algorithms
without	building	the	controller	again	every	time	you	make	a	change.	In
this	situation,	the	simulated	controller	is	connected	to	hardware	actuators
and	hardware	sensors.	To	convert	an	offline	simulation	to	an	RCP
configuration,	remove	the	system	model	from	the	simulation.	Replace	the
system	input	with	an	output	from	a	hardware	device,	and	replace	the
system	output	with	an	input	from	a	hardware	device.
The	following	figure	represents	an	RCP	configuration.

In	the	previous	figure,	the	simulated	controller	uses	National	Instruments
real-time	hardware,	such	as	a	DAQ	device,	to	send	data	to	the	hardware
system.



Hardware-in-the-Loop	Configuration
A	HIL	configuration	involves	the	actual	controller	providing	input	to	a
simulated	system.	Use	this	configuration	to	test	a	controller	on	a	system
without	actually	having	that	system	available.	For	example,	if	you	were
testing	an	engine	control	unit	(ECU)	for	a	car,	you	could	test	the	ECU
without	having	to	build	the	car	multiple	times.	HIL	configurations	also	are
useful	for	testing	controllers	under	extreme	conditions	that	you	cannot
replicate	conveniently	in	a	laboratory.
To	convert	an	offline	simulation	to	a	HIL	configuration,	remove	the
controller	model	from	the	simulation.	Replace	the	controller	input	with	an
output	from	a	hardware	device,	and	replace	the	controller	output	with	an
input	from	a	hardware	device.	The	result	is	similar	to	the	RCP
configuration,	except	with	the	controller	model,	not	the	system	model,
replaced	with	physical	hardware	inputs	and	outputs.
The	following	figure	shows	a	HIL	configuration	of	the	example	in	the
previous	figure.

In	the	previous	figure,	the	controller	uses	National	Instruments	real-time
hardware,	such	as	a	DAQ	device,	to	send	data	to	the	simulated	system.



Deterministic	ODE	Solvers	(Control	Design	and
Simulation	Module)
Running	a	simulation	or	controller	in	real	time	means	that	the	simulation
time	must	equal	the	wall-clock	time	at	each	point	that	the	simulation	or
controller	interacts	with	the	real	world.	Generally,	these	physical
interaction	points	correspond	to	the	sampling	points	of	the	input	and
output	hardware.	Therefore,	at	each	sampling	time,	the	simulation	time
must	equal	the	wall-clock	time.
To	meet	the	real-time	deadline,	you	can	configure	the	LabVIEW	Control
Design	and	Simulation	Module	to	execute	deterministically	by	placing	a
strict	upper	bound	on	the	execution	time	of	the	Simulation	Loop.	National
Instruments	also	recommends	you	configure	the	Simulation	Loop	to	use
a	fixed	step-size	ordinary	differential	equation	(ODE)	solver.	These	ODE
solvers	are	deterministic,	which	ensures	that	block	diagram	code	running
at	each	time	step	meets	the	deadlines	imposed	by	the	timing	of	the
hardware	inputs	and	outputs.
The	Control	Design	and	Simulation	Module	includes	the	following
deterministic	ODE	solvers:

Runge-Kutta	1
Runge	Kutta	2
Runge-Kutta	3
Runge-Kutta	4
Discrete	States	Only

Variable	step-size	ODE	solvers	are	not	appropriate	for	real-time
applications	because	these	solvers	adjust	the	step	size	based	on	the
estimated	error	of	the	solution.	This	adjustment	requires	additional
computational	resources,	which	can	interfere	with	the	timing
requirements	of	a	real-time	application.

lvsimhowto.chm::/SIM_H_LoopTiming.html
lvsimhowto.chm::/SIM_H_ODE.html
lvanlsconcepts.chm::/Vble_vs_Fixed_Step_Size_ODE.html
lvanlsconcepts.chm::/Solving_ODEs.html
lvanlsconcepts.chm::/ODE_Solvers_in_LabVIEW.html


Considerations	for	ETS	Targets	(Control	Design
and	Simulation	Module)
If	you	are	executing	a	simulation	on	an	Ardence	Phar	Lap	Embedded
Tool	Suite	(ETS)	target,	National	Instruments	recommends	you	let	the
LabVIEW	Control	Design	and	Simulation	Module	calculate	the	necessary
value	of	the	simulation	period.	To	automatically	calculate	the	period,
place	a	checkmark	in	the	Auto	Period	checkbox,	which	is	located	on	the
Timing	Parameters	page	of	the	Configure	Simulation	Parameters
dialog	box.
When	you	follow	this	procedure,	other	tasks	can	to	continue	to	execute
when	the	simulation	is	not	scheduled	to	execute.



LabVIEW	Projects	and	Shared	Variables	(Control
Design	and	Simulation	Module)
To	execute	a	simulation	on	a	real-time	(RT)	target,	you	must	create	a
project.	A	project	provides	a	way	to	manage	VIs,	RT	targets,
dependencies,	build	specifications,	and	other	files	related	to	the	project.
Use	the	Project	Explorer	window,	available	by	selecting	File»New
Project,	to	manage	the	contents	of	a	project.
Another	component	of	a	real-time	simulation	is	the	shared	variable.	You
create	shared	variables	to	simplify	the	process	of	sharing	live	data
between	the	Windows	computer	and	the	RT	target.
For	more	information	about	the	LabVIEW	project	and	the	shared	variable,
including	tutorials	that	introduce	you	to	these	concepts,	refer	to	the
Getting	Started	with	the	LabVIEW	Real-Time	Module	document,	located
in	the	labview\manuals	directory.	If	you	have	not	installed	the	LabVIEW
Real-Time	Module,	you	can	access	this	document	at	ni.com/manuals.

lvconcepts.chm::/Using_LabVIEW_Projects.html
lvconcepts.chm::/Using_LabVIEW_Projects.html#Project_Explorer_Window
lvconcepts.chm::/Project_Variables.html
lvhowto.chm::/Creating_Variables.html
javascript:WWW(WWW_Manuals)


Optimizing	Design	Parameters	(Control	Design
and	Simulation	Module)
One	important	application	of	simulating	dynamic	system	models	is	using
the	simulation	to	determine	parameter	values	that	maximize	some
measure	of	performance.	The	LabVIEW	Control	Design	and	Simulation
Module	includes	the	SIM	Optimal	Design	VI,	which	you	can	use	to	obtain
parameters	that	minimize	a	cost	function	while	satisfying	constraints	on	a
dynamic	system.	You	can	use	this	VI	with	both	linear	and	nonlinear
systems,	although	the	Control	Design	and	Simulation	Module	includes
pre-defined	options	for	only	linear	systems.
Design	problems	can	range	from	designing	physical	elements,	such	as
springs,	to	designing	more	abstract	elements	such	as	controllers	or
digital	filters.	Correspondingly,	performance	specifications	might	range
from	simple	mechanical	limits	on	outputs	to	more	sophisticated
requirements	such	as	frequency	domain	norms	for	controlled	systems.
For	example,	when	designing	a	suspension	system	for	a	car,	you	must
select	a	stiffness	constant	for	a	spring	and	a	damping	constant	for	a
dissipative	element.	The	goal	is	to	find	a	parameter	set	that	provides
maximum	comfort.	This	optimal	parameter	set	corresponds	to	a
performance	measure,	such	as	the	average	deviation	of	the	passenger
from	a	desired	height	as	the	car	travels	down	the	road.	You	use
parameter	design	to	determine	this	optimal	parameter	set	while	taking
into	account	the	dynamics	of	the	system	and	the	expected	operating
conditions	and	disturbances.
You	can	use	several	techniques	to	determine	this	parameter	set.	For
some	problems,	you	might	be	able	to	compute	the	optimum	analytically.
However,	analytical	solutions	typically	are	difficult	or	impossible	to
compute.	In	such	cases,	you	can	use	numerical	optimization	instead.	A
powerful	and	general	purpose	numerical	optimization	algorithm	is
Sequential	Quadratic	Programming	(SQP).	The	SIM	Optimal	Design	VI
uses	this	algorithm.	This	VI	provides	domain-specific	functions	you	can
use	to	perform	parameter	optimization	for	design	purposes.	Specifically,
you	can	use	this	VI	to	determine	optimal	parameters	from	finite-horizon
time-domain	dynamics	simulations.
The	following	expressions	define	the	nonlinear	optimization	problem.
min(J(p))

lvsim.chm::/SIM_Optimal_Design_VI.html
lvanlsconcepts.chm::/Introduction_to_Optimization.html
lvanlsconcepts.chm::/Nonlinear_Programming.html


hl	≤	H(p)	≤	hu
pl	≤	p	≤	pu
where	p	is	a	parameter	value,	J(p)	is	a	cost	function,	and	H(p)	is	a	set	of
constraints.	The	objective	of	the	SQP	algorithm	is	to	minimize	J(p)	and
satisfy	the	constraints	defined	by	hl	≤	H(p)	≤	hu	while	keeping	p	within
specified	minimum	and	maximum	values.
Designing	a	system	using	the	SQP	algorithm	involves	the	following	steps:

1.	 Constructing	the	dynamic	system	model	and	specifying	the
component	of	that	model	for	which	you	want	to	find	optimal
parameter	values.

2.	 Defining	a	performance	measure,	also	known	as	a	cost	function,
you	want	to	minimize.

3.	 Defining	any	constraints	on	the	dynamic	system	that	any	feasible
parameter	values	must	satisfy.

4.	 Defining	minimum	and	maximum	values	for	each	parameter.
5.	 Defining	a	set	of	initial	parameter	values	and	an	initial	parameters

mesh,	which	generates	additional	sets	of	initial	parameter	values.
6.	 Executing	the	SQP	algorithm,	using	the	information	you	specified

in	steps	1	through	5,	by	running	the	SIM	Optimal	Design	VI.
The	cost	function,	inequality	constraints,	and	component	to	optimize
make	up	the	Problem	Specification	parameter	of	the	SIM	Optimal
Design	VI.	For	each	option,	you	can	choose	from	pre-defined	types	or
specify	a	customized	version.

Note		The	Control	Design	and	Simulation	Module	includes	a	case
study	that	determines	the	optimal	parameters	for	a	proportional-
integral-derivative	(PID)	controller.

lvsimconcepts.chm::/SIM_C_ConstrMdl.html
lvsimconcepts.chm::/SIM_C_CostFunc.html
lvsimconcepts.chm::/SIM_C_Constraints.html
lvsimconcepts.chm::/SIM_C_ParmBounds.html
lvsimconcepts.chm::/SIM_C_InitValMesh.html
lvsimconcepts.chm::/SIM_C_ExecuteSQP.html
lvsimhowto.chm::/SIM_H_OptCaseStudy.html


Constructing	the	Dynamic	System	Model
(Control	Design	and	Simulation	Module)
By	default,	the	SIM	Optimal	Design	VI	computes	optimal	design
parameters	for	a	proportional-integral-derivative	(PID)	controller	placed	in
a	closed-loop	dynamic	system.	The	following	figure	shows	this	controller
and	the	dynamic	system	structure.

F1,	F2,	C,	G1,	G2,	and	S	consist	of	transfer	functions	and	associated
information,	such	as	delays	and	sampling	time.	You	can	use	the
SIM	Construct	Default	System	VI	to	construct	these	transfer	functions
and	specify	reference	input	signals	r,	ru,	and	ry.	This	VI	returns	the
necessary	dynamic	system	information	in	the	System	Data	output,	which
you	then	can	wire	to	the	System	Data	input	of	the	SIM	Optimal	Design
VI.	The	SIM	Optimal	Design	VI	then	excites	the	system	using	the	defined
inputs	and	obtains	the	time	response.
Use	the	System	response	type	parameter	of	the	SIM	Optimal	Design	VI
to	specify	if	you	want	this	VI	to	return	optimal	parameter	values	for	C,	F1,
or	F2.	By	default,	C	is	a	parallel	PID	controller	defined	by	the	following
equation:

where	 	=	0.01,	U	is	the	control	action,	s	is	the	Laplace	variable,	and	KP,
KI,	and	KD	are	the	proportional,	integral,	and	derivative	gains,
respectively.
You	also	can	define	a	custom	type	of	system	response	data	you	want	to
optimize	by	using	VI	templates.	To	access	these	templates,	select

lvsim.chm::/SIM_Optimal_Design_VI.html
lvsim.chm::/SIM_ConstrSys.html


File»New	to	launch	the	New	dialog	box.	Then	select	VI»From
Template»Simulation»Optimal	Design	from	the	Create	New	tree.
Double-click	System	Response	(Modify	Controller	Only)	to	modify	only
the	structure	of	the	controller.	Double-click	System	Response	(General)
to	define	a	new	dynamic	system	structure.
If	you	define	a	new	dynamic	system	structure,	the	block	diagram	code
you	write	must	generate	the	output	vector	y	and	the	time	vector	Time.
The	code	also	must	generate	the	control	action	vector	u	unless	the
optimization	problem	does	not	require	a	control	action.	For	example,	if
you	use	the	SIM	Optimal	Design	VI	to	design	the	physical	parameters	of
a	mechanism,	you	do	not	need	to	specify	a	control	action.	In	this
situation,	ensure	the	cost	function	and	inequality	constraints	you	specify
do	not	take	a	control	action	into	account.

lvsimconcepts.chm::/SIM_C_CostFunc.html


Defining	a	Cost	Function	(Control	Design	and
Simulation	Module)
A	cost	function	is	the	performance	measure	you	want	to	minimize.
Examples	of	cost	include	total	power	consumption,	integrated	error,	and
deviation	from	a	reference	value	of	a	signal.	The	cost	function	is	a
functional	equation,	which	maps	a	set	of	points	in	a	time	series	to	a
single	scalar	value.	This	scalar	value	is	the	cost.
Use	the	Cost	type	parameter	of	the	SIM	Optimal	Design	VI	to	specify	the
type	of	cost	function	you	want	this	VI	to	minimize.	The	LabVIEW	Control
Design	and	Simulation	Module	includes	the	following	types	of	cost
functions:

IE—A	cost	function	that	integrates	the	error.
IAE—A	cost	function	that	integrates	the	absolute	value	of	the
error.
ISE—A	cost	function	that	integrates	the	square	of	the	error.
ITAE—A	cost	function	that	integrates	the	time	multiplied	by	the
absolute	value	of	the	error.
ITE—A	cost	function	that	integrates	the	time	multiplied	by	the
error.
ITSE—A	cost	function	that	integrates	the	time	multiplied	by	the
square	of	the	error.
ISTE—A	cost	function	that	integrates	the	square	of	the	time
multiplied	by	the	square	of	the	error.
LQ—A	linear	quadratic	cost	function.
Sum	of	Variances—A	cost	function	based	on	the	variance	of	the
error	multiplied	by	the	variance	of	the	control	action.

You	also	can	define	a	custom	cost	function	using	a	VI	template.	To	load
this	template,	in	the	New	dialog	box,	select	VI»From
Template»Simulation»Optimal	Design»Compute	Cost	from	the
Create	New	tree.
The	block	diagram	of	this	template	contains	several	parameters	including
the	control	action	u,	the	dynamic	system	output	y,	an	array	of	input
signals,	and	a	time	series	vector.	You	also	can	specify	any	weights	on
any	part	of	the	cost	function.

lvsim.chm::/SIM_Optimal_Design_VI.html
lvdialog.chm::/New_Dialog_Box.html


After	you	define	these	parameters,	you	can	write	LabVIEW	block	diagram
code	to	manipulate	the	parameters	according	to	the	cost	function.	For
example,	the	following	equation	defines	the	IE	cost	function.

where	e(t)	is	the	measured	error,	N	is	the	total	number	of	samples	in	the
time	response,	n	is	the	current	time	response	sample,	and	i	is	the	index
of	the	current	output.
You	can	view	the	VI	that	implements	this	cost	function	in	the
labview\vi.lib\Simulation\Optimization	Based	Design\Cost	directory.

Note		If	you	create	a	cost	function	VI	that	does	not	take	the	control
action	into	account,	do	not	delete	the	u	parameter	from	the	block
diagram.	Deleting	this	parameter	breaks	the	connector	pane
structure	on	which	the	SIM	Optimal	Design	VI	depends.	Instead,
leave	the	parameter	unwired.

After	you	save	the	custom	cost	function	as	a	VI,	you	must	specify	the
location	of	the	custom	function	in	the	Problem	Specification	parameter
of	the	SIM	Optimal	Design	VI.	Select	User	defined	for	the	Cost	type
parameter	and	specify	the	path	to	the	VI	in	the	File	path	user	defined
custom	cost	calculation	path	control.

lvconcepts.chm::/Icon_and_Connector_Pane.html


Defining	Inequality	Constraints	(Control	Design
and	Simulation	Module)
Inequality	constraints	represent	trade-offs	implicit	in	the	problem
specification.	For	example,	you	might	be	able	to	remove	errors	in	a
control	loop	by	applying	a	very	large	control	action.	However,	the
necessary	control	action	might	be	impossible	to	achieve	in	the	real	world.
If	you	specify	constraints	on	the	control	action	before	executing	the
Sequential	Quadratic	Programming	(SQP)	algorithm,	you	can	eliminate
optimal	values	that	require	an	unfeasible	control	action.

Note		Constraints	add	a	great	deal	of	complexity	to	the
optimization	problem.	If	possible,	minimize	the	number	of
constraints	before	executing	the	SQP	algorithm.	One	strategy	to
minimize	the	number	of	constraints	involves	first	finding	optimal
values	with	no	constraints,	then	gradually	adding	constraints	and
determining	the	least	amount	of	constraints	required	for	the
dynamic	system.

Because	the	optimization	problem	is	based	on	a	finite-horizon	time-
domain	simulation,	you	specify	the	inequality	constraints	as	envelopes
that	bound	the	time	response	of	the	control	action	and	the	output.	You
also	can	place	inequality	constraint	envelopes	on	the	rate	of	change	of
the	control	action	and	the	rate	of	change	of	the	output.
These	envelopes	are	piecewise	linear	curves	that	specify	the	upper	and
lower	limits	on	a	signal	during	the	simulation.	The	SIM	Optimal	Design	VI
then	calculates	H(p)	as	the	minimum	and	maximum	distance	of	the	time
series	points	from	these	envelopes.
Use	the	Inequality	Constraints	parameter	of	the	SIM	Optimal	Design	VI
to	define	these	envelopes.	This	parameter	specifies	the	upper	and	lower
constraint	envelopes	on	the	following	four	areas	of	the	dynamic	system:
the	control	action,	the	output,	the	rate	of	change	of	the	control	action,	and
the	rate	of	change	of	the	output.

Note		You	can	use	the	Graphically	Specify	Inequality	Constraints
VI,	located	in	the	labview\examples\Control	and
Simulation\Simulation\Optimal	Control	Design\Graphically	Specify
Inequality	Constraints	directory,	to	draw	the	upper	and	lower
envelopes.	This	VI	returns	a	set	of	points	you	then	can	wire	to	the

lvanlsconcepts.chm::/Nonlinear_Programming.html
lvanlsconcepts.chm::/Introduction_to_Optimization.html
lvsim.chm::/SIM_Optimal_Design_VI.html


Inequality	Constraints	parameter.

For	example,	consider	an	output	yi(t)	constrained	by	envelopes,	as
shown	in	the	following	figure.

A,	B,	C,	and	D	are	points	that	define	the	upper	envelope	UEi(t),	and	E,	F,
G,	and	H	are	points	that	define	the	lower	envelope	LEi(t).	The
SIM	Optimal	Design	VI	then	constrains	yi(t)	to	the	following	relationship:

LEi(t)	<	yi(t)	<	UEi(t)

This	VI	encodes	this	constraint	by	computing	the	clearance	between	the
output	and	each	envelope.	The	upper	clearance	UCi	is	defined	as
max	(UEi(t)	–		yi(t)).	The	lower	clearance	LCi	is	defined	as	max	(yi(t)	–	
LEi(t)).	These	clearances	clarify	that	the	constraints	must	be	positive,	as
the	following	relationships	show:
–ε	<	UCi	<	∞

–ε	<	LCi	<	∞

where	ε	=	1E–21.
You	also	can	place	constraints	on	the	rate	of	change	of	control	actions
and	outputs.	If	at	least	five	points	are	available,	this	VI	computes	these
rates	of	change	using	the	following	equation:

where	t	is	the	simulation	time,	h	is	the	space	between	time	steps,	and	f(t)



is	an	output	or	control	action	signal.
At	boundaries,	or	if	fewer	than	five	points	are	available,	this	VI	uses	the
following	equations	instead:

or

You	can	use	a	VI	template	to	specify	custom	calculations	for
implementing	the	inequality	constraints.	To	load	this	template,	in	the	New
dialog	box,	select	VI»From	Template»Simulation»Optimal
Design»Compute	Inequality	Constraints	from	the	Create	New	tree.	To
see	an	example	of	how	to	define	and	manipulate	these	parameters,	open
the	SIMopt	Compute	Inequality	Constraints	(Default)	VI,	located	in	the
labview\vi.lib\Simulation\Optimization	Based	Design\Constraints	directory.
This	VI	implements	the	inequality	constraints	the	previous	equations
specified.
After	you	save	the	custom	inequality	constraint	calculations	as	a	VI,	you
must	specify	the	location	of	the	custom	function	in	the	Problem
Specification	parameter	of	the	SIM	Optimal	Design	VI.	Select	User
defined	for	the	Inequality	constraints	type	parameter	and	specify	the
path	to	the	VI	in	the	File	path	user	defined	inequality	constraints	path
control.

lvdialog.chm::/New_Dialog_Box.html


Defining	Parameter	Bounds	(Control	Design	and
Simulation	Module)
Parameter	bounds	are	constraints	on	parameter	values	being	optimized.
For	example,	while	searching	for	the	best	value	of	a	spring	constant,	you
might	know	that	springs	are	available	only	with	certain	physical
properties.	In	this	case,	you	can	specify	that	the	parameter	k	must	stay
within	minimum	and	maximum	values.	Parameter	bounds	are	important
because	these	bounds	define	the	parameter	space	in	which	the
Sequential	Quadratic	Programming	(SQP)	algorithm	searches	for	optimal
values.
Use	the	Parameter	Bounds	parameter	of	the	SIM	Optimal	Design	VI	to
specify	minimum	and	maximum	values	for	each	parameter.

lvanlsconcepts.chm::/Introduction_to_Optimization.html
lvanlsconcepts.chm::/Nonlinear_Programming.html
lvsim.chm::/SIM_Optimal_Design_VI.html


Defining	Initial	Parameter	Values	and	a	Mesh
(Control	Design	and	Simulation	Module)
After	you	define	the	parameter	space	using	the	minimum	and	maximum
values	of	each	parameter,	you	must	specify	the	initial	values	of	each
parameter.	These	initial	parameter	values	determine	where	the
Sequential	Quadratic	Programming	(SQP)	algorithm	begins	the	search
for	optimal	values.	However,	if	you	choose	only	a	single	initial	set	of	initial
values,	the	SQP	algorithm	might	return	local	optimal	values.	Local
optimal	values	are	values	that	minimize	the	cost	function	within	only	a
subset	of	parameter	space.	Local	optimal	values	are	not	the	true	solution
to	the	SQP	algorithm	because	the	true	optimal	values	might	exist	outside
the	parameter	space	the	algorithm	searched.
To	mitigate	this	problem,	you	can	execute	the	SQP	algorithm	several
times,	using	a	different	set	of	initial	parameter	values	each	time.	If	you
use	a	large	enough	range	of	initial	parameter	values	within	the	given
parameter	space,	you	can	be	relatively	confident	that	the	SQP	algorithm
finds	the	global	optimal	values.
You	can	implement	this	strategy	by	defining	an	initial	parameters	mesh.
The	initial	parameters	mesh	defines	the	distribution	pattern	of	these	sets
of	initial	values	and	the	total	number	of	initial	value	sets	to	generate.	You
can	choose	from	four	patterns	depending	on	the	needs	of	the	problem:
Uniform	grid,	Uniform	random,	Quasirandom,	and	Random	walk.
Each	pattern	has	unique	characteristics	and	strengths.	For	example,	the
simplest	possible	option	is	the	uniform	grid,	which	generates	a	specified
number	of	equally-spaced	locations	in	the	parameter	space.	However,
the	uniform	random	and	quasirandom	options	often	provide	better
coverage	of	the	parameter	space	while	using	a	fewer	number	of	points
than	the	uniform	grid	option.	The	random	walk	option	biases	the	search
to	explore	close	to	the	initial	values	but	eventually	explores	a	larger
region	of	parameter	space.	This	option	is	useful	if	you	think	a	particular
parameter	space	contains	the	optimal	values	and	you	want	to	focus	on	a
certain	region	of	that	space,	such	as	the	center.
Use	the	Initial	Parameters	parameter	of	the	SIM	Optimal	Design	VI	to
specify	initial	parameter	values.	Use	the	Initial	Parameters	Mesh
parameter	of	this	VI	to	define	an	initial	parameters	mesh.

lvanlsconcepts.chm::/Nonlinear_Programming.html
lvanlsconcepts.chm::/Nonlinear_Programming.html#Local_and_Global_Minima
lvanlsconcepts.chm::/Nonlinear_Programming.html#Local_and_Global_Minima
lvsim.chm::/SIM_Optimal_Design_VI.html


Executing	the	SQP	Algorithm	(Control	Design
and	Simulation	Module)
The	SIM	Optimal	Design	VI	uses	an	internal	simulation	diagram	to	obtain
the	finite-horizon	time-domain	response	of	the	dynamic	system	model.
Use	the	Solver	Parameters	parameter	of	this	VI	to	configure	the
simulation.	You	also	can	configure	the	Sequential	Quadratic
Programming	(SQP)	algorithm	using	the	beginning	state,	cno	settings,
and	stopping	criteria	parameters.
This	VI	returns	the	following	information:

Signals—The	finite-horizon	time-response	data	for	the	output
and	control	action	of	the	dynamic	system,	evaluated	at	each	point
specified	in	the	Optimal	parameters	array.
Design	parameters—The	set	of	parameter	values	that	minimize
the	specified	cost	function.	These	values	are	the	optimal
parameter	values.
Design	cost—The	result	of	the	specified	cost	function	if	you
apply	the	values	from	the	Design	parameters	array.
Optimal	parameters—A	list	of	possible	optimal	parameter
values.	Each	column	of	this	array	corresponds	to	one	parameter
you	specified	in	the	Parameter	Bounds	array.	Each	row	of	this
array	corresponds	to	one	execution	of	the	SQP	algorithm.
Optimal	costs—The	results	of	the	specified	cost	function	that
correspond	to	each	row	of	the	Optimal	parameters	array.

The	SQP	algorithm	takes	as	long	to	execute	as	the	product	of	the
number	of	function	evaluations	and	the	run	time	of	the	simulation.	If	you
specify	only	one	set	of	initial	parameter	values,	the	algorithm	must	solve,
on	average,	between	30	and	200	functions.	The	front	panel	of	the	SIM
Optimal	Design	VI	includes	a	Current	Data	page	that	you	can	use	to
monitor	the	progress	of	the	algorithm	as	the	VI	runs.	This	page	updates
each	time	the	SQP	algorithm	executes	from	one	set	of	initial	parameter
values.
The	Optimal	Design	Parameters	page	of	this	VI	also	includes	the	Best
Parameters	(Infeasible	Constraints)	and	Best	cost	(Infeasible
constraints)	parameters.	These	parameters	return	optimal	parameter
values	and	the	associated	cost	function	result	with	no	constraints.	This

lvsim.chm::/SIM_Optimal_Design_VI.html
lvanlsconcepts.chm::/Nonlinear_Programming.html


information	can	be	useful	when	revising	the	constraint	envelopes.
If	the	dynamic	system	has	constraints	and	the	SQP	algorithm	does	not
return	feasible	optimal	values,	try	ensuring	that	the	specified	cost	function
remains	constant	when	parameter	values	are	outside	the	feasible	range.
This	method	helps	you	set	reasonable	parameter	bounds.	Additionally,
reducing	system	discontinuities	helps	the	SQP	algorithm	execute
precisely.	You	can	use	several	methods	to	reduce	discontinuities,	for
example,	avoiding	saturation	effects	and	rate	limiters	in	the	system
model.



Using	the	Simulation	Model	Converter	(Control
Design	and	Simulation	Module)
You	can	use	the	Simulation	Model	Converter	to	convert	a	.mdl	file,
developed	in	The	MathWorks,	Inc.	Simulink®	simulation	environment,
into	a	LabVIEW	VI	that	consists	of	a	simulation	diagram	containing
LabVIEW	functions,	wires,	and	simulation	subsystems	corresponding	to
the	contents	of	the	.mdl	file.	As	part	of	the	conversion	process,	the
Simulation	Model	Converter	uses	the	MathWorks,	Inc.	MATLAB®
application	software	and	the	Simulink	application	software	to	compile	the
.mdl	file	and	execute	any	.m	files	that	you	specify	in	the	dialog	box.	If	the
MATLAB	software	or	the	Simulink	software	is	not	installed	on	the	same
computer	as	the	LabVIEW	Control	Design	and	Simulation	Module,	the
results	of	the	conversion	might	be	less	accurate.

Note		The	Simulation	Model	Converter	cannot	convert	diagrams
developed	with	The	MathWorks,	Inc.	Stateflow®	application
software	or	other	Simulink	blocksets.

(Windows)	To	view	related	topics,	click	the	Locate	button,	shown	at
left,	in	the	toolbar	at	the	top	of	this	window.	The	LabVIEW	Help
highlights	this	topic	in	the	Contents	tab	so	you	can	navigate	the
related	topics.



Common	Warnings	(Control	Design	and
Simulation	Module)
If	the	Simulation	Model	Converter	cannot	find	a	value	for	a	parameter	in
the	.mdl	file	it	is	converting,	LabVIEW	displays	a	warning.	In	these	cases,
the	Simulation	Model	Converter	uses	the	default	value	of	the	parameter
in	the	corresponding	LabVIEW	function.

Note		In	some	cases,	the	Simulation	Model	Converter	cannot	find
a	value	for	a	parameter	because	the	parameter	contains	an
expression	instead	of	a	constant	value.	If	the	MathWorks,	Inc.
MATLAB®	software	is	installed	on	the	computer,	the	Simulation
Model	Converter	attempts	to	evaluate	the	MATLAB	software
expressions	in	the	.mdl	file	prior	to	converting	the	file.	If	the
Simulation	Model	Converter	successfully	evaluates	the	expression,
the	Simulation	Model	Converter	uses	the	result	of	that	evaluation
as	the	parameter	value	and	does	not	produce	a	warning.

The	Simulation	Model	Converter	cannot	fully	convert	all	functions	of
every	model	to	LabVIEW	block	diagram	code.	If	the	Simulation	Model
Converter	encounters	a	block	it	cannot	convert,	you	receive	a	warning.
In	these	cases,	the	Simulation	Model	Converter	creates	a	placeholder
simulation	subsystem.	You	must	create	a	simulation	subsystem	using	a
LabVIEW	VI	to	accomplish	the	same	functionality	as	the	block	to	replace
this	placeholder	simulation	subsystem.
Because	LabVIEW	is	strict	about	data	types,	the	converted	simulation
subsystem	might	have	broken	wires.	In	this	case,	add	block	diagram
code	to	convert	between	converted	data	types.

lvsimconcepts.chm::/SIM_C_UBlocks.html
lvsimhowto.chm::/SIM_H_SubsysSA.html


Unsupported	Blocks	(Control	Design	and
Simulation	Module)
The	Simulation	Model	Converter	dialog	box	cannot	convert	the	following
blocks	used	in	The	MathWorks,	Inc	Simulink®	application	software.
In	these	cases,	the	Simulation	Model	Converter	creates	a	placeholder
simulation	subsystem.	You	must	create	a	simulation	subsystem	using	a
LabVIEW	VI	to	accomplish	the	same	functionality	as	the	block	to	replace
this	placeholder	simulation	subsystem.

Algebraic	Constraint
Atomic	Subsystem
Band-Limited	White	Noise
Configurable	Subsystem
Enabled
Enabled	and	Triggered
For	Subsystem
From	Workspace
Function-Call
Function-Call	Generator
If
If	Action	Subsystem
Interpolation	(n-D)	using	PreLook-Up
Look-Up	Table	(n-D)
Memory
Merge
Model	Info
PreLook-Up	Index	Search
Probe
Random	Number
Rate	Transition
Repeating	Sequence
S-Function
S-Function	Builder
Switch	Case	Action	Subsystem

lvsim.chm::/SIM_SimTrans.html
lvsimhowto.chm::/SIM_H_SubsysSA.html


SwitchCase
To	Workspace
Triggered
While	Iterator	Subsystem



Additional	Important	Information	(Control
Design	and	Simulation	Module)
Trademarks
Patents



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
MATLAB®,	Stateflow®,	and	Simulink®	are	registered	trademarks	of	The
MathWorks,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	media,	or	ni.com/patents.
You	are	only	permitted	to	use	this	product	in	accordance	with	the
accompanying	license	agreement.	All	rights	not	expressly	granted	to	you
in	the	license	agreement	accompanying	the	product	are	reserved	to	NI.
Further,	and	without	limiting	the	forgoing,	no	license	or	any	right	of	any
kind	(whether	by	express	license,	implied	license,	the	doctrine	of
exhaustion	or	otherwise)	is	granted	under	any	NI	patents.

javascript:WWW(WWW_Patents)

