


National	Instruments	IVI™	Driver	Help
January	2007	Edition,	Part	Number	370430C-01
	
This	help	file	is	intended	for	IVI	Compliance	Package	software	users.
Refer	to	IVI	Compliance	Package	for	more	information	about	this	NI
software	package.
To	navigate	this	help	file,	use	the	Contents,	Search,	and	Index	tabs	to
the	left	of	this	window.
For	more	information	about	this	help	file,	refer	to	the	following	topics:
Using	Help
Related	Documentation
Glossary
Important	Information
Technical	Support	and	Professional	Services
To	comment	on	National	Instruments	documentation,	refer	to	the	National
Instruments	Web	site.
©	2007	National	Instruments	Corporation.	All	rights	reserved.

javascript:WWW(WWW_Feedback)


Using	Help
Conventions
Navigating	Help
Searching	Help
Printing	Help	File	Topics



Conventions
This	help	file	uses	the	following	conventions:

<	> Angle	brackets	that	contain	numbers	separated	by	an
ellipsis	represent	a	range	of	values	associated	with	a	bit	or
signal	name—for	example,	DBIO<3..0>.

[	] Square	brackets	enclose	optional	items—for	example,
[response].

» The	»	symbol	leads	you	through	nested	menu	items	and
dialog	box	options	to	a	final	action.	The	sequence
File»Page	Setup»Options	directs	you	to	pull	down	the	File
menu,	select	the	Page	Setup	item,	and	select	Options	from
the	last	dialog	box.
The	 	symbol	indicates	that	the	following	text	applies	only	to
a	specific	product,	a	specific	operating	system,	or	a	specific
software	version.
This	icon	denotes	a	note,	which	alerts	you	to	important
information.
This	icon	denotes	a	caution,	which	advises	you	of
precautions	to	take	to	avoid	injury,	data	loss,	or	a	system
crash.

bold Bold	text	denotes	items	that	you	must	select	or	click	on	in
the	software,	such	as	menu	items	and	dialog	box	options.
Bold	text	also	denotes	parameter	names,	emphasis,	or	an
introduction	to	a	key	concept.

dark	red Text	in	this	color	denotes	a	caution.
green Underlined	text	in	this	color	denotes	a	link	to	a	help	topic,

help	file,	or	Web	address.
italic Italic	text	denotes	variables	or	cross	references.	This	font

also	denotes	text	that	is	a	placeholder	for	a	word	or	value
that	you	must	supply.

monospace Text	in	this	font	denotes	text	or	characters	that	you	should
enter	from	the	keyboard,	sections	of	code,	programming
examples,	and	syntax	examples.	This	font	is	also	used	for
the	proper	names	of	disk	drives,	paths,	directories,



programs,	subprograms,	subroutines,	device	names,
functions,	operations,	variables,	filenames	and	extensions,
and	code	excerpts.

monospace
bold

Bold	text	in	this	font	denotes	the	messages	and	responses
that	the	computer	automatically	prints	to	the	screen.	This
font	also	emphasizes	lines	of	code	that	are	different	from	the
other	examples.

monospace
italic

Italic	text	in	this	font	denotes	text	that	is	a	placeholder	for	a
word	or	value	that	you	must	supply.



Navigating	Help	(Windows	Only)
To	navigate	this	help	file,	use	the	Contents,	Index,	and	Search	tabs	to
the	left	of	this	window	or	use	the	following	toolbar	buttons	located	above
the	tabs:

Hide—Hides	the	navigation	pane	from	view.
Locate—Locates	the	currently	displayed	topic	in	the	Contents	tab,
allowing	you	to	view	related	topics.
Back—Displays	the	previously	viewed	topic.
Forward—Displays	the	topic	you	viewed	before	clicking	the	Back
button.
Options—Displays	a	list	of	commands	and	viewing	options	for	the
help	file.



Searching	Help	(Windows	Only)
Use	the	Search	tab	to	the	left	of	this	window	to	locate	content	in	this	help
file.	If	you	want	to	search	for	words	in	a	certain	order,	such	as	"related
documentation,"	add	quotation	marks	around	the	search	words	as	shown
in	the	example.	Searching	for	terms	on	the	Search	tab	allows	you	to
quickly	locate	specific	information	and	information	in	topics	that	are	not
included	on	the	Contents	tab.



Wildcards
You	also	can	search	using	asterisk	(*)	or	question	mark	(?)	wildcards.
Use	the	asterisk	wildcard	to	return	topics	that	contain	a	certain	string.	For
example,	a	search	for	"prog*"	lists	topics	that	contain	the	words
"program,"	"programmatically,"	"progress,"	and	so	on.
Use	the	question	mark	wildcard	as	a	substitute	for	a	single	character	in	a
search	term.	For	example,	"?ext"	lists	topics	that	contain	the	words
"next,"	"text,"	and	so	on.

Note		Wildcard	searching	will	not	work	on	Simplified	Chinese,
Traditional	Chinese,	Japanese,	and	Korean	systems.



Nested	Expressions
Use	nested	expressions	to	combine	searches	to	further	refine	a	search.
You	can	use	Boolean	expressions	and	wildcards	in	a	nested	expression.
For	example,	"example	AND	(program	OR	VI)"	lists	topics	that	contain
"example	program"	or	"example	VI."	You	cannot	nest	expressions	more
than	five	levels.



Boolean	Expressions
Click	the	 	button	to	add	Boolean	expressions	to	a	search.	The	following
Boolean	operators	are	available:

AND	(default)—Returns	topics	that	contain	both	search	terms.	You
do	not	need	to	specify	this	operator	unless	you	are	using	nested
expressions.
OR—Returns	topics	that	contain	either	the	first	or	second	term.
NOT—Returns	topics	that	contain	the	first	term	without	the	second
term.
NEAR—Returns	topics	that	contain	both	terms	within	eight	words
of	each	other.



Search	Options

Use	the	following	checkboxes	on	the	Search	tab	to	customize	a	search:
Search	previous	results—Narrows	the	results	from	a	search	that
returned	too	many	topics.	You	must	remove	the	checkmark	from
this	checkbox	to	search	all	topics.
Match	similar	words—Broadens	a	search	to	return	topics	that
contain	words	similar	to	the	search	terms.	For	example,	a	search
for	"program"	lists	topics	that	include	the	words	"programs,"
"programming,"	and	so	on.
Search	titles	only—Searches	only	in	the	titles	of	topics.



Printing	Help	File	Topics	(Windows	Only)
Complete	the	following	steps	to	print	an	entire	book	from	the	Contents
tab:

1.	 Right-click	the	book.
2.	 Select	Print	from	the	shortcut	menu	to	display	the	Print	Topics

dialog	box.
3.	 Select	the	Print	the	selected	heading	and	all	subtopics	option.

Note		Select	Print	the	selected	topic	if	you	want	to	print
the	single	topic	you	have	selected	in	the	Contents	tab.

4.	 Click	the	OK	button.



Printing	PDF	Documents
This	help	file	may	contain	links	to	PDF	documents.	To	print	PDF
documents,	click	the	print	button	located	on	the	Adobe	Acrobat	Viewer
toolbar.



Related	Documentation
You	might	find	the	following	documentation	helpful	as	you	use	this	help
file:

Application	Notes—A	library	with	more	than	100	short	papers
addressing	specific	topics	such	as	creating	and	calling	DLLs,
developing	your	own	instrument	driver	software,	and	porting
applications	between	platforms	and	operating	systems.
Measurement	&	Automation	Explorer	Help	for	IVI—
This	help	file	discusses	how	to	configure	your	system	with	MAX.
LabWindows/CVI	Instrument	Driver	Developers	Guide—This
document	describes	guidelines	for	writing	an	IVI	instrument	driver.
To	download	and	use	this	document,	click	ni.com/manuals,	and
search	for	the	LabWindows/CVI	Instrument	Driver	Developers
Guide.
IVI	Foundation—This	Web	site	provides	information	from	the	IVI
Foundation,	including	the	specifications	for	each	instrument	class.

javascript:WWW(WWW_Appnotes)
ms-its:ivi_max.chm::/MAX_overview.html
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_IVI)


Glossary
Prefixes 	 Numbers/Symbols 	 A 	 B 	 C 	 D 	 E 	 F 	 G 	 H 	 I 	 L 	 M 	

N 	 P 	 R 	 S 	 V 	 W

Symbol
Prefix
Value
p pico 10	-12

n nano 10	-9

µ micro 10	-6

m milli 10	-3

k kilo 10	3

M mega10	6

G giga 10	9

T tera 10	12

Numbers/Symbols

Infinity.
1D One-dimensional.
2D Two-dimensional.

Delta;	difference.

x denotes	the	value	by	which	x	changes
from	one	index	to	the	next.
Pi.

A

A Amperes.
A/D Analog-to-digital;	analog/digital.

absolute	coordinates Picture	coordinates	relative	to	the	origin
(0,0)	of	the	picture	indicator.



absolute	path
File	or	directory	path	that	describes	the
location	relative	to	the	top	level	of	the	file
system.

AC Alternating	current.

active	window

Window	that	is	currently	set	to	accept	user
input,	usually	the	frontmost	window.	The
titlebar	of	an	active	window	is	highlighted.
Make	a	window	active	by	clicking	it	or	by
selecting	it	from	the	Windows	menu.

ADE

Application	Development	Environment.	An
environment	that	provides	users	various
software	development	tools	for	the
development	of	automated	test	systems.
Examples	of	ADEs	include	National
Instruments	LabVIEW	and	National
Instruments	LabWindows/CVI.

AI Analog	input.

analog	trigger

Trigger	that	occurs	at	a	user-selected
level	and	slope	on	an	incoming	analog
signal.	You	can	set	triggering	to	occur	at	a
specified	voltage	on	either	an	increasing
or	a	decreasing	signal	(positive	or
negative	slope).

ANSI American	National	Standards	Institute.
API Application	Programming	Interface.

Application	Programming
Interface	(API)

A	standardized	set	of	subroutines	or
functions	along	with	the	parameters	that	a
program	can	call.

array Ordered,	indexed	list	of	data	elements	of
the	same	type.

ASCII American	Standard	Code	for	Information
Interchange.

B

The	minimum	set	of	functions,	attributes,
and	attribute	values	that	an	IVI	driver	must



base	class	capabilities

implement	to	claim	compliance	with	an
instrument	class	specification.	For
example,	the	base	class	capabilities	of	the
oscilloscope	class	have	functions	and
attributes	that	configure	an	edge-triggered
acquisition,	initiate	an	acquisition,	and
return	the	acquired	waveform.	An	IVI
class-compliant	specific	driver	implements
all	the	base	capabilities	for	a	particular
class.

behavior	model

A	diagram	indicating	an	instrument's
possible	states,	the	functions	that	cause	it
to	transition	between	states,	and	the
attributes	that	affect	tis	behavior	in	each
state.

C

capability	group

A	set	of	functions,	attributes,	and	attribute
values	defined	in	an	IVI	Foundation
specification.	There	are	four	different
types	of	instrument	capabilities—Inherent
Capabilities,	Base	Class	Capabilities,
Class	Extension	Capabilities,	and
instrument	specific	driver	Capabilities.

channel	string

An	instrument	specific	driver	string	that
refers	to	a	particular	channel	of	a	device.
An	IVI	specific	driver	that	implements
channels	defines	the	channel	strings	that
it	recognizes.	A	channel	string	is	an
example	of	a	repeated	capability	identifier.

channel
One	of	multiple	physical	inputs	or	outputs
to	an	instrument.	A	set	of	channels	is	a
type	of	repeated	capability.
An	instrument	driver	that	provides	a
generic	programming	interface	to
instruments	of	a	particular	class.	From
your	test	program,	you	make	calls	to	a



class	driver
class	driver,	which	in	turn	communicates
through	a	specific	driver	for	your
instrument.	You	can	change	the	specific
instrument	driver	(and	corresponding
instrument)	in	your	system	underneath	the
class	driver	without	affecting	your	test
code.

class	extension	capabilities

Groups	of	functions,	attributes,	and
attribute	values	that	an	instrument	class
specification	defines	to	represent
instrument	class	features	that	are	more
specialized	than	the	features	that	the
Base	Class	Capabilities	represent.	A
driver	implements	an	extension	capability
only	if	the	instrument	being	controlled	by
the	driver	supports	the	specialized
features	of	the	particular	extension
capability	group.	For	example,	the
IviScope	specification	defines	extension
capability	groups	for	various	trigger
modes,	such	as	glitch	triggering	and	TV
triggering.	IVI	class-compliant	specific
instrument	drivers	are	not	required	to
implement	extension	groups,	but	should
implement	all	class	extensions	that	the
instrument	hardware	supports.	For	a
complete	description	of	the	class
extension	capabilities	for	a	particular
class,	refer	to	individual	class
specifications.	Refer	Section	2.6,
Capability	Groups,	of	IVI	3.1:	Driver
Architecture	Specification,	for	more
information	on	class	extension	capabilities
at	ivifoundation.org.

coercion Refer	to	value	coercion.

Context	Help	window
Special	window	in	IVI	Soft	Front	Panels
that	describes	the	function	or	action
associated	with	the	underlying	control.

javascript:WWW(WWW_IVI)


D

DLL Dynamic	Link	Library

driver A	software	module	that	controls	a
hardware	device.	Also	refer	to	IVI	driver.

driver	session A	session	for	an	IVI	driver.

driver	session	configuration
An	item	you	configure	in	MAX	to	associate
an	IVI	driver	with	initial	settings	and
possibly	one	or	more	hardware	assets.

E

error	code
A	value	returned	by	the	instrument	driver
when	execution	does	not	successfully
complete.

extension	capability Refer	to	class	extension	capabilities.

F

.fp	file

A	file	that	contains	information	that	allow
the	interactive	program	to	display	function
panels	that	correspond	to	a	specific
instrument	driver.

function	panel

A	user	interface	in	LabWindows™/CVI™
libraries	that	allows	you	to	interactively
execute	library	functions	and	to	generate
code	for	insertion	in	a	program.

function	tree
The	hierarchical	structure	that	defines	the
grouping	of	functions	in	an	instrument
driver.

G

GPIB

General	Purpose	Interface	Bus.	The
common	name	for	the	communications
interface	system	defined	in	ANSI/IEEE
Standard	488.1-1987.



H

handle A	unique	identification	that	allows	access
to	a	session.

hardware	asset
A	physical	device	or	instrument	that
performs	a	measurement	or	stimulus
function.

hardware	configuration
attribute

An	attribute	that	allows	the	user	to	set	and
retrieve	the	value	of	an	instrument	setting.

I

I/O	resource	descriptor Refer	to	resource	descriptor.

include	file

A	file	that	contains	function	declarations,
constant	definitions,	and	external
declaration	of	global	variables	that	the
instrument	driver	exports.

initiate
Cause	an	instrument	to	begin	an
operation	using	one	of	the	IVI	Initiate
functions.

inherent	capabilities
The	set	of	functions,	attributes,	and
attribute	values	that	all	IVI	drivers	are
required	to	implement.

instrument A	type	of	hardware	asset.

instrument	class

A	way	to	typify	instruments.	Instruments
with	common	capabilities	can	be
considered	to	be	of	the	same	class.	For
example,	"Function	Generator"	is	an
instrument	class	typified	by	an	ability	to
generate	voltage	signals.

instrument	driver
A	set	of	routines	designed	to	control	an
instrument,	and	a	set	of	data	structures	to
represent	the	driver.

instrument	handle Refer	to	handle.

The	ability	to	exchange	hardware	assets



instrument	interchangeability in	a	test	system	with	few	or	no	changes	to
the	test	program.

instrument	specific	driver
capabilities

Functions,	attributes,	and	attribute	values
that	represent	features	not	defined	by	an
instrument	class	specification.	For
example,	some	oscilloscopes	have
special	features	such	as	jitter	and	timing
analysis,	that	are	not	defined	in	the
IviScope	class	specification.	The
functions,	attributes,	and	attribute	values
necessary	to	access	the	jitter	and	timing
analysis	capabilities	of	an	oscilloscope	are
considered	instrument	specific	driver
capabilities.	Instrument	specific	driver
capabilities	are	beyond	the	scope	of	an
instrument	class.

IVI Interchangeable	Virtual	Instruments

IVI	class	driver

An	IVI	driver	that	exposes	a	class-
compliant	API	and	serves	as	a	pass-
through	layer	to	IVI	class	compliant
specific	drivers.	For	example,	an	IviScope
class	driver	exports	the	functions,
attributes,	and	attribute	values	defined	in
the	IviScope	class	specification.	When	an
application	program	calls	an	IviScope
class	driver,	the	IviScope	class	driver	calls
an	IVI	class-compliant	specific	driver	that
communicates	with	an	oscilloscope.	IVI
class	drivers	are	necessary	for	instrument
interchangeability	when	using	IVI-C	class-
compliant	specific	drivers.

IVI	class-compliant	specific
driver

An	IVI	specific	driver	that	complies	with
one	of	the	IVI	class	specifications.	For
example,	an	IVI	class-compliant	specific
driver	for	an	oscilloscope	exports	the	API
defined	by	the	IviScope	class
specification.	Typically,	an	IVI	class-
compliant	specific	driver	also	provides



instrument	specific	driver	capabilities.

IVI	class	specification A	specification	that	defines	the	standard
set	of	interfaces	for	an	instrument	class.

IVI	driver

A	software	module	that	controls	a
hardware	device	and	that	complies	with
the	IVI	Foundation	specifications.	For	IVI
Foundation	compliance	requirements,
refer	to	IVI-3.1:	Driver	Architecture
Specification	at	ivifoundation.org.

IVI	driver	installer An	IVI	installer	that	installs	IVI	drivers.

IVI	engine

A	support	library	for	IVI	instrument	drivers
that	performs	common	tasks	such	as
session	creation,	attribute	management,
and	instrument	status	checking.

IVI	Library

Refer	to	IVI	engine.	The	terms	IVI	engine
and	IVI	Library	are	used	interchangeably
throughout	IVI	driver	documentation	and
refer	to	the	same	software	component.

IVI	specific	driver

An	IVI	driver	that	contains	information	for
controlling	a	particular	instrument	or	family
of	instruments	and	communicates	directly
with	the	instrument	hardware.	For
example,	IVI	specific	drivers	control
message-based	instrument	hardware	by
sending	command	strings	and	parsing
responses.

L

LabVIEW

Laboratory	Virtual	Instrument	Engineering
Workbench—a	program	development
application	based	on	the	programming
language	G	and	used	commonly	for	test
and	measurement	purposes.

LabWindows/CVI ADE	for	programming	in	ANSI	C
The	name	that	you	pass	to	identify	the
particular	driver	session	that	the	IVI

javascript:WWW(WWW_IVI)


logical	name

engine	uses	when	you	call	a	class	driver
initialize	function.	The	driver	session,	in
turn,	identifies	a	particular	specific	driver
and	hardware	asset	and	specifies	the
initial	settings	for	the	session.	If	you	want
to	use	your	program	with	a	different
physical	instrument,	you	change	the
properties	of	the	logical	name	to	use	the
driver	session	for	the	new	instrument.	You
use	MAX	to	create	and	edit	logical	names.

M

MAX Refer	to	Measurement	&	Automation
Explorer.

Measurement	&	Automation
Explorer

A	controlled,	centralized	configuration
environment	that	allows	you	to	configure
all	your	National	Instruments	devices.

N

NI	Spy

An	application	monitor	for	Windows
applications	that	use	National	Instruments
drivers.	It	can	monitor,	record,	and	display
calls	made	to	IVI	class	drivers.	NI	Spy
quickly	locates	any	erroneous	calls	your
application	makes	to	the	IVI	class	drivers.

P

physical	identifier
Refer	to	physical	repeated	capability
identifier.

physical	repeated	capability
identifier

An	instrument	specific	driver	string	that
refers	to	a	particular	instance	of	a
repeated	capability.	An	IVI	specific	driver
that	implements	repeated	capabilities
defines	the	repeated	capability	identifiers
that	it	recognizes.



published	API

An	API	that	is	designed	for
implementation	across	several	software
modules,	and	as	such	is	published
independently	of	any	one	software	module
that	implements	it.	Examples	are	IVI
instrument	class	APIs	and	IVI-MSS	role
APIs.

R

range	checking

The	functionality	of	a	driver	that	validates
parameter	and	attribute	values	against
published	instrument	limits.	Range
checking	is	a	configurable	behavior	that
can	be	enabled	or	disabled	by	the	user.

repeated	capability

An	instrument	capability	for	which	multiple
instances	can	be	configured
independently.	Examples	of	repeated
capabilities	include	channels	on	an
oscilloscope,	traces	on	a	spectrum
analyzer,	and	modulators	on	a	RF	signal
generator.

repeated	capability	identifier A	virtual	or	physical	repeated	capability
identifier.

repeated	capability	name

The	name	published	by	an	IVI	driver	or
class	specification	to	refer	to	a	particular
repeated	capability.	For	example,	the
IviScope	class	specification	defines
"Channel"	as	a	repeated	capability	name.

resource	descriptor

A	string,	such	as	a	VISA	resource
descriptor,	that	specifies	the	I/O	address
of	a	hardware	asset.

resource	name Refer	to	resource	descriptor.

S

A	run-time	instance	that	provides	context



session

for	communicating	and	interacting	with	a
particular	physical	instrument	or	collection
of	physical	instruments.	For	IVI	drivers,	a
session	maintains	configuration
information	and	instrument	state
information	from	one	IVI	driver	call	to
another	and	across	threads.	The	user
creates	a	driver	session	by	calling	the
Initialize	function	of	the	driver.	When
creating	a	session	in	an	application
program,	the	user	may	reference	a
session	configuration	from	the	IVI
configuration	store.	The	session	ends
when	you	close	the	driver.

session	configuration

An	item	you	configure	in	MAX	to	associate
an	instrument	driver	with	initial	settings
and	possibly	one	or	more	hardware
assets.

simulation

A	required	feature	of	IVI	drivers	that
allows	users	to	develop	application	code
even	when	the	instrument	is	not	available.
In	simulation	mode,	the	instrument	driver
does	not	perform	I/O	on	the	instrument.

simulation	drivers

A	set	of	routines	that	IVI	class	drivers	use
to	implement	simulation	features.	The	IVI
Compliance	Package	installs	a	simulation
driver	for	each	IVI	class	driver.	Each
simulation	driver	plugs	in	to	the
corresponding	class	driver	and	performs
flexible	simulation	of	data	output.

simulation	driver	session

A	logical	construct	that	identifies	the
simulation	driver	and	its	configuration.
Simulation	driver	sessions	reference
simulation	drivers	instead	of	specific
drivers.	Simulation	driver	sessions	do	not
reference	a	hardware	asset.

specific	driver Refer	to	IVI	specific	driver.
A	behavior	of	IVI	specific	drivers	that



state	caching

tracks	the	state	of	instrument	settings	at
run	time.	When	the	user	enables	state
caching	on	an	IVI	driver	that	implements
state	caching,	the	instrument	driver
performs	instrument	I/O	only	when	the
current	state	of	an	instrument	setting	is
different	from	what	the	user	requests.
State	caching	can	improve	performance	of
a	test	program	by	preventing	the	driver
from	sending	redundant	commands	to	the
instrument.

status	code An	error	code	or	completion	code.

V

V volts

value	coercion

Occurs	when	an	IVI	specific	driver	alters
the	value	that	the	user	specifies	for	an
attribute	or	parameter	to	a	value	that	the
specific	driver	or	instrument	can	accept.	If
the	specific	driver	coerces	an	attribute
value,	the	specific	driver	returns	the
coerced	value	when	the	user	reads	the
value	of	the	attribute.	For	attributes	that
represent	a	continuous	range	of	values,	a
driver	may	coerce	the	value	that	the	user
requests	to	a	value	that	is	more
appropriate	for	the	instrument.

value	parameter

A	scalar	parameter	of	integer,	single-
precision,	long,	or	double-precision	data
type	whose	value	is	not	modified	by	the
subroutine	or	function.	In	other	words,	an
integer,	single-precision,	long,	or	double-
precision	scalar	parameter	is	a	value
parameter	if	and	only	if	its	function	panel
control	is	not	an	output	control.

virtual	identifier Refer	to	virtual	repeated	capability
identifier.



virtual	repeated	capability
identifier

An	alias	the	user	defines	in	a	driver
session	in	the	IVI	configuration	store	to
represent	a	physical	repeated	capability
identifier.	The	IVI	configuration	store
contains	the	mappings	between	virtual
repeated	capability	identifiers	and	physical
repeated	capability	identifiers.	Users
striving	for	instrument	interchangeability
should	use	virtual	repeated	capability
identifiers	in	their	application	programs.

VI	Tree The	hierarchical	structure	that	defines	the
grouping	of	VIs	in	an	instrument	driver.

VISA

Virtual	Instrument	Software	Architecture.
VISA	provides	an	I/O	API	for
communicating	over	a	variety	of	bus
interfaces,	including	GPIB,	VXI,	and	serial
interfaces.

VPP VXIplug&play.

VXI
VMEbus	Extensions	for	Instrumentation,
or	IEEE	1155.VME	eXtensions	for
Instrumentation.

VXIplug&play	Systems
Alliance

An	organization	whose	members	share	a
common	commitment	to	end-user	success
with	open,	multivendor	test	and
measurement	systems.	To	view
specifications	defined	by	this	alliance,
refer	to	vxipnp.org.

W

warning	code

A	value	that	an	instrument	driver	returns
after	successful	execution	to	provide
additional	information	to	the	user.	For
example,	if	an	instrument	does	not
support	a	self	test	operation,	calling	the
self	test	function	will	return	a	self	test	not
supported	code.

javascript:WWW(WWW_VXI)


NI	IVI	Compliance	Package
The	NI	IVI	Compliance	Package	is	a	software	package	that	contains	IVI
class	drivers	and	the	support	libraries	necessary	for	the	development	and
use	of	applications	that	leverage	IVI	instrument	interchangeability.
The	IVI	Compliance	Package	is	also	based	on	and	is	compliant	with	the
latest	version	of	the	instrument	programming	specifications	defined	by
the	IVI	Foundation.	The	IVI	class	drivers	in	the	ICP	are	used	with	IVI
specific	drivers.	You	can	either	download	IVI	specific	drivers	from
ni.com/idnet	or	create	them	yourself.		



What	the	Setup	Program	Installs
The	setup	program	for	the	IVI	Compliance	Package	installs	the	following
components	on	your	hard	disk:

IVI	Class	Drivers
IVI	Engine
Measurement	&	Automation	Explorer	(MAX)
IVI	Shared	Components



IVI	Class	Drivers
The	IVI	Compliance	Package	supports	eight	driver	classes:	oscilloscope,
digital	multimeter,	function/arbitrary	waveform	generator,	DC	power
supply,	switch,	RF	signal	generator,	spectrum	analyzer,	and	power	meter.
You	can	develop	hardware	independent	test	programs	with	these	driver
classes.	The	setup	program	installs	the	files	you	need	to	use	the	class
drivers	with	LabWindows/CVI,	LabVIEW,	and	Measurement	Studio.
LabWindows/CVI
For	LabWindows/CVI,	an	IVI	class	driver	consists	of	the	following	files:

The	class	driver	program,	which	consists	of	a	.dll	file	and	import
library	(.lib)	files	for	various	compilers.
The	class	driver	includes	file	(.h),	which	contains	the	function
declarations	and	constant	definitions	for	the	class.
The	class	driver	function	panel	file	(.fp),	which	defines	the
function	tree,	the	function	panels,	and	the	help	text.
The	.sub	file,	which	documents	attributes	and	their	possible
values.
A	Windows	help	file	(.hlp),	which	contains	documentation	for	the
LabWindows/CVI	class	driver.

LabVIEW
For	LabVIEW,	an	IVI	class	driver	consists	of	the	following	files:

The	class	driver	VIs,	which	are	in	a	.llb	file.	The	VIs	link	to	a	.dll
file.
The	.rc	file,	which	documents	properties	and	their	possible
values.
A	set	of	.mnu	files,	which	documents	the	hierarchy	of	VIs	for	the
class	driver.
A	Windows	help	file	(.hlp),	which	contains	documentation	for	the
LabVIEW	class	driver.

MeasurementStudio
For	MeasurementStudio,	an	IVI	class	driver	consists	of	the	following	files:

The	static	libraries	for	various	run-time	library	compatibilities.



The	class	driver	includes	files	(.h	and	.inl),	which	contain	the
class	and	constant	definitions	for	the	class.
The	following	figure	shows	how	a	class	driver	redirects	function
calls	from	a	test	program	to	the	correct	specific	driver.
The	component	.xml	file,	which	allows	the	class	to	be	used	with
MeasurementStudio.
A	Microsoft	Help	file	(.chm),	which	contains	documentation	for	the
MeasurementStudio	class	driver.

Refer	to	IVI	Class	Drivers	Overview	for	more	information	about	class
drivers.



IVI	Engine
The	IVI	engine	is	the	key	support	library	that	enables	IVI	Instrument
Drivers	to	perform	simulation	and	other	performance	enhancing	benefits,
such	as	state	caching,	range	checking	and	status	checking.	During
development,	these	features	can	aid	in	development	of	your	application.
Once	you	transition	into	production	mode,	you'll	want	to	achieve	peak
performance.	The	IVI	engine	allows	you	to	disable	features	like	range
checking	and	status	checking,	thus	allowing	you	to	achieve	maximum
production	throughput.



IVI	Shared	Components
The	IVI	Shared	Components	are	owned	and	distributed	by	the	IVI
Foundation.	These	components	make	the	underlying	structure	of	an	IVI-
compliant	system.	Since	IVI	Compliance	Package	components	are
designed	to	work	with	the	IVI	Shared	Components,	the	IVI	Shared
Components	are	installed	as	part	of	the	IVI	Compliance	Package.
The	Configuration	Server	included	in	the	IVI	Shared	Components
provides	an	API	for	accessing	instrument	driver	data.	Various	IVI
products	have	been	redesigned	to	work	with	the	Configuration	Server
instead	of	the	previous	way	of	using	the	ivi.ini	file.



IVI	Driver	Help	Introduction
The	topics	in	this	book	are	intended	for	both	LabWindows/CVI	and
LabVIEW	users.	These	topics	describe	how	to	develop	hardware
independent	test	programs	with	IVI	(Interchangeable	Virtual	Instruments)
instrument	drivers.
These	topics	also	give	an	overview	of	IVI	instrument	drivers	and	the	IVI
system	architecture,	so	that	you	can	configure	your	system	and	develop
test	programs	that	are	independent	of	your	hardware.	Follow	the
guidelines	in	these	topics	when	you	develop,	debug	and	deploy	test
programs	that	use	IVI	instrument	drivers.



Instrument	Driver	Overview
What	Is	an	Instrument	Driver?
Programmers	used	to	drive	computer​controlled	instrumentation	systems
with	BASIC	I/O	statements	in	their	application	programs	to	send	and
receive	command	and	data	strings	to	and	from	the	various	instruments
connected	to	their	computer	through	GPIB.	Each	instrument	responded
to	particular	ASCII	strings	as	documented	in	each	vendor's	instrument
user	manual.	Programmers	were	responsible	for	learning	each	command
set	and	writing	the	control	program.
Now	programmers	use	high​level	routines	that	hide	the	low​level
commands.	Also,	by	using	routines	that	are	generic	and	modular,
programmers	can	reuse	them	in	future	applications	that	use	the	same
instrument.	These	reusable	routines	are	known	as	instrument	drivers.
An	instrument	driver	is	a	high​level	function	library	that	you	use	to	control
a	specific	GPIB,	VXI,	or	serial	instrument	or	other	device.	With	an
instrument	driver,	you	can	easily	control	an	instrument	without	knowing
the	low​level	command	syntax	or	I/O	protocol.



Historical	Evolution	of	Instrument	Drivers
Early	instrument	driver	implementations	had	serious	limitations.	Some
approaches	were	too	closely	linked	to	proprietary	development	tools.
Other	approaches	were	too	difficult	to	develop	or	modify.	Users	wanted
open,	modifiable	drivers	built	around	standards	that	allowed	instruments
from	a	variety	of	vendors	to	easily	coexist	in	one	application.
The	VXIplug&play	Systems	Alliance	improved	existing	instrument	driver
standards	and	enabled	system	interoperability.	Users	could	install
VXIplug&play	instrument	drivers	from	a	variety	of	vendors	on	the	same
system	without	encountering	system	conflicts.	In	addition,	these
standards	used	VISA​defined	data	types	to	define	parameters	of	all
instrument	driver	functions.	These	data	types	promoted	the	portability	of
instrument	drivers	to	new	operating	systems	and	programming
languages.	Although	the	VXIplug&play	model	continues	to	represent	a
powerful	instrument	driver	solution,	it	lacks	several	crucial	features	such
as	instrument	interchangeability,	execution	performance	(specifically,
state	caching),	and	test	development	flexibility	(specifically,	range
checking	and	simulation).



The	IVI	Foundation
The	IVI	Foundation	is	an	organization	of	end​users,	instrument	vendors,
and	system	integrators	who	share	a	common	commitment	to	promote	the
success	of	test	system	developers	through	open,	powerful,	instrument
control	technology.	The	IVI	Foundation	has	extended	the	VXIplug&play
instrument	driver	standards	to	incorporate	features	such	as	instrument
interchangeability,	execution	performance,	and	test	development
flexibility.	The	Interchangeable	Virtual	Instruments	(IVI)	model	achieves
these	advances	without	introducing	additional	complexity	or	performance
overhead.	Although	IVI	instrument	drivers	comply	with	the	VXIplug&play
standard,	they	have	many	additional	features.	Some	of	the	most
important	features	are	as	follows:

Hardware	Independence—IVI	class	instrument	drivers	allow
developers	to	build	systems	that	reuse	existing	test	programs	with
different	instruments.	The	benefits	of	instrument	interchangeability
extend	to	a	wide	variety	of	applications,	including	the	following
examples:

Test	system	developers	in	the	military	and	aerospace
industries,	who	must	maintain	test	systems	and	code	for
many	years,	can	easily	reuse	test	code	on	new	equipment
as	instruments	improve	or	become	obsolete.
Manufacturers	in	competitive,	high​volume	industries,	such
as	telecommunications	and	consumer	electronics,	can	keep
their	production	lines	running	when	instruments	malfunction
or	must	be	recalibrated.
Large	companies	can	easily	reuse	and	share	test	code
between	departments	and	remote	sites	without	being
required	to	use	the	same	instrumentation	hardware.

Instrument	State	Caching—Standard	VXIplug&play	drivers	do
not	keep	track	of	the	instrument	state.	Therefore,	each
measurement	function	sets	up	the	instrument	for	the	measurement
even	if	the	instrument	is	already	configured	correctly.	IVI	drivers
automatically	cache	the	current	state	of	the	instrument.	An	IVI
instrument	driver	function	performs	instrument	I/O	only	when	the
instrument	settings	are	different	from	what	the	function	requires.
This	difference	seems	minor	in	approach,	but	it	can	lead	to
reductions	in	test	time	and	cost.



Instrument	Simulation—IVI	drivers	can	simulate	the	operation	of
an	instrument	when	that	instrument	is	not	available.	Developers
can	enable	simulation	in	IVI	drivers	to	create	simulated	data	for
output	parameters.	With	simulated	data,	developers	can	develop
stable	code	for	instruments	even	when	the	instruments	are	not
available.

The	IVI	Foundation	identifies	instrument	classes	based	on	common
functionality	in	test	equipment.	That	common	functionality	is	used	to
define	flexible	Application	Programming	Interfaces	(APIs)	to	meet	the
needs	of	test	system	developers.	Each	API	is	referred	to	as	a	class,	and
its	implementation	a	class	driver.
For	example,	the	IviScope	class	contains	functionality	that	is	common	to
most	oscilloscopes,	such	as	vertical	range,	offset,	timebase,	trigger
mode,	waveform	acquisition,	and	so	on.	The	class	uses	functions	and
attributes	to	provide	access	to	all	of	the	included	features.	Test	system
developers	use	the	class	drivers	to	write	software	that	works	with	any
oscilloscope,	regardless	of	communication	bus	or	manufacturer.
The	IVI	Foundation	also	defines	a	common	driver	architecture	and	other
requirements	to	further	benefit	test	system	developers.	All	NI	class
drivers	conform	to	IVI	architecture	and	class	specifications.
For	more	information	about	the	IVI	Foundation,	visit	ivifoundation.org.

javascript:WWW(WWW_IVI)


Historical	Evolution	of	Instrument	Drivers
Although	the	instrument	driver	concept	had	promise,	early
implementations	had	serious	limitations.	Some	approaches	were	too
closely	linked	to	proprietary	development	tools.	Other	approaches	were
too	difficult	to	develop	or	modify.	Users	wanted	open	and	modifiable
drivers,	built	around	standards	that	allowed	instruments	from	a	variety	of
vendors	to	peacefully	coexist	in	one	application.
The	VXIplug&play	systems	alliance	improved	existing	instrument	driver
standards.	The	VXIplug&play	instrument	driver	architecture	leveraged
existing	popular	technology	by	building	on	the	successful
LabWindows/CVI	and	LabVIEW	instrument	driver	standards.
These	standards	enable	system	interoperability.	That	is,	you	can	install
VXIplug&play	instrument	drivers	from	a	variety	of	vendors	on	the	same
system	without	encountering	system	conflicts.	In	addition,	these
standards	use	VISA-defined	data	types	to	define	parameters	of	all
instrument	driver	functions.	These	data	types	promote	the	portability	of
instrument	drivers	to	new	operating	systems	and	programming
languages.	Although	the	VXIplug&play	model	continues	to	represent	a
powerful	instrument	driver	solution,	it	lacks	several	crucial	features,	such
as,	instrument	interchangeability,	execution	performance;	that	is,	state
caching,	and	test	development	flexibility;	specifically,	range	checking	and
simulation.



Advantages	of	IVI	Drivers	Over	Traditional
Instrument	Drivers
IVI	drivers	have	many	advantages:

Driver	developers	can	produce	instrument	drivers	faster	to	cover
more	instruments	in	your	system.
The	rigorous	internal	structure	of	IVI	drivers	results	in	higher
quality	drivers	than	other	existing	drivers.
National	Instruments	can	more	easily	maintain	and	upgrade
instrument	drivers	when	each	driver	has	only	one	set	of	source
files.	Simpler	maintenance	results	in	higher	quality	instrument
drivers	for	you	to	choose	from	when	integrating	a	system.
Consistency	between	LabVIEW	and	LabWindows/CVI	instrument
drivers	means	that	it	is	easier	for	you	to	develop	and	maintain	test
systems	that	use	both	LabVIEW	and	LabWindows/CVI.



The	IVI	Foundation
The	IVI	Foundation	is	an	organization	of	end-users,	instrument	vendors,
and	system	integrators	who	share	a	common	commitment	to	promote	the
success	of	test	system	developers	through	open,	powerful,	instrument
control	technology.	The	IVI	Foundation	has	extended	the	VXIplug&play
instrument	driver	standards	to	incorporate	features	such	as	instrument
interchangeability,	execution	performance,	and	test	development
flexibility.	The	IVI	model	achieves	these	advances	without	introducing
additional	complexity	or	performance	overhead.	Although	IVI	instrument
drivers	comply	with	the	VXIplug&play	standard,	they	have	many
additional	features.	The	following	items	are	some	of	the	most	important
features:

Hardware	Independence—IVI	class	instrument	drivers	allow
developers	to	build	systems	that	reuse	their	test	programs	with
different	instruments.	The	benefits	of	instrument	interchangeability
extend	to	a	wide	variety	of	applications.	The	following	are	a	few
examples:

Test	system	developers	in	the	military	and	aerospace
industries,	who	must	maintain	test	systems	and	code	for
many	years,	can	easily	reuse	their	test	code	on	new
equipment	as	instruments	improve	or	become	obsolete.
Manufacturers	in	competitive,	high-volume	industries,	such
as	telecommunications	and	consumer	electronics,	can	keep
their	production	lines	running	when	instruments	malfunction
or	must	be	recalibrated.
Large	companies	can	easily	reuse	and	share	test	code
between	departments	and	remote	sites	without	being
required	to	use	the	same	instrumentation	hardware.

Instrument	State	Caching—Standard	VXIplug&play	drivers	do
not	keep	track	of	the	state	of	the	instrument.	Therefore,	each
measurement	function	sets	up	the	instrument	for	the	measurement
even	if	the	instrument	is	already	configured	correctly.	IVI	drivers
automatically	cache	the	current	state	of	the	instrument.	An	IVI
instrument	driver	function	performs	instrument	I/O	only	when	the
instrument	settings	are	different	from	what	the	function	requires.
This	seemingly	minor	difference	in	approach	can	lead	to	reductions
in	test	time	and	cost.



Instrument	Simulation—IVI	drivers	can	simulate	the	operation	of
an	instrument	when	that	instrument	is	not	available.	Developers
can	enable	simulation	in	IVI	drivers	to	create	simulated	data	for
output	parameters.	With	simulated	data,	developers	can	develop
stable	code	for	instruments	even	when	the	instruments	are	not
available.

Refer	to	IVI	System	Architecture	for	a	comprehensive	list	of	IVI	features.



IVI	Instrument	Specific	Drivers	Overview
IVI	instrument	specific	drivers	contain	the	information	to	control	a
particular	instrument	model,	including	the	command	strings,	parsing
code,	and	valid	ranges	of	each	setting	for	that	particular	instrument.	IVI
instrument	drivers	apply	an	attribute-based	approach	to	instrument
control	to	deliver	better	run-time	performance	and	more	flexible
instrument	driver	operation.
In	the	remainder	of	this	help	file	the	term	specific	driver	refers	to	an	IVI
instrument	specific	driver	A	specific	driver	gives	you	the	following	benefits
over	a	traditional	instrument	driver:

State	Caching—State	caching	prevents	the	specific	driver	from
sending	redundant	commands	to	the	instrument.	If	you	try	to	set	an
attribute	to	a	value	that	is	already	configured,	the	specific	driver
skips	sending	the	command.	You	can	disable	state	caching.
Range	Checking—Range	checking	verifies	that	a	value	you
specify	for	an	attribute	is	within	the	valid	range	for	the	instrument,
without	performing	costly	I/O	or	causing	an	instrument	error.	You
can	disable	this	feature	for	faster	execution	speed.
Status	Query—The	status	query	feature	automatically	checks	the
status	of	the	instrument	after	each	operation.	You	can	disable	this
feature	for	faster	execution	speed.
Simple	Simulation—You	can	develop	application	code	for	an
instrument	driver	even	when	the	instrument	is	not	available.	In
simulation	mode,	the	instrument	driver	generates	simulated	data
for	output	parameters.
Multithread	Safety—You	can	use	the	IVI	instrument	driver	in
multithreaded	applications.	Multiple	execution	threads	can	use	the
same	IVI	instrument	session	without	interfering	with	each	other.



IVI	Class	Drivers	Overview
IVI	class	drivers	implement	functions	and	attributes	for	controlling	an
instrument	within	a	specified	class,	as	defined	by	the	IVI	Foundation.
Each	IVI	class	driver	consists	of	generic	code	that	can	call	IVI	instrument
specific	drivers.	Through	configuration	you	can	switch	between	various
specific	drivers,	achieving	interchangeability.	By	using	IVI	class	drivers	in
your	test	program,	you	can	change	hardware	without	changing	test	code
or	recompiling	your	application.
The	following	figure	shows	how	a	class	driver	redirects	function	calls	from
a	test	program	to	the	correct	specific	driver.

The	IVI	Foundation	manages	the	definition	of	the	instrument	classes.	The
IVI	Foundation​s	charter	is	to	define	flexible	programming	interfaces	for
instrument	classes	that	meet	the	needs	of	test	system	developers.	The
IVI	Foundation	has	created	specifications	for	common	instrument
classes.	The	IVI	Foundation	specifications	define	a	standard	Application
Programming	Interface	(API)	for	each	instrument	class.
The	National	Instruments	IVI	class	drivers	conform	to	the	IVI	Foundation
specifications.	For	example,	the	oscilloscope	class	contains	a	collection
of	attributes	that	are	common	to	all	oscilloscopes,	such	as	vertical	range,
offset,	timebase,	trigger	mode,	and	so	on.	The	class	also	contains
functions	that	set	these	attributes	or	retrieve	data	from	the	instrument,
such	as	ConfigureChannel,	ConfigureAcquisitionRecord,	ReadWaveform,
and	so	on.	IVI	class	specifications	give	a	standard	definition	for	each	of
these	functions	and	attributes	for	an	oscilloscope.	Programmers	use
these	specifications	to	write	test	programs	that	work	with	any
oscilloscope.



Interchangeability
Interchangeability	of	IVI	class	drivers	depends	on	the	fundamental
interchangeability	of	the	hardware	that	you	are	using.	Your	test	system
requirements	still	dictate	your	choice	of	particular	instruments.	For
example,	if	your	test	system	requires	DMM	measurements	with	8½	digits
of	precision,	you	must	use	a	DMM	with	8½	digits	of	precision.	You	cannot
replace	an	8½	digit	DMM	with	a	5½	digit	DMM	in	your	test	system,	unless
you	require	only	5½	digits	of	precision,	regardless	of	the	software
architecture.	IVI	class	drivers	implement	a	standard	architecture	for
swapping	instruments	that	are	capable	of	taking	the	required
measurements	for	your	test	system.



Using	IVI	Instrument	Drivers
In	general,	you	operate	and	develop	test	programs	with	IVI	instrument
drivers	the	same	way	as	traditional	instrument	drivers.
IVI	drivers	are	of	a	significantly	higher	quality	than	traditional	drivers	and
use	state	caching	to	optimize	performance.	IVI	drivers	are	highly
configurable	and	you	can	optimize	an	IVI	driver	without	modifying	the
driver	source	code.



LabWindows/CVI
LabWindows/CVI	is	optimized	for	the	creation	and	modification	of	specific
drivers.	The	source	code	for	a	specific	driver	is	the	.c	file.	Use	the	.fp	and
.sub	files	when	you	use	an	IVI	instrument	driver	in	LabWindows/CVI.
If	you	are	using	LabWindows/CVI,	refer	to	IVI	Class	Driver	Help	for
LabWindows/CVI	for	information	on	how	to	use	instrument	drivers	with
LabWindows/CVI.

IVI-CVI.chm::/IVI_Class_Driver_Help_for_LabWindows_CVI.html


LabVIEW
Use	the	.llb,	.rc,	and	set	of	.mnu	files	when	you	use	an	IVI	driver	in
LabVIEW.	The	VIs	in	the	.llb	file	call	the	corresponding	functions	in	the
instrument	driver	.dll	file.	Therefore,	an	IVI	driver	in	LabVIEW	does	not
have	a	complete	G	source	code	like	native	LabVIEW	drivers.
Refer	to	IVI	Class	Driver	Help	for	LabVIEW	for	more	information	about
using	instrument	drivers	in	LabVIEW.

lvivi.chm::/IVI_Class_Driver_Help_for_LabVIEW.html


IVI	System	Architecture
Main	Components	of	an	IVI	System
The	following	figure	shows	the	components	of	an	IVI	system.	In	general,
to	implement	an	automated	test	system,	you	develop	a	program	that
controls	instruments.	For	each	instrument	model	that	you	access,	you
use	an	IVI	specific	driver.	The	specific	driver	contains	all	the	information
to	control	a	particular	instrument	model.



IVI	System	Architecture
Your	test	program	communicates	with	the	specific	driver	in	one	of	two
ways:	directly	or	through	an	IVI	class	driver.
Directly
Your	test	program	can	call	the	specific	driver	directly,	similar	to	the	way
you	use	traditional	instrument	drivers.	With	this	approach,	you	gain	most
of	the	benefits	of	IVI	instrument	drivers,	including	state	caching,	range
checking,	status	query	checking,	simple	simulation,	and	multithread
safety.	All	functions	and	attributes	that	the	specific	driver	exports	begin
with	a	prefix	that	uniquely	identifies	the	specific	driver.	Because	the
specific	driver's	prefix	is	unique,	interchangeability	is	not	available
through	direct	communication,	and	you	must	modify	and	recompile	your
test	program	when	you	want	to	use	a	different	specific	driver.
Through	an	IVI	Class	Driver
Your	test	program	can	access	a	specific	driver	indirectly	through	an	IVI
class	driver.	With	IVI	class	drivers,	you	can	develop	test	programs	that
are	independent	of	specific	hardware	and	interchange	instruments
without	modifying	or	recompiling	your	test	program.	In	addition	to
interchangeability,	IVI	class	drivers	deliver	other	benefits	such	as	class
simulation,	spying,	and	interchangeability	checking.	For	information	about
a	particular	IVI	class	driver,	refer	to	IVI	Class	Driver	Help.
When	you	use	an	IVI	class	driver,	you	begin	by	calling	its	initialize
function.	This	function	uses	the	logical	name	parameter	to	initialize	the
instrument	and	driver	software.	The	function	then	returns	an	instrument
handle	that	you	use	with	all	other	IVI	class	driver	function	calls.	You
create	and	configure	logical	names	in	MAX.
To	change	the	instrument	that	your	program	uses,	edit	the	logical	name
in	MAX	to	identify	the	new	specific	driver	and	physical	instrument.	You	do
not	have	to	change	or	recompile	your	program.	Therefore,	the	class
driver	allows	you	to	develop	hardware-independent	test	programs	that	do
not	require	modification	when	you	use	a	different	instrument.	For	a
complete	description	of	the	IVI	configuration	features	in	MAX,	refer	to
Measurement	&	Automation	Explorer	Help	for	IVI.

ms-its:ivi_max.chm::/MAX_overview.html


Class	Driver	APIs
The	IVI	class	APIs	conform	to	the	specifications	of	the	IVI	Foundation.



Class	Driver	Prefix
The	IVI	class	drivers	work	with	a	large	set	of	specific	drivers.	Each	class
driver	has	a	unique	class	prefix	that	gives	the	class	driver	unique	and
meaningful	names	and	avoids	conflicts	with	other	instrument	driver
functions,	attributes,	and	files.	Each	function	name	and	attribute	ID	in	the
class	driver	begins	with	the	class	prefix.
The	names	of	all	component	files	(.fp,	.h,	.dll,	.llb,	and	so	on)	of	the	class
driver	begin	with	the	class	prefix.



IVI	Class	Prefixes
IVI	Class Function

Prefix
Attribute	ID
Prefix

Filename
Prefix

Digital	Multimeter IviDmm IVIDMM_ ividmm.*
Oscilloscope IviScope IVISCOPE_ iviscope.*
Function	Generator IviFgen IVIFGEN_ ivifgen.*
DC	Power	Supply IviDCPwr IVIDCPWR_ ividcpwr.*
Switch IviSwtch IVISWTCH_ iviswtch.*
Power	Meter IviPwrMeter IVIPWRMETER_ ivipwrmeter.*
RF	Signal
Generator

IviRFSigGen IVIRFSIGGEN_ ivirfsiggen.*

Spectrum	Anaylzer IviSpecAn IVISPECAN_ ivispecan.*



Class	Capability	Groups
Because	many	instruments	of	a	given	class	have	additional,	different
functionality,	no	single	programming	interface	can	work	with	all
instruments.	For	this	reason,	the	IVI	class	drivers	divide	the	instrument
capabilities	into	the	following	capability	categories:

Inherent	IVI	Capabilities
Base	Capabilities
Extension	Groups
Instrument	Specific	Capabilities



Inherent	IVI	Capabilities
Inherent	IVI	Capabilities	are	the	functions	and	attributes	that	all	IVI	class
drivers	implement.

Note		To	complete	the	function	names	in	the	following	table	for	any
one	of	the	IVI	class	drivers,	replace	ClassPrefix	with	one	of	the
class	prefixes:	IviDmm,	IviDCPwr,	IviFgen,	IviScope,	or	IviSwtch.
For	example,	for	the	digital	multimeter	DMM	class	ClassPrefix
Initialize	VI	becomes	IviDmm	Initialize	VI	in	LabVIEW,	and
ClassPrefix_init	becomes	IviDMM_init	in	LabWindows/CVI.

Use	the	following	links	to	browse	the	tables,	which	show	the	inherent	IVI
VIs/functions	and	properties/attributes.

Inherent	IVI	VIs/Functions
Initialize/Close
Get,	Set,	and	Check	Property/Attribute
Utility
Subcategories	(Error	Info,
Interchangeability	Info,	Coercion	Info,
and	Locking)

Inherent	IVI
Properties/Attributes

User	Options
Class	Driver
Identification
Specific	Driver
Identification
Specific	Driver
Capabilities
Category
Instrument
Identification
Error	Info
Advanced
Session
Information



Inherent	IVI	VIs/Functions

LabVIEW	Inherent	VI LabWindows/CVI	Inherent
Function

Initialize/Close—Contains	VIs	and	functions	that	initialize	and	close
instrument	driver	sessions.
ClassPrefix	Initialize
ClassPrefix	Initialize	With	Options
ClassPrefix	Close

ClassPrefix_init
ClassPrefix_InitWithOptions
ClassPrefix_close

Set,	Get,	and	Check	Attribute/Property—Contains	VIs	and	functions
that	set,	get,	and	check	the	values	of	attributes.	Type-safe	functions
exist	for	each	attribute	data	type.	The	possible	data	types	are	ViInt32,
ViReal64,	ViString,	ViBoolean,	and	ViSession.	You	insert	one	of	these
values	in	place	of	the	place	holder,	<type>.
Use	Property	Node	VI	to	get	and
set	attributes.		You	can	not	check
attributes	in	LabVIEW.	

ClassPrefix	Invalidate	All	Attributes

ClassPrefix_SetAttribute<type>
ClassPrefix_GetAttribute<type>
ClassPrefix_CheckAttribute<type>
ClassPrefix_InvalidateAllAttributes

Utility—VIs	and	functions	that	control	common	instrument	operations.
These	functions	include	many	of	the	functions	that	VXIplug&play
requires,	such	as	reset,	self-test,	revision	query,	error	query,	and	error
message.	This	class	also	contains	functions	that	access	IVI	error
information,	access	interchangeability	warnings,	access	coercion
records,	and	lock	the	instrument	driver	session.
ClassPrefix	Reset
ClassPrefix	Self-Test
ClassPrefix	Revision	Query

ClassPrefix_reset
ClassPrefix_self_test
ClassPrefix_revision_query



ClassPrefix	Error-Query
ClassPrefix	Error	Message
ClassPrefix	Reset	With	Defaults
ClassPrefix	Disable

ClassPrefix_error_query
ClassPrefix_error_message
ClassPrefix_ResetWithDefaults
ClassPrefix_Disable
ClassPrefix_GetSpecificDriverCHandle

Error	Info	Subcategory
Use	the	General	Error	Handler	VI
to	view	errors,	which	is	the
standard	LabVIEW	approach.

ClassPrefix_GetError
ClassPrefix_ClearError

Interchangeability	Info	Subcategory
ClassPrefix	Get	Next	Interchange
Warning
ClassPrefix	Reset	Interchange
Check
ClassPrefix	Clear	Interchange
Warnings

ClassPrefix_GetNextInterchangeWarning
ClassPrefix_ResetInterchangeCheck
ClassPrefix_ClearInterchangeWarnings

Coercion	Info	Subcategory
ClassPrefix	Get	Next	Coercion
Record

ClassPrefix_GetNextCoercionRecord

Locking	Subcategory
You	cannot	lock	IVI	sessions	in
LabVIEW.

ClassPrefix_LockSession
ClassPrefix_UnlockSession

Note			Use	VIs	and	properties	when	you	configure	IVI	drivers	in
LabVIEW.	Use	functions	and	attributes	when	you	configure	IVI



drivers	in	LabWindows/CVI.

The	following	table	shows	the	inherent	IVI	properties	and	attributes.



Inherent	IVI	Properties/Attributes
LabVIEW
Property LabWindows/CVI	Attribute

User	Options—Attributes	that	you	can	set	to	affect	the	behavior	of	class	drivers	and
specific	drivers.
Range
Check

CLASSPREFIX_ATTR_RANGE_CHECK

Query
Instrument
Status

CLASSPREFIX_ATTR_QUERY_INSTRUMENT_STATUS

Cache CLASSPREFIX_ATTR_CACHE
Simulate CLASSPREFIX_ATTR_SIMULATE
Use	Specific
Simulation

CLASSPREFIX_ATTR_USE_SPECIFIC_SIMULATION

Record
Value
Coercions

CLASSPREFIX_ATTR_RECORD_COERCIONS

Interchange
Check

CLASSPREFIX_ATTR_INTERCHANGE_CHECK

SPY CLASSPREFIX_ATTR_SPY
Class	Driver	Identification—Attributes	that	describe	the	version,	supplier,	and	prefix	of
the	class	driver.
Class	Driver
Description

CLASSPREFIX_ATTR_CLASS_DRIVER_DESCRIPTION

Class	Driver
Prefix

CLASSPREFIX_ATTR_CLASS_DRIVER_PREFIX

Class	Driver
Vendor

CLASSPREFIX_ATTR_CLASS_DRIVER_VENDOR

Class	Driver
Revision

CLASSPREFIX_ATTR_CLASS_DRIVER_REVISION

Class	Driver
Class
Specification

CLASSPREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MAJOR_VERSION



Major
Version
Class	Driver
Class
Specification
Minor
Version

CLASSPREFIX_ATTR_CLASS_DRIVER_CLASS_SPEC_MINOR_VERSION

Specific	Driver	Identification—Attributes	that	describe	the	version,	supplier,	location,
and	prefix	of	the	specific	driver.
Specific
Driver
Description

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_DESCRIPTION

Specific
Driver	Prefix

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_PREFIX

Specific
Driver
Locator

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_LOCATOR

Specific
Driver
Vendor

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_VENDOR

Specific
Driver
Revision

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_REVISION

Specific
Driver	Class
Specification
Major
Version

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MAJOR_VERSION

Specific
Driver	Class
Specification
Minor
Version

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_CLASS_SPEC_MINOR_VERSION

Specific	Driver	Capabilities	Category—Attributes	that	describe	various
capabilities	of	the	instrument	controlled	by	the	instrument	driver.



Supported
Instrument
Models

CLASSPREFIX_ATTR_SUPPORTED_INSTRUMENT_MODELS

Group
Capabilities

CLASSPREFIX_ATTR_GROUP_CAPABILITIES

Function
Capabilities

CLASSPREFIX_ATTR_FUNCTION_CAPABILITIES

Channel
Count

CLASSPREFIX_ATTR_CHANNEL_COUNT

Instrument	Identification—	Attributes	that	provide	model	and	firmware
information	about	the	instrument	controlled	by	the	instrument	driver.
Manufacturer CLASSPREFIX_ATTR_INSTRUMENT_MANUFACTURER
Model CLASSPREFIX_ATTR_INSTRUMENT_MODEL
Firmware
Revision

CLASSPREFIX_ATTR_INSTRUMENT_FIRMWARE_REVISION

Advanced	Session	Information—Attributes	that	provide	resource	and
I/O	session	information	regarding	the	class	and	specific	driver.
Logical	Name CLASSPREFIX_ATTR_LOGICAL_NAME
Resource
Descriptor

CLASSPREFIX_ATTR_IO_RESOURCE_DESCRIPTOR

Driver	Setup CLASSPREFIX_ATTR_DRIVER_SETUP



Base	Capabilities
Base	capabilities	are	the	functions	and	attributes	of	an	instrument	class
that	are	common	to	most	of	the	instruments	in	that	class.	A	class	driver
should	cover	95%	of	the	instruments	in	a	particular	class.	For	a	specific
driver	to	be	compliant	with	a	class,	it	must	implement	all	the	base
capabilities.
For	example,	the	base	capabilities	of	the	oscilloscope	class	have
functions	and	attributes	that	configure	an	edge-triggered	acquisition,
initiate	an	acquisition,	and	return	the	acquired	waveform.	For	more
information	about	the	base	capabilities	for	a	particular	class,	refer	to:

IviDCPwrBase	Capability	Group
IviDmmBase	Capability	Group
IviFgenBase	Capability	Group
IviScopeBase	Capability	Group
IviSwtchBase	Capability	Group

IVI-CVI.chm::/IviDCPwr_Base_Capability_Group.html
IVI-CVI.chm::/IviDmm_Base_Capability_Group.html
IVI-CVI.chm::/IviFgen_Base_Capability_Group.html
IVI-CVI.chm::/IviScope_Base_Capability_Group.html
IVI-CVI.chm::/IviSwtchBase_Capability_Group.html


Extension	Groups
Extension	groups	contain	specialized	groups	of	functions	and	attributes
that	are	common	to	many	instruments	in	that	class,	but	not	all.	The	IVI
specifications	do	not	require	specific	instrument	drivers	to	implement
extension	groups.	With	extension	groups,	the	IVI	class	drivers	create
standard	programming	interfaces	for	features	and	capabilities	that	are	not
common	to	every	instrument	of	that	class.
For	example,	although	all	oscilloscopes	have	similar	base	capabilities	for
vertical	and	horizontal	settings,	they	have	a	wide	variety	of	trigger	modes.
The	IviScope	class	driver	includes	extensions	for	different	trigger	modes,
such	as	TV	trigger,	runt	trigger,	width	trigger,	and	so	on.	Every
oscilloscope	that	has	TV	triggering	can	comply	with	the	TV	trigger
extension	group	functions	and	attributes	of	the	IviScope	class.	However,
an	oscilloscope	that	does	not	support	the	TV	trigger	extension	group	can
still	comply	with	the	IviScope	class	because	the	oscilloscope	can	support
the	base	capabilities	of	the	IviScope	class.
If	you	use	an	extension	group	in	your	program,	any	instrument	you	use
with	the	program	must	support	the	extension	group.	The
LabWindows/CVI	function	panels,	LabVIEW	VIs,	and	help	file	for	the
class	drivers	mark	functions	and	attributes	that	are	a	part	of	an	extension
group	with	a	special	symbol.	For	example,	the	IviScope	class	driver	help
file	marks	the	functions	and	attributes	that	control	the	TV	trigger
extension	group	with	the	symbol	[TV].	For	more	information	about	the
extension	groups	of	a	particular	class,	refer	to:

IviDCPwr	Class	Driver	Overview
IviDmm	Class	Driver	Overview
IviFgen	Class	Driver	Overview
IviScope	Class	Driver	Overview
IviSwtch	Class	Driver	Overview

IVI-CVI.chm::/IviDCPWR_Class_Overview.html
IVI-CVI.chm::/IviDmm_Class_Overview.html
IVI-CVI.chm::/IviFgen_Class_Overview.html
IVI-CVI.chm::/IviScope_Class_Overview.html
IVI-CVI.chm::/IviSwtch_Class_Overview.html


Instrument	Specific	Capabilities
In	addition	to	inherent	IVI	capabilities,	base	instrument	capabilities,	and
extension	groups,	IVI	specific	drivers	may	export	instrument	specific
functions	and	attributes.	These	features	are	usually	device-specific
functions	that	are	not	interchangeable	with	other	devices.
Only	the	specific	driver	implements	the	instrument	specific	capabilities.
Therefore,	if	you	want	to	use	instrument	specific	capabilities	in	your	test
program,	you	must	access	the	specific	driver	directly,	instead	of	using	a
class	driver.	For	information	about	the	instrument	specific	features	of	a
driver,	refer	to	IVI	Instrument	Specific	Drivers.
Your	test	program	can	access	both	the	class	driver	and	the	specific	driver
during	execution.	In	LabVIEW,	the	current	instructions	work.	In
LabWindows/CVI	or	Measurement	Studio,	you	must	use	the
GetSepecificDriver	C	Handle	to	get	the	specific	driver	session,	then	use
the	new	handle	to	access	the	specific	driver	directly.
When	you	initialize	an	instrument	through	a	class	driver,	you	can	specify
default	values	for	instrument	specific	attributes.	MAX	allows	you	to	set
the	initial	values	of	the	instrument	specific	attributes	to	protect
interchangeability.



Class	Driver	Relationship	to	Instrument	Specific
Drivers
The	following	figure	shows	an	example	of	the	relationship	between	the
capability	groups	of	a	class	driver	and	a	specific	driver.	In	this	figure,	the
class	driver	implements	the	inherent	IVI	capabilities,	the	base	instrument
capabilities,	and	two	extension	capability	groups.	The	specific	driver
implements	the	inherent	IVI	capabilities,	the	base	instrument	capabilities,
one	of	the	extension	capability	groups,	and	instrument	specific
capabilities.

The	class	driver	dynamically	loads	the	specific	driver.	The	IVI	class
drivers	require	that	the	specific	driver	be	in	a	.dll,	.c,	or	.obj	file.	The
specific	drivers	normally	come	in	.dll	and	.c	file	formats.	If	you	use	the
class	drivers	outside	of	the	LabWindows/CVI	environment,	you	must	use
the	.dll	file.
In	general,	when	a	test	program	calls	functions	and	attributes	of	a
capability	group	in	the	class	driver,	the	class	driver	maps	these	calls	to
the	corresponding	capability	group	in	the	specific	driver.	If	the	test
program	attempts	to	call	extension	group	functions	that	the	specific	driver
does	not	implement,	the	class	driver	returns	an	error.
The	class	driver	does	not	implement	instrument	specific	capabilities.
Instead,	the	test	program	accesses	the	instrument	specific	capabilities	by
invoking	functions	and	attributes	of	the	specific	driver	directly.
Your	test	program	can	access	the	inherent	IVI,	base	instrument,	and
extension	capabilities	by	invoking	functions	and	attributes	in	either	the
class	driver	or	specific	driver.	However,	unless	you	are	using	a	family
driver,	you	must	use	the	class	driver	to	achieve	interchangeability.

Note		To	access	the	capabilities	of	the	instrument	through	the



class	driver,	call	the	initialize	function	in	the	class	driver	to	create
the	instrument	driver	session.

In	the	figure	above,	a	dashed	line	connects	the	inherent	IVI	capabilities	of
the	class	driver	and	specific	driver	because	some	inherent	IVI	functions
and	attributes	are	accessible	only	through	the	class	driver.	If	you	initialize
an	instrument	driver	session	by	calling	the	initialize	function	in	the
specific	driver,	you	cannot	access	the	class​only	functions	and	attributes.
The	following	table	lists	the	inherent	IVI	attributes	that	you	can	access
only	through	the	class	driver.

Note		To	complete	the	attribute	names	in	the	following	table	for
any	one	of	the	IVI	class	drivers,	replace	CLASSPREFIX	with	one	of
the	class	prefixes:	IviDmm,	IviDCPwr,	IviFgen,	IviPwrMeter,
IviScope,	IviSpecAn,	IviSwtch	or	IviRFSigGen.	For	example,	in
the	DMM	class,	CLASSPREFIX_ATTR_CLASS_DRIVER_VENDOR
becomes	IVIDMM_ATTR_CLASS_DRIVER_VENDOR.

Inherent	IVI	Attributes:	Class	Driver	Access	Only

Description Function	Name
Specific
Driver
Module
Pathname

CLASSPREFIX_ATTR_SPECIFIC_DRIVER_LOCATOR

Class
Revision

CLASSPREFIX_ATTR_CLASS_DRIVER_REVISION

Class
Specification
Major
Version

CLASSPREFIX_ATTR_CLASS_DRIVER_SPEC_MAJOR_VERSION

Class
Specification
Minor
Version

CLASSPREFIX_ATTR_CLASS_DRIVER_SPEC_MINOR_VERSION

Class	Driver
Vendor

CLASSPREFIX_ATTR_CLASS_DRIVER_VENDOR

Class	Driver CLASSPREFIX_ATTR_CLASS_DRIVER_DESCRIPTION



Description
Spy CLASSPREFIX_ATTR_SPY
Use	Specific
Simulation

CLASSPREFIX_ATTR_USE_SPECIFIC_SIMULATION

Function
Capabilities

CLASSPREFIX_ATTR_FUNCTION_CAPABILITIES



Initial	Settings	(formerly	Default	Setup)
In	Measurement	&	Automation	Explorer	3.0,	Default	Setup	was	replaced
by	a	new	component:	Initial	Settings.	The	driver	developer	publishes
these	settings.
Refer	to	National	Instruments	IVI	Driver	Help»Configuring	Your
System	for	more	information	about	Initial	Settings.



Enabling	Instrument	Simulation
You	can	simulate	an	instrument	with	IVI	drivers.	Using	the	simulation
features,	you	can	develop	test	code	even	when	your	instruments	are	not
available.	You	can	also	use	simulation	to	test	for	interchangeability.	If	you
use	IVI	technology	to	build	a	test	system,	you	can	integrate	the	driver	of
the	new	instrument	and	run	test	programs	against	this	driver	in	simulation
mode.	In	effect,	you	can	test	a	new	instrument	before	you	purchase	it	to
make	sure	it	can	work	in	your	system.
An	IVI	driver	implements	three	different	simulation	capabilities:
instrument	driver	calls;	range	checking	and	parameter	coercion;	and
simulated	output	data.



Instrument	Driver	Calls
When	you	enable	simulation,	IVI	instrument	drivers	do	not	attempt	to
communicate	with	the	instrument.	Therefore,	you	can	make	instrument
driver	function	calls	from	your	program	and	not	receive	I/O	errors
indicating	that	the	instrument	is	not	present.
You	can	use	this	simulation	capability	with	IVI	class	drivers	and	specific
drivers,	simulating	calls	to	a	class	driver	and	to	instrument	specific
functions	in	the	specific	driver.
You	can	enable	simulation	through	MAX.	Alternatively,	you	can	use	the
Initialize	With	Options	function	to	enable	simulation.	The	Initialize	With
Options	function	allows	you	to	pass	a	string	that	presets	a	number	of
driver	attributes.	One	of	these	attributes	is	the	simulation	attribute.	When
you	use	this	function	to	preset	the	simulation	attribute,	you	alert	the	driver
that	the	instrument	is	not	connected	to	the	computer	or	that	you	wish	to
use	simulation	mode.



Range	Checking	and	Parameter	Coercion
You	can	range	check	and	coerce	all	input	parameters.	Every	time	you	try
to	send	a	value	to	an	instrument	to	configure	a	setting,	the	driver	ensures
that	the	value	is	valid	for	the	particular	setting	on	that	instrument.	If
necessary,	the	specific	driver	coerces	the	value	to	an	acceptable	one	for
the	instrument.	The	range	checking	and	coercion	operations	happen
within	the	specific	driver	software.	Even	when	you	write	test	code	without
connecting	the	instrument,	the	specific	driver	ensures	that	each	value
you	attempt	to	send	to	the	instrument	is	valid.

Note		The	specific	driver	performs	the	range	checking	and
coercion	operations.	Therefore,	you	can	use	this	simulation
capability	with	a	class	driver	or	a	specific	driver.



Simulated	Output	Data
You	can	create	simulated	data	for	output	parameters	of	functions.	The	IVI
architecture	uses	one	of	the	following	methods	to	generate	simulated
data:

Specific	Driver	Simulation—Each	specific	driver	has	basic	built-
in	algorithms	to	simulate	data	generation.	For	example,	when
using	a	DMM-specific	driver	in	simulation	mode,	the	Read	function
may	return	a	random	number	within	the	valid	range	of	the	DMM's
current	mode.	When	you	use	an	oscilloscope	specific	driver	in
simulation	mode,	the	Read	Waveform	function	may	return	a	simple
sine​wave	array	of	data	within	valid	ranges	for	the	oscilloscope.
This	simple	data	generation	process	returns	data	values	to	the
program	variables	so	that	subsequent	function	calls	do	not	fail	for
lack	of	data.	However,	a	simple	or	random	data	may	not	be
meaningful.
User-Defined	Simulation—Because	you	have	access	to	the
specific	driver	source	code,	you	can	modify	the	driver,	adding	your
own	data	generation	algorithms	to	generate	simulated	data	that
more	closely	applies	to	the	unit	under	test	(UUT)	or	the	application
on	which	you	are	working.	However,	your	code	is	only	useful	for
that	particular	specific	driver.	If	you	change	instruments	in	the
future,	you	must	re-implement	this	work	for	each	new	instrument
you	add.	When	you	want	customized	simulation	code	that	will	work
regardless	of	which	specific	driver	is	used,	the	IVI	class	drivers
provide	simulation	tools.



Class	Driver	Simulation
The	IVI	class	drivers	provide	simulation	tools.	You	can	use	these	tools	to
create	simulated	output	data.	The	class	drivers	provide	simulation	by
using	a	simulation	driver.	Simulation	drivers	are	components	that	plug
into	a	class	driver.	The	class	driver	uses	the	simulation	driver	to	generate
data.
For	example,	ICP	includes	five	simulation	drivers—oscilloscope,	DMM,
function	generator,	switch,	and	DC	power	supply.	Each	of	these
simulation	drivers	communicates	with	the	corresponding	class	driver	to
perform	more	flexible	data	generation	than	in	instrument	specific	drivers.
The	following	diagram	illustrates	how	a	class	driver	uses	a	class
simulation	driver.



Class	Simulation	Driver
When	your	program	calls	a	class	driver,	the	class	driver	calls	the
corresponding	function	in	the	specific	driver.	When	you	enable
simulation,	the	class	driver	opens	an	additional	session	that	is	assigned
to	its	class	simulation	driver.	Whenever	you	invoke	a	function	in	the	class
driver,	the	class	driver	first	calls	the	corresponding	function	in	the	specific
driver	and	then	calls	the	same	function	in	the	class	simulation	driver.	The
specific	driver	performs	range	checking	and	coercion	on	all	input
parameters,	and	the	class	simulation	driver	generates	the	simulated
output	data	and	status	codes.
Simulation	drivers	have	two	modes:	interactive	and	non-interactive.	You
specify	whether	to	use	interactive	or	non-interactive	simulation	with	MAX.
In	interactive	mode,	simulation	drivers	have	pop-up	user	interface	panels
that	allow	you	to	configure	the	parameters	for	generating	the	simulated
output	data.
For	example,	when	you	initialize	the	IviDmm	class	driver	in	simulation
mode,	the	simulation	driver	displays	the	panel	shown	in	the	following
figure.



From	the	panel,	you	can	select	a	base	measurement	value	and	an	offset.
For	example,	in	the	previous	figure,	the	panel	settings	specify	a	value	of
10.0	with	a	range	of	±1.0.	You	can	configure	the	driver	to	display	the
panel	each	time	the	program	calls	a	function	that	returns	measurement
data,	or	you	can	configure	the	driver	to	generate	the	data	automatically
within	the	range	you	specify.	In	non-interactive	mode,	the	simulation
driver	returns	data	to	the	program	without	requiring	further	user
interaction.
In	addition	to	generating	simulated	measurement	data,	you	can	use	the
class	simulation	features	to	generate	simulated	results	for	the	Self-Test,
Error	Query,	and	Revision	Query	functions	that	all	IVI	drivers	export.	You
can	also	use	the	class	simulation	tools	to	generate	simulated	completion
codes	for	the	instrument	driver	functions.	Use	this	feature	to	verify	that
your	program	correctly	handles	error	conditions	that	the	instrument	driver
might	return.
To	configure	all	the	features	of	the	simulation	driver,	use	attributes	in	the
simulation	driver.	When	you	use	non-interactive	simulation,	you	configure
the	attributes	of	the	simulation	driver	with	MAX	without	modifying	your



test	program	code.
ICP	includes	C	source	code	for	the	class	simulation	drivers.	You	can
develop	robust	simulated	data	generation	algorithms	for	your	test
systems	and	incorporate	them	into	the	simulation	drivers.	Whenever	you
swap	to	a	different	instrument,	you	can	reuse	your	developed	simulation
code	because	the	simulation	drivers	work	with	the	class	drivers.



Disabling	Unused	Extensions
If	you	use	an	instrument	that	has	extended	capabilities	but	your
application	does	not	configure	the	settings	for	the	extended	capabilities,
the	settings	are	in	an	unknown	state.	The	unknown	state	could	affect	the
behavior	of	the	instrument	capabilities	that	the	program	does	use.
Furthermore,	the	unknown	state	is	likely	to	vary	from	one	instrument	to
another.	The	settings	are	likely	to	be	the	power-on	settings	for	the
instrument.	The	power-on	settings	vary	from	instrument	to	instrument.
To	avoid	having	different	behavior	when	used	with	different	instruments,
each	instrument	specific	driver	disables	unused	extensions	by	setting	the
extensions	to	an	interchangeable	state.	This	interchangeable	state
renders	the	extension	group	unable	to	affect	the	behavior	of	the
instrument.	Normally,	an	extension	remains	disabled	until	your	program
explicitly	uses	it.	At	which	point	the	instrument	driver	does	not	have	to
take	any	other	action.	Therefore,	if	your	program	sets	any	values	of	the
extension	group,	the	specific	driver	does	not	enable	the	extension	group.
For	example,	the	IviDmm	base	capabilities	control	DMMs	that	take	a
single	measurement.	The	IviDmm	class	defines	a	multipoint	extension
group	that	controls	DMMs	that	can	acquire	multiple	samples	from
multiple	triggers.	If	you	develop	a	program	that	sues	only	the	IviDmm
base	capabilities	with	an	instrument	that	implements	the	multipoint
extension	group,	the	IviDmm-compliant	specific	driver	sets	the	multipoint
extension	group	attributes	to	an	interchangeable	state	when	you	call
either	Initiate	or	Read	functions	for	IviDmm.	In	addition	to	these	functions,
the	driver	also	disables	all	extensions	in	the	Initialize	and	Reset	With
Defaults	functions.
To	disable	the	multipoint	extension	group	to	the	interchangeable	state,
the	IviDmm-compliant	specific	driver	sets	the	trigger	count	attribute	to	1
and	the	sample	count	attribute	to	1.	In	this	configuration,	the	multipoint
extension	group	does	not	affect	the	behavior	of	the	instrument.
Therefore,	you	can	run	the	program	with	instruments	that	implement	only
the	IviDmm	base	capabilities	as	well	as	with	instruments	that	implement
the	multipoint	extension	group.
For	more	information	about	the	interchangeable	state	that	the	class
drivers	apply	for	disabling	unused	extensions,	refer	to	Interchangeability
Checking.



Interchangeability	Checking
IVI	drivers	have	a	feature	called	interchangeability	checking.
Interchangeablility	checking	verifies	that	your	program	produces	the
same	behavior	when	used	with	a	different	instrument.
Enable	interchangeability	checking	by	completing	one	of	the	following
procedures:

Refer	to	Configuring	Your	System	In	MAX	to	enable
interchangeability	checking	in	MAX.
Set	the	value	of	the	interchangeability	checking	attribute	to
VI_TRUE	in	your	program.
Set	the	interchangeability	checking	attribute	to	VI_TRUE	in	the
option	string	parameter	of	the	InitWithOptions	function	or	Initialize
With	Options	VI.

When	interchangeability	checking	is	enabled,	the	driver	queues
interchangeability	warnings	when	it	encounters	instrument	configurations
that	might	not	produce	the	same	behavior	when	you	use	a	different
instrument.	Use	NI	Spy	to	view	these	warnings	or	call	the	Get	Next
Interchange	Warning	function.



Interchangeability	Checking	Rules
Note		Although	interchangeability	checking	can	be	performed
through	the	specific	driver	interface,	interchangeability	and	thus
interchangeability	checking	is	only	relevant	when	called	through
the	class	driver	interface.

The	following	rules	govern	interchangeability	checking	in	IVI.
1.	 An	interchangeability	check	occurs	when	you	invoke	a	driver

operation	that	depends	on	the	current	state	of	the	instrument.	For
example,	IviDmm	compliant	drivers	perform	interchangeability
checking	when	your	program	calls	any	of	the	functions	shown	in
the	following	table.
IviDmm	Functions	that	Invoke	Interchangeability	Checking
Name	in	LabWindows/CVI Name	in	LabVIEW
Prefix_Initiate Prefix	Initiate
Prefix_Read Prefix	Read
Prefix_ReadMultiPoint Prefix	Read	MultiPoint

2.	 The	driver	performs	interchangeability	checking	on	a	capability
group	basis.	When	you	enable	interchangeability	checking,	the
driver	always	performs	interchangeability	checking	on	the	base
capabilities	group.

3.	 The	driver	performs	interchangeability	checking	on	all	extension
groups	for	which	you	have	set	any	of	the	attributes.	If	your
program	has	never	set	any	attributes	of	an	extension	group,	the
driver	does	not	perform	interchangeability	checking	on	that	group.

In	general,	a	driver	generates	an	interchangeability	warning	when	it
encounters	one	of	the	following	conditions:

Unspecified	State—An	attribute	that	is	in	a	state	that	you	did	not
specify.	An	attribute	ends	up	in	an	unspecified	state	if	the	attribute
is	not	configured	by	your	program	or	if	your	program	configures	the
attribute	but	the	value	becomes	invalid	as	a	result	of	your	program
configuring	a	different	attribute.
If	an	attribute	is	in	a	state	that	you	did	not	specify,	then	the	value	of
the	attribute	is	unknown.	The	value	of	the	attribute,	and	therefore
the	behavior	of	the	instrument,	is	likely	to	be	different	when	you	run



the	program	with	a	different	instrument.
Instrument	Specific	Value—You	set	a	class–defined	attribute	to
an	instrument	specific	value.	Many	class	attribute	values	represent
a	set	of	discrete	settings.	For	these	attributes,	the	class
specifications	defines	the	possible	values	that	you	can	assign	to
the	attribute.	Specific	drivers	can	define	additional,	instrument
specific	values	for	the	attribute.	When	your	program	sets	an
attribute	to	an	instrument	specific	value,	your	program	is	likely	to
behave	differently	when	you	run	it	with	different	instruments.
For	example,	the	attribute	that	configures	the	measurement
function	can	have	both	class	values	and	instrument	specific
values.	The	class	defines	values	for	common	measurement
functions	such	as	AC	volts,	DC	volts,	AC	current,	DC	current,	and
others.	Specific	drivers	can	define	instrument	specific	values	for
the	attribute.	The	constant	values	that	one	specific	driver	uses	can
overlap	with	the	constant	values	other	specific	drivers	use.	One
specific	driver	might	define	an	instrument	specific	measurement
function	and	another	specific	driver	might	use	the	same	value	to
define	an	entirely	different	measurement	function.	Therefore,	using
an	instrument	specific	value	in	your	program	can	result	in	different
measurement	results	depending	on	which	instrument	you	use.
Read–Only	Attribute—You	configure	the	value	of	an	attribute	that
the	class	defines	as	read–only.	In	a	few	cases,	the	class	defines
read-only	attributes	that	specific	drivers	might	implement	as
read/write.
The	attributes	that	return	the	aperture	time	in	the	IviDmm	class	are
examples	of	this	interchangeability	issue.	With	some	DMMs,	you
can	set	the	aperture	time	as	well	as	read	it.	The	specific	drivers	for
these	DMMs	might	implement	the	attributes	for	the	aperture	time
as	read/write.	Most	other	class-compliant	drivers	implement	the
attribute	as	read–only.	Therefore,	if	your	program	sets	an	attribute
that	a	class	defines	as	read–only,	your	program	may	not	work	with
other	instruments.
Value	Not	Configured—The	driver	encounters	an	error	when	it
tries	to	apply	a	value	to	an	extension	attribute	that	your	program
never	configures.	Disabling	Unused	Extensions	describes	how	the
driver	sets	the	attributes	of	extension	groups	that	do	not	have



specified	values—it	sets	the	attributes	to	an	interchangeable	state.
The	driver	does	this	to	make	your	program	behave	the	same
regardless	of	whether	the	instruments	you	use	implement	the
extension	group.	Other	instruments	that	implement	the	extension
group	might	not	support	the	value	to	which	the	driver	attempts	to
set	the	attribute.	In	this	case,	the	driver	queues	an
interchangeability	warning	instead	of	returning	an	error	from	the
function.
An	example	of	this	behavior	is	the	attribute	that	configures	the
interpolation	method	in	the	IviScope	class.	If	your	program	does
not	set	the	value	of	this	attribute	and	the	specific	driver	implements
the	attribute,	the	driver	attempts	to	set	the	interpolation	method	to
Sin(x)/x.	However,	some	oscilloscopes	always	interpolate	data
points.	For	these	cases,	the	driver	generates	an	interchangeability
warning	to	indicate	that	the	attribute	that	controls	the	interpolation
method	is	not	in	an	interchangeable	state.
Each	IVI	specific	driver	defines	exceptions	to	the	interchangeability
checking	rules	and	defines	which	functions	perform
interchangeability	checking.	Refer	to	IVI	Class	Driver	Help	for	more
information	regarding	the	interchangeability	checking	rules	for	a
particular	class.



Viewing	Interchangeability	Warnings
You	can	use	NI	Spy	to	view	interchangeability	warnings.	NI	Spy
highlights	functions	in	blue	that	have	interchangeability	warnings.
Alternatively,	you	can	use	the	Get	Next	Interchange	Warning	VI	or
function	to	retrieve	interchangeability	warnings	programmatically.

Note		If	you	set	the	interchangeability	checking	attribute	to	True,
you	must	retrieve	interchange	warnings	either	through	NI	Spy	or
by	calling	the	Get	Next	Interchange	Warning	VI	or	function.



NI	Spy
NI	Spy	monitors	Windows	applications	that	use	National	Instruments
drivers.	NI	Spy	can	monitor,	record,	and	display	calls	made	to	IVI	class
drivers.	Use	NI	Spy	to	quickly	locate	and	analyze	any	erroneous	calls
that	your	application	makes	to	the	IVI	class	drivers.



Configuring	Your	System
Expand	this	book	for	topics	about	configuring	IVI	instruments	using
Measurement	&	Automation	Explorer	(MAX).

ms-its:ivi_max.chm::/MAX_overview.html


IVI	Class	Driver	Operation
This	book	contains	books	about	using	IVI	class	drivers	to	develop
interchangeable	applications.	This	book	also	discusses	strategies	you
can	use	to	maximize	the	interchangeability	of	your	application	and	to
verify	whether	a	new	instrument	can	replace	a	particular	instrument	in
your	application.



Using	IVI	Class	Drivers
After	you	configure	your	system	with	MAX,	you	can	develop	an
interchangeable	application	by	making	calls	to	the	IVI	class	drivers.	The
class	drivers	isolate	your	program	from	the	specific	drivers	that
communicate	with	the	instruments.
Using	IVI	Class	Drivers	in	LabVIEW
Using	IVI	Class	Drivers	in	LabWindows/CVI



Using	Class	Drivers	in	LabVIEW
Use	IVI	class	drivers	in	LabVIEW	the	same	way	that	you	use	other
LabVIEW	instrument	drivers.	The	IVI	class	drivers	are	in	the	IVI	Class
Drivers	palette.	To	access	the	IVI	Class	Drivers	palette,	select
Functions»Instrument	I/O»IVI	Class	Drivers,	as	shown	in	the	following
figure.

Each	IVI	class	driver	has	a	subpalette	that	contains	all	the	VIs	for	the
corresponding	class	driver.	The	LabVIEW	class	drivers	have	VIs	that
perform	the	same	operations	as	the	LabWindows/CVI	class	drivers.	To
access	a	VI	for	a	particular	class	driver,	select	the	subpalette	that
corresponds	to	the	class	driver	in	the	IVI	Class	Drivers	palette.
The	following	figure	shows	a	code	example	that	uses	the	IviDmm	class
driver	to	configure	a	DMM	and	take	a	measurement.



The	following	figure	shows	how	you	can	use	the	property	node	to	access
individual	instrument	driver	attributes.	After	LabVIEW	calls	the	IviDmm
Initialize	VI,	it	uses	the	Property	Node	to	set	values	for	the	Function,
Trigger	Source,	and	Range.	Expand	the	Visa	Functions	book	in	the
LabVIEW	Help	or	refer	to	the	NI-VISA	Programmer	Reference	Manual	for
more	information	on	VISA	properties	and	attributes.	Refer	to	the
LabVIEW	Help	for	more	information	about	how	to	use	the	property	node.

javascript:WWW(WWW_NIVISA_Manual)


Using	Class	Drivers	in	LabWindows/CVI
You	use	the	IVI	class	drivers	in	the	LabWindows/CVI	the	same	way	that
you	use	other	LabWindows/CVI	instrument	drivers.	You	can	load	and
unload	class	drivers	manually	using	the	Instrument	menu.	To	load	a	class
driver,	complete	the	following	steps:

1.	 Select	Instrument»Load.
2.	 In	the	Load	Instrument	dialog	box,	select	the	function	panel	(.fp)

file	for	the	class	driver	you	want	to	load.
The	class	driver	function	panel	files	are	in	the	cvi\instr\iviclass	directory.
The	following	figure	shows	the	Instrument	menu	after	you	load	the	class
drivers.



LabWindows/CVI	Instrument	Menu
You	do	not	have	to	include	the	class	drivers	that	you	load	through	the
Instrument	menu	in	your	project,	and	you	can	load	and	unload	them	at
any	time.	Class	drivers	that	are	loaded	through	the	Instrument	menu	are
not	automatically	loaded	to	your	project	and	can	be	unloaded	at	any	time.
However,	you	must	reload	the	driver	every	time	you	launch
LabWindows/CVI.
To	add	the	IVI	class	drivers	into	your	project,	complete	one	of	the
following	steps:

1.	 Open	the	Function	Panel	window.
2.	 Select	File»Add	to	Project.

or
1.	 From	the	Project	window,	select	Edit»Add	to

Project»Instrument	(.fp).
2.	 Choose	the	.fp	file	for	the	driver.

The	.fp	file	represents	the	class	driver	in	the	project	list.	If	the	.fp	file	is	in
the	project	list,	LabWindows/CVI	automatically	loads	the	class	driver
when	you	open	the	project	and	removes	the	class	driver	when	you
unload	the	project.
A	class	driver	function	panel	contains	a	function	panel	window	for	each
function	that	the	class	driver	exports.	With	the	function	panel	windows,
you	can	interactively	call	class	driver	functions	and	automatically
generate	code	for	your	application.
The	class	drivers	have	high-level	and	low-level	functions.	With	the	high-
level	functions,	you	can	easily	initialize	and	close	the	instrument,
configure	the	instrument,	control	instrument	operations,	and	retrieve
measurements.	High-level	functions	set	multiple	instrument	attributes	in	a
single	operation.
For	example,	to	set	up	and	take	a	measurement	using	a	DMM,	you	might
use	the	following	high-level	statements	in	your	program:
ViReal64	reading;
ViSession	dmmHandle;
IviDmm_Init	("DMM1",	VI_TRUE,	VI_TRUE,	&dmmHandle);
IviDmm_ConfigureMeasurement	(dmmHandle,



IVIDMM_VAL_DC_VOLTS_RATIO,	IVIDMM_VAL_AUTO_RANGE_ON,
0.0006));
IviDmm_ConfigureTrigger	(dmmHandle,	IVIDMM_VAL_IMMEDIATE,
0.0));
IviDmm_Read	(dmmHandle,	5000,	&reading));
IviDmm_close	(dmmHandle);

With	the	low-level	functions	of	the	class	drivers,	you	can	access
individual	instrument	driver	attributes.	For	example,	the	following	figure
shows	the	Set	Attribute	function	panel	for	the	IviDmm	class	driver.	Refer
to	the	IVI	Class	Driver	Help	for	LabWindows/CVI	for	more	information	on
how	to	use	function	panels	in	LabWindows/CVI.

IVI-CVI.chm::/IVI_Class_Driver_Help_for_LabWindows_CVI.html


Developing	an	Instrument	Independent
Application
The	following	links	describe	items	to	consider	when	you	use	IVI	class
drivers	to	develop	an	instrument-independent	test	program.	Follow	the
guidelines	contained	in	the	following	links	to	maximize	the	potential	for
your	application	to	work	with	other	instruments.

Using	Logical	Names
Naming	Virtual	Channels
Using	High-Level	Configuration	Functions	Rather	than	Setting
Individual	Attributes
Minimizing	the	Use	of	Extension	Capability	Groups
Completely	Specifying	the	State	of	the	Instrument
Using	the	Development	Mode	Settings	for	Inherent	Attributes
Following	the	Class	Behavior	Model
Using	MAX	to	Configure	Instrument	Specific	Attributes



Using	Logical	Names
Use	logical	names	to	identify	a	physical	instrument	and	specific	driver
without	including	instrument	specific	information	in	your	test	program.	In
general,	creating	a	logical	name	that	fits	the	context	of	your	application	is
best,	no	matter	which	specific	instrument	you	use.
For	example,	the	logical	name	DMM	fits	the	context	of	an	application	in
which	you	swap	two	or	more	digital	multimeters	such	as	a	Fluke	45	and
an	HP	34401A.	In	contrast,	the	logical	names	FL45	and	HP34401A	do	not
fit	the	context	because	they	are	too	specific.
When	you	create	a	logical	name,	consider	if	you	want	to	use	it	in	multiple
applications.	One	approach	is	to	create	one	logical	name	for	all	the
applications	in	your	system.	Another	approach	is	to	create	a	unique
logical	name	for	each	application.
If	you	create	a	global	logical	name,	you	can	quickly	reconfigure	your
entire	system.	When	replacing	an	instrument,	you	reconfigure	only	one
logical	name	in	MAX.	The	disadvantage	of	this	method	is	that	any
change	to	the	configuration	of	the	logical	name	in	MAX	affects	all
applications	in	your	system	that	use	that	name.	You	are	also	limited	by
the	requirements	of	all	the	applications	that	use	the	logical	name.	This
approach	also	requires	that	you	coordinate	your	applications	to	use	the
same	set	of	logical	names.
If	you	create	a	unique	logical	name	for	each	application,	you	can
customize	the	configuration	of	the	instrument	for	each	application.
However,	if	you	swap	an	instrument	that	many	applications	use,	it	may
take	you	longer	to	reconfigure	your	system.	Also,	this	approach	requires
that	you	coordinate	the	development	of	the	applications	that	you	run	on
your	system	so	that	they	do	not	use	the	same	logical	names.



Naming	Virtual	Channels
Use	virtual	channel	names	to	identify	a	particular	channel	of	an
instrument	without	using	instrument	specific	channel	strings.	Give	the
same	considerations	to	your	selection	of	virtual	channel	names	as	you	do
to	your	selection	of	logical	names.



Using	High-Level	Configuration	Functions
Rather	than	Setting	Individual	Attributes
IVI	class	drivers	have	both	high-level	and	low-level	configuration
functions.	Using	the	high-level	functions	to	configure	an	instrument	is	a
good	practice.	The	high-level	functions	group	the	setting	of	related
attributes	into	a	single	operation.	When	you	call	a	high-level	function	in	a
class	driver,	the	class	driver	invokes	the	corresponding	function	in	the
specific	driver.	The	specific	driver	is	responsible	for	setting	the	attributes
in	the	correct	order	for	the	instrument.	Also,	the	specific	driver	can	handle
complex	interactions	between	multiple	attributes	for	the	instrument.	If	you
swap	instruments,	the	new	specific	driver	sets	the	attributes	in	the	correct
order	and	handles	attribute	interactions	for	the	new	instrument.
With	the	low-level	functions,	you	set	values	for	individual	attributes.	When
you	use	the	low-level	functions	to	manipulate	attributes,	you	must
understand	the	relationships	and	interactions	between	the	attributes	for
an	instrument.	When	you	replace	the	instrument,	the	attribute	order
dependencies	are	likely	to	change.	Therefore,	you	have	to	change	the
order	in	which	your	program	sets	the	attributes	when	you	swap	the
instrument.



Minimizing	the	Use	of	Extension	Capability
Groups
Use	only	the	extension	capability	groups	that	your	test	program	requires.
Minimizing	the	number	of	extension	capability	groups	you	access	for	an
IVI	session	maximizes	the	number	of	instruments	that	you	can	use	with
your	application.
The	class	drivers	divide	the	capabilities	of	an	instrument	class	into
capability	groups.	The	capability	groups	contain	functions	and	attributes
that	you	use	to	access	the	features	of	that	capability	group.	Each	class
driver	defines	a	base	capability	group.	A	specific	driver	must	implement
the	base	capabilities	group	to	be	compliant	with	the	class.	Therefore,	you
can	always	use	the	base	capabilities	group	in	your	program.
The	other	capability	groups	are	extension	capability	groups.	Extension
capability	groups	represent	the	less	common	capabilities	of	the
instrument	class.	Specific	drivers	are	not	required	to	implement	the
extension	capability	groups.	Not	all	specific	drivers	implement	the	same
set	of	extension	capability	groups.	Each	time	you	use	a	new	extension
capability	group	in	your	program,	you	limit	the	number	of	instruments	that
you	can	use	in	your	application.



Completely	Specifying	the	State	of	the
Instrument
To	maximize	interchangeability,	you	must	completely	specify	the	state	of
the	attributes	that	affect	the	behavior	of	the	instrument.	If	you	do	not,	the
behavior	of	your	program	depends	on	instrument	specific	settings	that
can	result	from	any	of	the	following	conditions:

The	power-on	settings	of	the	device.
The	state	that	the	instrument	configures	for	an	attribute	as	a	result
of	your	program	configuring	other	attributes.
The	state	that	a	previous	program	configured	for	the	instrument.

If	you	do	not	specify	the	state	of	the	instrument	completely,	you
considerably	increase	the	chance	that	your	program	will	not	behave	the
same	way	when	you	swap	instruments	or	you	run	your	programs	in	a
different	order.
In	general,	after	you	access	a	particular	capability	group,	you	must
configure	all	attributes	of	that	capability	group	that	affect	the	behavior	of
the	instrument.	Because	all	specific	drivers	that	are	compliant	with	a
class	implement	the	base	capability	group,	you	must	completely	specify
that	state	of	the	base	capabilities.	After	you	access	a	particular	extension
capability	group,	you	must	configure	all	attributes	of	that	extension	group.
Normally,	you	configure	the	attributes	through	one	or	more	high-level
configuration	functions.

Note		Not	all	attributes	of	a	particular	capability	group	affect	the
behavior	of	the	instrument.	In	some	cases,	if	one	attribute	is	set	to
a	particular	value,	a	second	attribute	no	longer	affects	the	behavior
of	the	instrument.	In	such	cases,	you	do	not	have	to	specify	the
state	of	the	second	attribute.	However,	NI	recommends	that	you
specify	the	state	of	all	attributes	within	the	capability	groups	that
you	use	for	the	sake	of	long-term	stability	and	reuse.
For	example,	if	you	set	the	IVIDMM_ATTR_SAMPLE_COUNT	to	1,
you	do	not	need	to	specify	the	values	of	the
IVIDMM_ATTR_SAMPLE_TRIGGER	and
IVIDMM_ATTR_SAMPLE_INTERVAL	attributes	because	these
attributes	do	not	affect	the	behavior	of	the	instrument.	Similarly,	if
you	do	not	set	the	SAMPLE_TRIGGER	to



IVIDMM_VAL_INTERVAL,	you	do	not	need	to	specify	the	value	of
the	IVIDMM_ATTR_SAMPLE_INTERVAL	attribute.



Using	the	Development	Mode	Settings	for
Inherent	Attributes
IVI	class	drivers	have	many	features	that	help	you	to	debug	and	analyze
your	program.	You	enable	these	features	by	setting	the	development
mode	settings	for	inherent	attributes.
After	you	complete	the	development	of	your	application	and	verify	that
your	program	is	working	correctly,	enable	the	production	mode	settings
for	the	inherent	attributes	to	maximize	performance.
The	following	table	lists	the	development	mode	and	production	mode
settings	for	the	inherent	attributes.
Development	Mode	and	Production	Mode	Settings	for	Inherent
Attributes

LabVIEW
Property Inherent	Attribute Development

Mode	Setting

ClassPrefix
Spy

CLASSPREFIX_ATTR_SPY VI_TRUE

ClassPrefix
Range
Check

CLASSPREFIX_ATTR_RANGE_CHECK
VI_TRUE

ClassPrefix
Query
Instrument
Status

CLASSPREFIX_ATTR_QUERY_INSTRUMENT_STATUS

VI_TRUE

ClassPrefix
Interchange
Check

CLASSPREFIX_ATTR_INTERCHANGE_CHECK
VI_TRUE

ClassPrefix
Record
Value
Coercions

CLASSPREFIX_ATTR_RECORD_COERCIONS

VI_TRUE

Refer	to	Measurement	&	Automation	Explorer	Help	for	IVI	for	information
about	how	to	use	MAX	to	set	the	development	mode	and	production
mode	settings	for	inherent	attributes.

ms-its:ivi_max.chm::/MAX_overview.html


CLASSPREFIX_ATTR_RANGE_CHECK
Enables/disables	range	checking.	If	you	enable	range	checking,	the
specific	driver	checks	all	parameters	passed	to	the	class	driver	and
specific	driver	functions.



CLASSPREFIX_ATTR_QUERY_INSTRUMENT_STATUS
Enables/disables	instrument	status	checking.	If	you	enable	instrument
status	checking,	the	specific	driver	checks	the	status	of	the	instrument
after	most	calls	made	to	the	class	driver	or	specific	driver.



CLASSPREFIX_ATTR_INTERCHANGE_CHECK
Enables/disables	interchangeability	checking.	Interchangeability	checking
verifies	that	your	program	produces	the	same	behavior	when	you	use	it
with	a	different	instrument.	If	you	enable	interchangeability	checking,	the
driver	queues	warnings	when	it	encounters	instrument	configurations	that
are	not	likely	to	produce	the	same	behavior	when	you	use	a	different
instrument.	The	class	driver	obtains	interchangeability	warnings	from	the
specific	driver,	so	you	can	find	additional	documentation	on	the	warnings
provided	in	the	specific	driver's	help	file.

Note You	can	use	NI	Spy	to	view	interchangeability	warnings.	NI
Spy	highlights	driver	functions	that	report	interchangeability
warnings	in	blue.	If	you	do	not	have	NI	Spy,	you	can	use	the
PREFIX_GetNextInterchangeWarning	function	to	retrieve
interchangeability	warnings	programmatically.

CLASSPREFIX_ATTR_RECORD_COERCIONS
Enables/disables	coercion	recording.	In	many	cases,	specific	drivers
coerce	the	value	that	you	specified	for	a	function	parameter	or	attribute	to
a	value	that	the	instrument	can	accept.	Specific	drivers	may	coerce	a
value	only	if	the	new	value	results	in	instrument	behavior	that	is	the	same
or	better	than	what	you	requested.	Coercion	of	values	is	essential	for
instrument	interchangeability.	If	specific	drivers	did	not	coerce	values,
you	would	have	to	specify	valid	values	for	the	specific	instruments	you
use.	If	you	attempted	to	use	your	program	with	new	instruments,	the	valid
values	would	probably	be	different.
For	example,	the	IviDmm	class	defines	an	attribute	called
IVIDMM_ATTR_RANGE	that	you	use	to	specify	the	measurement	range.
Typically,	DMMs	have	a	discrete	set	of	ranges.	One	DMM	might	have
discrete	settings	for	the	range	attribute	such	as	1	V,	10	V,	and	100	V.
Another	DMM	might	have	discrete	settings	such	as	2	V,	20	V,	and	200	V.
If	you	use	the	first	instrument,	you	might	set	the	range	attribute	to	10.0.	If
you	then	attempt	to	run	your	program	with	the	second	instrument,	10.0	is
no	longer	an	acceptable	value,	so	the	specific	driver	for	the	second
instrument	therefore	coerces	the	value	to	20.0.
In	other	cases,	specific	drivers	coerce	the	value	you	specified	for	an
attribute	to	the	value	the	instrument	would	coerce	the	value	to.	This
coercion	is	necessary	to	implement	the	IVI	state	caching	feature.	For



example,	if	a	DMM	has	discrete	settings	for	the	range	attribute	of	1	V,
10	V,	and	100	V,	it	coerces	any	value	between	2	V	and	9	V	to	10	V.	Thus,
if	you	set	the	range	to	2	V,	then	to	7	V,	and	then	to	5	V,	the	actual	range
remains	at	10	V.	To	prevent	sending	redundant	commands	to	the
instrument,	the	specific	driver	coerces	the	value	internally,	sends	the
coerced	value	to	the	instrument,	and	caches	the	coerced	value.	In	this
example,	the	specific	driver	coerces	2	V	to	10	V,	sends	10	V	to	the
instrument,	and	caches	10	V.	When	you	set	the	range	to	5	V	and	7	V,	the
driver	coerces	these	values	to	10	V,	notices	that	10	V	is	the	current
cache	value,	and	does	not	send	any	commands	to	the	instrument.
If	you	enable	coercion	recording,	the	driver	keeps	a	record	of	each
instance	a	ViInt32	or	ViReal64	value	is	coerced.	You	can	view	the
coercion	records	to	understand	how	the	specific	driver	coerces	values
that	you	specified	in	your	program.

Note You	can	use	NI	Spy	to	view	the	coercion	information.	If	you
do	not	have	NI	Spy,	you	can	use	the
PREFIX_GetNextCoercionRecord	function	to	retrieve	the
coercion	information	programmatically.



Following	the	Class	Behavior	Model
Each	IVI	class	driver	defines	a	behavior	model.	The	behavior	model
describes	the	relationships	between	the	functions	and	attributes	of	the
driver	and	the	behavior	of	the	instrument.	The	behavior	model	also
describes	the	order	of	operations	for	configuring	an	instrument	and
controlling	instrument	operations.	Follow	the	behavior	model	for	each
class	to	maximize	the	possibility	of	using	your	program	with	other
instruments.
For	example,	the	IviScope	behavior	model	recommends	that	you	fetch	a
waveform	from	the	instrument	after	you	have	acquired	it	and	before	you
reconfigure	the	instrument	for	the	next	acquisition.	Some	oscilloscopes
destroy	an	acquired	waveform	each	time	you	reconfigure	them,	so
fetching	prior	to	reconfiguration	ensures	that	the	acquired	waveform	is
available.	Other	types	of	oscilloscopes	do	not	destroy	the	acquired
waveform	each	time	you	reconfigure	them;	however,	you	should	follow
the	fetching	recommendation	of	the	behavior	model	so	that	your	program
can	fetch	acquired	waveforms	successfully	from	either	type	of
oscilloscope.

LabVIEW	Behavior	Model LabWindows/CVI	Behavior	Model
IviDCPwr IviDCPwr
IviDmm IviDmm
IviFgen IviFgen
IviScope IviScope
IviSwtch IviSwtch

lvivi.chm::/IviDCPwrBase_Behavior_Model.html
IVI-CVI.chm::/IviDCPwrBase_Behavior_Model.html
lvivi.chm::/IviDmm_Behavior_Model.html
IVI-CVI.chm::/ividmm_behavior_model.html
lvivi.chm::/IviFgenStdFunc_Behavior_Model.html
IVI-CVI.chm::/IviFgenBase_Behavior_Model.html
lvivi.chm::/IviScope_Behavior_Model.html
IVI-CVI.chm::/IviScope_Behavior_Model.html
lvivi.chm::/IviSwtchBase_Behavior_Model.html
IVI-CVI.chm::/IviSwtchBase_Behavior_Model.html


Using	MAX	to	Configure	Instrument	Specific
Attributes
Refer	to	National	Instruments	IVI	Driver	Help»Configuring	Your
System	Using	MAX	for	more	information	about	using	Initial	Settings	to
configure	instrument	specific	attributes.



Analyzing	Your	Program	with	NI	Spy
NI	Spy	is	an	application	monitor	for	Windows	applications	using	NI
drivers.	NI	Spy	can	monitor,	record,	and	display	calls	made	to	IVI	class
drivers.	You	can	use	NI	Spy	to	quickly	locate	and	analyze	any	erroneous
calls	that	your	application	makes	to	the	IVI	class	drivers.		NI	Spy	captures
all	function	calls	made	during	a	class	driver	session.
To	spy	on	IVI	class	driver	calls,	the	NI	Spy	attribute	must	be	enabled	on
the	class	driver	session.	This	attribute	is	enabled	by	default.	You	can
programmatically	disable	the	attribute	by	setting	it	to	FALSE.
The	following	figure	shows	a	sample	trace	from	NI	Spy.

NI	Spy	records	all	input	parameters	passed	to	a	function	and	all	output
parameters	that	the	function	returns.	NI	Spy	also	displays	the	return
value	of	the	function.
You	can	see	detailed	information	for	every	call	NI	Spy	captures	through
property	sheets.	The	following	figure	shows	a	sample	property	sheet.



The	property	sheets	display	detailed	information	such	as:
Information	about	the	application	that	made	each	call	and	the	time
stamp	of	the	call
The	input	and	output	parameters	to	each	call	and	the	contents	of
buffer	parameters
Descriptive	error	information
Interchangeability	warnings
Information	regarding	the	coercion	of	attribute	values



Configuring	NI	Spy
To	spy	on	a	particular	driver	session,	you	must	enable	spying	for	that
driver	session	and	for	the	IVI	class	driver.	Refer	to	Measurement	&
Automation	Explorer	Help	for	IVI	for	more	information	about	how	to	use
MAX	to	enable	spying	for	a	particular	driver	session.
To	enable	spying	for	an	IVI	class	driver	within	NI	Spy,	launch	NI	Spy	by
clicking	Start»Programs»National	Instruments»NI	Spy.	To	enable
spying	for	a	particular	class	driver,	select	Spy»Options.	The	class
drivers	appear	in	the	NI	Spy	Options	dialog	box	for	you	to	select.	By
default,	all	class	drivers	are	selected	for	spying.	The	following	figure
shows	the	NI	Spy	Options	dialog	box	where	you	enable	this	setting.

ms-its:ivi_max.chm::/MAX_overview.html


Capturing	Calls	to	IVI	Class	Drivers
To	view	calls	to	IVI	class	drivers,	you	must	enable	capturing.	When
you	launch	NI	Spy,	capturing	is	disabled.	To	enable	capturing,	use	one	of
the	following	methods:

Select	Spy»Start	Capture.
Click	the	blue	arrow	on	the	toolbar.
Press	<F8>.

After	you	enable	capturing,	run	your	application	then	return	to	NI	Spy	to
view	the	captured	calls.	For	a	complete	description	of	how	to	use	NI	Spy,
refer	to	the	NI	Spy	Windows	Help.	To	view	the	NI	Spy	help,	select
Help»Help	Topics.	The	following	figure	shows	calls	to	the	IviScope	class
driver	that	NI	Spy	captured.

NI	Spy	displays	the	name	of	each	class	driver	function	call	that	it
captures.	For	each	function	call,	NI	Spy	displays	the	values	of	the	input
and	output	parameters.	You	can	configure	NI	Spy	to	display	the	following
details	about	the	function	call:

Number
Description
Status
Time
Process	ID
Thread	ID

If	a	function	returns	an	error,	NI	Spy	highlights	the	function	call	in	red.	If
you	enable	interchangeability	checking,	NI	Spy	highlights	the	functions



that	report	interchangeability	warnings	in	blue.



Call	Properties
NI	Spy	records	detailed	information	about	each	call	it	captures.	To	see
the	detailed	information	for	a	specific	call,	use	one	of	the	following
methods:

Double-click	the	call	in	the	capture	window.
Select	the	call	and	press	<Enter>.
Select	the	call	and	select	View»Properties.
Select	the	call	and	click	Properties.

The	Property	Sheet	dialog	box	contains	additional	information	when	it
shows	a	call	to	an	IVI	class	driver.	Refer	to	NI	Spy	Help	for	more
information	about	the	NI	Spy	Property	Sheet	dialog	box.



Input	Tab
The	following	figure	shows	the	Input	tab	of	the	Property	Sheet	dialog	box.

The	Input	tab	displays	the	input	parameters	value	for	a	function	call.
When	the	class	driver	initialize	function	is	called,	it	passes	the	logical
name	of	the	instrument	you	want	to	initialize.	The	initialize	function
returns	an	IVI	session	handle	that	identifies	the	instrument	session.	You
pass	the	IVI	session	handle	as	the	vi	input	parameter	to	all	other	class
driver	functions.	For	functions	that	have	a	vi	input	parameter	that
represents	an	IVI	session	handle,	NI	Spy	displays	the	value	of	the	vi
input	parameter	and	the	logical	name	that	corresponds	to	the	value.
Thus,	you	can	easily	identify	the	particular	instrument	session	that	a	call
accesses.



Output	Tab
The	Output	tab	displays	the	output	parameters	and	status	information	for
the	function	call.	For	calls	to	an	IVI	class	driver,	NI	Spy	displays
additional	error	information.	This	information	includes	the	primary	error,
the	secondary	error,	and	any	error	elaboration	information.
The	following	figure	shows	the	Output	tab	of	the	NI	Spy	Property	Sheet
with	information	from	a	call	to	an	IVI	class	driver.



Interchange	Warnings	Tab
You	can	use	NI	Spy	to	view	interchangeability	warnings.	If	you	enable
interchangeability	checking	and	a	class	driver	function	encounters	an
interchangeability	warning,	an	Interchange	Warnings	tab	appears	on	the
NI	Spy	Property	Sheet	dialog	box	for	the	function	call.	The	Interchange
Warnings	tab	displays	the	interchangeability	warnings	that	the	function
call	produced.	The	following	figure	shows	the	Interchange	Warnings	tab.



Coercions	Tab
You	can	view	how	the	specific	driver	coerces	ViInt32	and	ViReal64	values
with	NI	Spy.	If	you	enable	coercion	recording	and	the	specific	driver
coerces	values	that	you	pass	to	a	class	driver	function,	a	Coercions	tab
appears	on	the	NI	Spy	Property	Sheet	dialog	box	for	the	function	call.
The	following	figure	shows	the	Coercions	tab.

The	Coercions	tab	displays	the	name	of	the	attribute	that	the	specific
driver	coerced,	the	value	that	you	specified	in	your	program,	and	the
value	to	which	the	specific	driver	coerced	the	attribute.	If	the	attribute	is
channel	based,	the	Coercions	tab	also	displays	the	channel	name.



Verifying	Instrument	Replacement	Candidates
Click	the	following	links	to	view	techniques	that	you	can	use	to	verify
whether	a	new	instrument	can	work	with	an	existing	application.
Developing	a	Reference	Program
Testing	the	New	Driver	in	Simulation	Mode



Developing	a	Reference	Program
One	technique	for	verifying	instrument	replacement	candidates	is	to
create	a	reference	program.	You	can	create	the	reference	program	when
you	specify	the	requirements	of	your	test	program	or	when	you	develop
your	test	program.	The	reference	program	uses	an	IVI	class	driver	to
programmatically	describe	all	the	instrument	configurations	and
operations	that	you	require.
To	verify	whether	a	new	instrument	can	work	with	your	program,	execute
the	reference	program	using	the	specific	driver	for	the	new	instrument.
You	can	run	the	reference	program	with	the	physical	instrument	or	with
simulation	enabled.	If	you	can	execute	the	reference	program	without
errors	using	the	new	instrument,	then	you	can	probably	use	the	new
instrument	with	your	existing	application.	Depending	on	how	many	errors
and	the	types	of	errors	the	reference	program	generates,	you	can	gauge
the	degree	to	which	you	must	modify	your	program	to	make	it	work	with
the	new	instrument.



Testing	the	New	Driver	in	Simulation	Mode
If	you	do	not	have	a	reference	program,	you	can	verify	a	replacement
candidate	by	trying	to	run	your	program	with	the	new	instrument.	If	you
cannot	make	connections	to	the	physical	instrument,	you	can	enable
simulation.
Often	the	analysis	routines	in	your	test	program	depend	on	the	data	that
an	instrument	returns.	If	the	instrument	does	not	return	valid	data,	the
program	returns	an	error	and	does	not	fully	execute	all	the	statements
that	control	the	instrument.	If	you	enable	simulation,	you	can	use	the
class	simulation	drivers	to	create	simulated	data	so	that	you	can	fully
execute	your	test	program.
If	you	can	execute	your	program	using	the	new	instrument,	then	you	can
probably	replace	your	existing	instrument	with	the	new	one.



IVI	Class	Driver	Simulation	Overview
The	IVI	class	drivers	implement	simulation	features	by	using	simulation
drivers.	ICP	installs	a	simulation	driver	for	each	IVI	class	driver.	Each
simulation	driver	plugs	in	to	the	corresponding	class	driver	and	performs
flexible	output	data	simulation.
The	following	table	lists	the	simulation	driver	files	that	ICP	installs.



IVI	Class	Simulation	Drivers
Class
Drivers

Simulation	Driver	Files

IviScope nisScope.dll,	nisScope.c,	nisScope.h,	nisScopu.uir,	nisScopeUir.c,
nisScopeUir.h

IviDmm nisDmm.dll,	nisDmm.c,	nisDmm.h,	nisDmmu.uir,	nisDmmUir.c,
nisDmmUir.h

IviFgen nisFgen.dll,	nisFgen.c,	nisFgen.h
IviSwtch nisSwtch.dll,	nisSwtch.c,	nisSwtch.h
IviDCPwr nisDCPwr.dll,	nisDCPwr.c,	nisDCPwr.h,	nisDCPwru.uir,

nisDCPwrUir.c,	nisDCPwrUir.h
Common
Files

nisimu.uir,	nisGeneralUir.c,	nisGeneralUir.h

ICP	distributes	the	simulation	drivers	as	.dll	files	so	that	you	can	use
them	immediately.	It	also	includes	C	source	files	for	the	simulation
drivers,	so	you	can	modify	the	drivers	to	meet	your	specific	simulation
requirements.	The	ICP	installation	program	places	the	simulation	driver
.dll	files	in	the	<IVI	Standard	Root	Dir	>\bin	directory.	The	installation
program	places	the	.c,	.h,	and	.uir	files	in	the	<All
Users>\Documents\National	Instruments\CVI\Samples\IVI\ClassSim	directory.



Configuring	Simulation
Refer	to	National	Instruments	IVI	Driver	Help»Configuring	Your
System	for	more	information	about	configuring	simulation	in	MAX.



Configuring	the	Simulation	Driver	Session
Refer	to	National	Instruments	IVI	Driver	Help»Configuring	Your
System	for	more	information	about	configuring	the	simulation	driver
session	in	MAX.



Interactive	Simulation
In	all	class	drivers,	the	VXIplug&play-compliant	VIs	and	functions	have
output	parameters	that	return	values	or	strings	from	the	instrument.

VXIplug&play-compliant	VIs VXIplug&play-compliant	Functions
ClassPrefix	Self-Test CLASSPREFIX_self-test

ClassPrefix	Revision	Query CLASSPREFIX_revision_query

ClassPrefix	Error-Query CLASSPREFIX_error_query

During	simulation,	the	simulation	driver	can	create	simulated	data	for	the
output	parameters	of	these	functions.	This	panel	allows	you	to	configure
the	simulation	data	to	return	from	these	functions.
You	can	access	this	view	in	the	IviDmm,	the	IviDCPwr,	or	the	IviScope
Simulator	Setup	dialog	boxes.	In	this	case,	you	see	the	Simulator	Setup
dialog	box	for	IviScope.	Scroll	down	to	see	a	description	of	each	control.

lvivi.chm::/ClassPrefix_Self_Test.html
IVI-CVI.chm::/Prefix_self_test.html
lvivi.chm::/ClassPrefix_Revision_Query.html
IVI-CVI.chm::/Prefix_revision_query.html
lvivi.chm::/ClassPrefix_Error_Query.html
IVI-CVI.chm::/Prefix_error_query.html


IviScope	Simulator	Setup	Dialog	Box
The	Simulator	Setup	dialog	boxes	for	the	different	class	drivers	have
common	features.	Each	Simulator	Setup	dialog	box	has	a	View	ring
control	in	the	upper	left-hand	corner.	Use	the	View	ring	control	to	select	a
feature	of	the	simulation	driver	to	configure.	All	the	dialog	boxes	have
views	to	configure	the	simulation	of	the	VXIplug&play	functions	and	the
simulation	of	function	status	codes.	For	classes	that	take	measurements,
such	as	IviDmm,	IviScope,	and	IviDCPwr,	the	Simulator	Setup	dialog	box
also	contains	a	Measurement	Data	Simulation	view.
Because	you	can	fully	configure	the	simulation	driver	in	the	Simulator
Setup	dialog	box	at	run	time,	you	do	not	have	to	use	MAX	to	specify
attribute	values	in	the	Initial	Settings	tab	of	the	Simulation	Driver
Sessions	folder.	If	you	do	specify	initial	settings,	however,	the	values	that
you	specify	appear	as	the	initial	values	in	the	Simulator	Setup	dialog	box
each	time	you	call	ClassPrefix_init.



Self-Test
Use	the	Result	Code	and	Message	controls	to	specify	the	values	you
want	the	ClassPrefix	Self-Test	VI	or	ClassPrefix_self_test	function	of	the
driver	to	return	in	its	output	parameters.



Error-Query
Use	the	Error	Code	and	Message	controls	to	specify	the	values	you	want
the	ClassPrefix	Error-Query	VI	or	ClassPrefix_error_query	function	of	the
driver	to	return	in	its	output	parameters.



Revision	Query
Use	the	Instrument	Driver	Revision	and	Firmware	Revision	controls	to
specify	the	values	you	want	the	ClassPrefix	Revision	Query	VI	or
ClassPrefix_revision_query	function	of	the	driver	to	return	in	its	output
parameters.



VXIplug&play	Function	Simulation
To	configure	the	simulation	of	the	VXIplug&play	functions,	select
VXIplug&play	Function	Simulation	from	the	View	ring	control	of	the
Simulator	Setup	dialog	box.	The	VXIplug&play	Function	Simulation	view
is	the	same	for	all	simulation	drivers.
The	following	table	describes	the	controls	that	appear	in	the
VXIplug&play	Function	Simulation	view,	including	the	names	of	the
related	attributes.



Controls	in	the	VXIplug&play	Function	Simulation	View
Control
Label Description Related	Attribute	in	the	Initial

Settings	Tab
Self–Test
Code

Value	that	the
Prefix_self_test
function	returns	in
the	self-test	code
parameter

PREFIX_ATTR_SELF_TEST_CODE

Self–Test
Message

String	that	the
Prefix_self_test
function	returns	in
the	self-test
message	parameter

PREFIX_ATTR_SELF_TEST_MSG

Error
Code

Value	that	the
Prefix_error_query
function	returns	in
the	error	code
parameter

PREFIX_ATTR_ERROR_QUERY_CODE

Error
Message

String	that	the
Prefix_error_query
function	returns	in
the	error	message
parameter

PREFIX_ATTR_ERROR_QUERY_MSG

Instrument
Driver
Revision

String	that	the
Prefix_revision_query
function	returns	in
the	instrument
revision	parameter

PREFIX_ATTR_DRIVER_REV_QUERY

Firmware
Revision

String	that	the
Prefix_revision_query
function	returns	in
the	instrument
firmware	revision
parameter

PREFIX_ATTR_INSTR_REV_QUERY



Status	Code	Simulation
You	use	the	dialog	box	shown	below	to	configure	the	status	code	for	a
simulation.	You	can	access	this	view	in	the	IviDmm,	the	IviDCPwr,	or	the
IviScope	Simulator	Setup	dialog	boxes.	In	this	case,	you	see	the
Simulator	Setup	dialog	box	for	IviScope.
To	configure	the	status	code	simulation,	select	Status	Code	Simulation
from	the	View	ring	control.	

Scroll	down	to	see	a	description	of	each	control.



Status	Code	Simulation	View
The	Status	Code	Simulation	view	is	the	same	for	all	simulation	drivers.
The	Status	Code	Simulation	view	has	the	following	controls:

Simulate	Status	Codes
This	control	lists	all	of	the	class	driver	functions	that	the	selected
instrument	specific	driver	supports.	The	list	also	indicates	each
function's	associated	simulation	status	code	in	both	macro	name
form	and	in	hexadecimal	value	form.	You	use	the	Status	Code
Macro	and	Custom	Status	Code	controls	to	modify	simulation
status	codes.
Setting	this	control	has	the	same	effect	as	configuring	the
PREFIX_ATTR_SIMULATE_STATUS_CODES	attribute	on	the	Initial
Settings	tab	of	IVI	Drivers»Advanced»Simulation	Driver
Sessions»nisIviClass	in	MAX	or	in	the	simulation	interactive
panels.
Status	Code	Macro
This	control	allows	you	to	change	the	simulation	status	code	of	the
currently	selected	function.	Setting	this	control	to	the	custom	status
code	option	sets	the	value	you	placed	in	the	Custom	Status	Code
control	as	the	function's	simulated	status	code.	

If	you	select	Custom	Status	Code,	you	can	configure	a	custom
status	code	in	the	Custom	Status	Code	control.
Custom	Status	Code
This	control	lets	you	specify	a	custom	status	code	to	simulate	for	a
particular	function.
Reset	all	to	VI_SUCCESS
This	control	resets	all	of	the	class	driver	functions'	simulation
status	codes	to	VI_SUCCESS	(0).

Configuring	simulated	status	codes	with	this	dialog	box	has	the	same
effect	as	configuring	the	corresponding	simulated	status	code	attributes
on	the	Initial	Settings	tab	of	IVI	Drivers»Advanced»Simulation	Driver
Sessions»nisIviClass	in	MAX	or	in	the	simulation	interactive	panels.
Related	Topics



For	controlling	simulation	in	LabWindows/CVI,	refer	to:
Attributes	for	Controlling	IviDmm
Simulation

Attributes	for	Controlling	IviScope
Simulation

Attributes	for	Controlling	IviFgen
Simulation

Attributes	for	Controlling	IviSwtch
Simulation

Attributes	for	Controlling	IviDCPwr
Simulation

For	controlling	simulation	in	LabVIEW,	refer	to:
Properties	for	Controlling	IviDmm
Simulation

Properties	for	Controlling	IviScope
Simulation

Properties	for	Controlling	IviFgen
Simulation

Properties	for	Controlling	IviSwtch
Simulation

Properties	for	Controlling	IviDCPwr
Simulation

IVI-CVI.chm::/Attributes_for_Controlling_IviDmm_Simulation.html
IVI-CVI.chm::/Attributes_for_IviScope_Simulation.html
IVI-CVI.chm::/Attributes_for_IviFgen_Simulation.html
IVI-CVI.chm::/Attributes_for_IviSwtch_Simulation.html
IVI-CVI.chm::/Attributes_for_Controlling_IviDCPwr_Simulation.html
lvivi.chm::/Properties_for_Controlling_IviDmm_Simulation.html
lvivi.chm::/Properties_for_Controlling_IviScope_Simulation1.html
lvivi.chm::/Properties_for_IviFgen_Simulation.html
lvivi.chm::/Properties_for_IviSwtch_Simulation.html
lvivi.chm::/Properties_for_Controlling_IviDCPwr_Simulation.html


Measurement	Data	Simulation
The	IviDmm,	IviScope,	and	IviDCPwr	simulation	drivers	perform
measurement	data	simulation.	For	example,	when	you	use	the	IviScope
class	driver	with	simulation	enabled,	you	can	configure	the	waveform	that
the	IviScope_ReadWaveform	and	IviScope_FetchWaveform	functions	return.
The	following	figure	shows	the	Measurement	Data	Simulation	view	for
the	IviScope	simulation	driver.



IviScope	Measurement	Data	Simulation	View
The	Measurement	Data	Simulation	view	for	each	simulation	driver	has	an
Always	Prompt	for	Output	Data	Simulation	checkbox	control.	Use	this
control	to	specify	whether	you	want	the	simulation	driver	to	display	the
Measurement	Data	Simulation	panel	each	time	your	program	takes	a
measurement.	If	you	enable	the	Always	Prompt	for	Output	Data
Simulation	control,	you	can	configure	the	data	separately	that	the
simulation	driver	generates	for	each	measurement.	When	you	disable	the
control,	you	configure	the	output	data	simulation	once	for	the	instrument
session	when	you	call	an	initialization	function.
You	can	configure	the	measurement	data	simulation	in	MAX	on	the	Initial
Settings	tab	of	IVI	Drivers»Advanced»Simulation	Driver
Sessions»nisIviClass	or	in	the	simulation	interactive	panels.



Non-Interactive	Simulation
When	you	disable	interactive	simulation,	you	can	configure	simulation
only	in	MAX.	After	you	initialize	your	driver	by	calling	an	initialization
function,	you	cannot	alter	the	configuration	of	the	simulation	driver.	Non-
interactive	simulation	is	useful	when	you	want	to	prevent	the	interactive
panels	from	interrupting	your	test	program.



Advanced	Simulation	Topics
Expand	this	book	for	topics	about	advanced	simulation.



Modifying	the	Simulation	Driver
The	IVI	class	simulation	drivers	provide	general	purpose	simulation
features.	However,	you	might	require	more	application-specific	simulation
capabilities.	For	that	reason,	the	IVI	Compliance	Package	includes	C
source	code	for	the	simulation	drivers.	You	can	customize	the	data
simulation	algorithms	for	your	specific	requirements.	Because	simulation
drivers	work	with	the	class	drivers,	you	can	reuse	the	simulation	code
you	develop	with	different	specific	instruments.
If	you	want	to	modify	the	user	interface	panels	for	the	simulation	driver,
you	must	install	LabWindows/CVI.

Note		If	you	modify	the	simulation	drivers,	do	not	change	the
simulation	driver	function	prototypes.	If	you	change	the	prototypes,
your	driver	may	give	unpredictable	results.



User-Interface	Requirements
The	interactive	capabilities	of	simulation	drivers	place	additional
requirements	on	your	system.	The	simulation	driver	.dll	files	require	the
LabWindows/CVI	Run–Time	Engine.	The	IVI	Compliance	Package
installation	program	installs	the	LabWindows/CVI	Run–Time	Engine.
If	you	want	to	deploy	a	simulation	driver	on	a	system	that	does	not	have
the	LabWindows/CVI	Run–Time	Engine,	you	must	modify	and	recompile
the	simulation	driver	source	code.	This	section	describes	the
modifications	you	must	make	for	LabWindows/CVI	5.0	or	later.
LabWindows/CVI	5.0.x—To	modify	and	recompile	the	simulation	driver
using	the	LabWindows/CVI	5.0.x	compiler,	complete	the	following	steps:

1.	 Edit	the	.c	file	of	the	simulation	driver.	The	.c	file	for	each
simulation	driver	contains	the	following	statements:
#ifndef	ALLOW_INTERACTIVE_SIMULATION
#define	ALLOW_INTERACTIVE_SIMULATION

To	prevent	your	program	from	trying	to	invoke	the
LabWindows/CVI	Run–Time	Engine,	change	the
ALLOW_INTERACTIVE_SIMULATION	macro	definition	from	1	to
0	so	that	the	compiler	does	not	process	any	of	the	user	interface
code.

2.	 Enable	the	Instrument	Driver	Support	Only	command	in	the	Build
menu	of	the	Project	window.	When	you	enable	Instrument	Driver
Support	Only,	your	project	does	not	link	to	the	LabWindows	CVI
Run–Time	Engine.	To	enable	Instrument	Driver	Support	Only,
select	Build»Instrument	Driver	Support	Only.

3.	 Select	Build»Create	Dynamic	Link	Library	in	the	Project
window	to	compile	the	simulation	driver	.dll	file.	The	Create
Dynamic	Link	Library	dialog	box	appears.	Be	sure	to	export	the
symbols	from	the	.h	file	of	the	simulation	driver	as	follows:

a.	 Click	Change	to	display	the	DLL	Export	Options	dialog.
b.	 Select	Include	File	Symbols	from	the	Export	What

control.
c.	 Select	the	.h	file	for	the	simulation	driver	in	the	Which

Project	Include	Files	list	control.



4.	 Click	OK	to	create	the	DLL.
LabWindows/CVI	5.5—To	modify	and	recompile	the	simulation	driver
using	the	LabWindows/CVI	5.5	compiler,	complete	the	following	steps:

1.	 Edit	the	.c	file	of	the	simulation	driver.	The	.c	file	for	each
simulation	driver	contains	the	following	statements:
#ifndef	ALLOW_INTERACTIVE_SIMULATION
#define	ALLOW_INTERACTIVE_SIMULATION

To	prevent	your	program	from	trying	to	invoke	the
LabWindows/CVI	Run–Time	Engine,	change	the
ALLOW_INTERACTIVE_SIMULATION	macro	definition	from	1	to
0	so	that	the	compiler	does	not	process	any	of	the	user	interface
code.

2.	 Select	Build»Target	Settings	in	the	Project	window.	The	Target
Settings	dialog	appears.	Enable	Instrument	Driver	Support
Only	if	you	do	not	want	to	link	to	the	LabWindows/CVI	Run-Time
Engine.	Be	sure	to	export	the	symbols	from	the	.h	file	of	the
simulation	driver	by	completing	the	following	steps:

a.	 Click	Change	in	the	export	section	to	display	the	DLL
Export	Options	dialog	box.

b.	 Select	Include	File	Symbols	from	the	Export	What
control.

c.	 Select	the	.h	file	for	the	simulation	driver	in	the	Which
Project	Include	Files	list	control.

3.	 Select	Build»Create	Release	Dynamic	Link	Library	in	the
Project	window	to	compile	the	simulation	.dll	file.

LabWindows/CVI	6.0	and	7.0—To	modify	and	recompile	the	simulation
driver	using	the	LabWindows/CVI	6.0	or	7.0	compiler,	complete	the
following	steps:

1.	 Edit	the	.c	file	of	the	simulation	driver.	The	.c	file	for	each
simulation	driver	contains	the	following	statements:
#ifndef	ALLOW_INTERACTIVE_SIMULATION
#define	ALLOW_INTERACTIVE_SIMULATION

To	prevent	your	program	from	trying	to	invoke	the
LabWindows/CVI	Run–Time	Engine,	change	the



ALLOW_INTERACTIVE_SIMULATION	macro	definition	from	1	to
0	so	that	the	compiler	does	not	process	any	of	the	user	interface
code.

2.	 Select	Build»Target	Settings	in	the	Project	window.	The	Target
Settings	dialog	appears.	Select	Instrument	Driver	Only	from	the
Runtime	Support	control.	Be	sure	to	export	the	symbols	from	the
.h	file	of	the	simulation	driver	by	completing	the	following	steps:

a.	 Click	Change	in	the	export	section	to	display	the	DLL
Export	Options	dialog	box.

b.	 Select	Include	File	Symbols	from	the	Export	What
control.

c.	 Select	the	.h	file	for	the	simulation	driver	in	the	Which
Project	Include	Files	list	control.

3.	 Select	Build»Create	Release	Dynamic	Link	Library	in	the
Project	window	to	compile	the	simulation	.dll	file.

After	you	compile	the	simulation	driver,	the	resulting	.dll	does	not	require
the	LabWindows/CVI	Run–Time	Engine,	but	you	cannot	use	the
interactive	simulation	panels.	If	you	attempt	to	enable	interactive
simulation	without	the	LabWindows/CVI	Run–Time	Engine,	the
simulation	driver	returns	an	error.



Enabling	Simulation	after	Initializing
If	you	have	disabled	simulation	when	you	initialize	the	instrument	driver,
some	instrument	drivers	allow	you	to	enable	simulation	at	a	later	time.
When	you	disable	simulation	at	the	time	of	initialization,	the	IVI	Engine
sets	the	driver	to	perform	instrument	I/O;	therefore,	the	instrument	must
be	present	in	your	system.	You	can	then	enable	or	disable	simulation	at
any	time	by	setting	the	PREFIX_ATTR_SIMULATE	attribute.	If	you
configure	the	simulation	driver	for	interactive	simulation,	the	simulation
driver	displays	the	Simulator	Setup	dialog	box	the	first	time	you	enable
simulation.	When	you	enable	simulation,	the	simulation	driver	behaves	as
this	topic	describes.	This	approach	is	useful	if	you	want	to	simulate	the
instrument	only	during	specific	times	that	you	run	your	application.



IVI	Class	Driver	Help
This	book	contains	technical	and	programming	support	for	both
LabWindows/CVI	and/or	LabVIEW	users	for	the	following	National
Instruments	Interchangeable	Virtual	Instruments	class	drivers:

IviDCPwr
IviDmm
IviFgen
IviPwrMeter
RFSigGen
IviScope
IviSpecAn
IviSwtch

The	book	also	describes	the	fundamental	and	advanced	terminology	for
these	IVI	class	drivers.	This	book	is	intended	for	use	by	developers	with	a
working	knowledge	of	LabWindows/CVI	and/or	LabVIEW.
This	book	is	divided	into	the	two	following	books:
IVI	Class	Driver	Help	for	LabWindows/CVI
IVI	Class	Driver	Help	for	LabVIEW

IVI-CVI.chm::/IVI_Class_Driver_Help_for_LabWindows_CVI.html
lvivi.chm::/IVI_Class_Driver_Help_for_LabVIEW.html


Important	Information
Warranty
Copyright
Trademarks
Patents
Warning	Regarding	Use	of	NI	Products



Warranty
The	media	on	which	you	receive	National	Instruments	software	are
warranted	not	to	fail	to	execute	programming	instructions,	due	to	defects
in	materials	and	workmanship,	for	a	period	of	90	days	from	date	of
shipment,	as	evidenced	by	receipts	or	other	documentation.	National
Instruments	will,	at	its	option,	repair	or	replace	software	media	that	do	not
execute	programming	instructions	if	National	Instruments	receives	notice
of	such	defects	during	the	warranty	period.	National	Instruments	does	not
warrant	that	the	operation	of	the	software	shall	be	uninterrupted	or	error
free.
A	Return	Material	Authorization	(RMA)	number	must	be	obtained	from
the	factory	and	clearly	marked	on	the	outside	of	the	package	before	any
equipment	will	be	accepted	for	warranty	work.	National	Instruments	will
pay	the	shipping	costs	of	returning	to	the	owner	parts	which	are	covered
by	warranty.
National	Instruments	believes	that	the	information	in	this	document	is
accurate.	The	document	has	been	carefully	reviewed	for	technical
accuracy.	In	the	event	that	technical	or	typographical	errors	exist,
National	Instruments	reserves	the	right	to	make	changes	to	subsequent
editions	of	this	document	without	prior	notice	to	holders	of	this	edition.
The	reader	should	consult	National	Instruments	if	errors	are	suspected.
In	no	event	shall	National	Instruments	be	liable	for	any	damages	arising
out	of	or	related	to	this	document	or	the	information	contained	in	it.
EXCEPT	AS	SPECIFIED	HEREIN,	NATIONAL	INSTRUMENTS	MAKES
NO	WARRANTIES,	EXPRESS	OR	IMPLIED,	AND	SPECIFICALLY
DISCLAIMS	ANY	WARRANTY	OF	MERCHANTABILITY	OR	FITNESS
FOR	A	PARTICULAR	PURPOSE.	CUSTOMER'S	RIGHT	TO	RECOVER
DAMAGES	CAUSED	BY	FAULT	OR	NEGLIGENCE	ON	THE	PART	OF
NATIONAL	INSTRUMENTS	SHALL	BE	LIMITED	TO	THE	AMOUNT
THERETOFORE	PAID	BY	THE	CUSTOMER.	NATIONAL
INSTRUMENTS	WILL	NOT	BE	LIABLE	FOR	DAMAGES	RESULTING
FROM	LOSS	OF	DATA,	PROFITS,	USE	OF	PRODUCTS,	OR
INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	EVEN	IF	ADVISED	OF
THE	POSSIBILITY	THEREOF.	This	limitation	of	the	liability	of	National
Instruments	will	apply	regardless	of	the	form	of	action,	whether	in
contract	or	tort,	including	negligence.	Any	action	against	National
Instruments	must	be	brought	within	one	year	after	the	cause	of	action



accrues.	National	Instruments	shall	not	be	liable	for	any	delay	in
performance	due	to	causes	beyond	its	reasonable	control.	The	warranty
provided	herein	does	not	cover	damages,	defects,	malfunctions,	or
service	failures	caused	by	owner's	failure	to	follow	the	National
Instruments	installation,	operation,	or	maintenance	instructions;	owner's
modification	of	the	product;	owner's	abuse,	misuse,	or	negligent	acts;
and	power	failure	or	surges,	fire,	flood,	accident,	actions	of	third	parties,
or	other	events	outside	reasonable	control.



Copyright
Under	the	copyright	laws,	this	publication	may	not	be	reproduced	or
transmitted	in	any	form,	electronic	or	mechanical,	including	photocopying,
recording,	storing	in	an	information	retrieval	system,	or	translating,	in
whole	or	in	part,	without	the	prior	written	consent	of	National	Instruments
Corporation.
National	Instruments	respects	the	intellectual	property	of	others,	and	we
ask	our	users	to	do	the	same.	NI	software	is	protected	by	copyright	and
other	intellectual	property	laws.	Where	NI	software	may	be	used	to
reproduce	software	or	other	materials	belonging	to	others,	you	may	use
NI	software	only	to	reproduce	materials	that	you	may	reproduce	in
accordance	with	the	terms	of	any	applicable	license	or	other	legal
restriction.



Trademarks
National	Instruments,	NI,	ni.com,	and	LabVIEW	are	trademarks	of
National	Instruments	Corporation.	Refer	to	the	Terms	of	Use	section	on
ni.com/legal	for	more	information	about	National	Instruments	trademarks.
FireWire®	is	the	registered	trademark	of	Apple	Computer,	Inc.
Handle	Graphics®,	MATLAB®,	Real-Time	Workshop®,	Simulink®,
Stateflow®,	and	xPC	TargetBox®	are	registered	trademarks,	and
TargetBox™	and	Target	Language	Compiler™	are	trademarks	of	The
MathWorks,	Inc.
Tektronix®	and	Tek	are	registered	trademarks	of	Tektronix,	Inc.
Other	product	and	company	names	mentioned	herein	are	trademarks	or
trade	names	of	their	respective	companies.
Members	of	the	National	Instruments	Alliance	Partner	Program	are
business	entities	independent	from	National	Instruments	and	have	no
agency,	partnership,	or	joint-venture	relationship	with	National
Instruments.

javascript:WWW(WWW_Trademark)


Patents
For	patents	covering	National	Instruments	products,	refer	to	the
appropriate	location:	Help»Patents	in	your	software,	the	patents.txt	file	on
your	CD,	or	ni.com/patents.

javascript:WWW(WWW_Patents)


WARNING	REGARDING	USE	OF	NATIONAL
INSTRUMENTS	PRODUCTS
(1)	NATIONAL	INSTRUMENTS	PRODUCTS	ARE	NOT	DESIGNED
WITH	COMPONENTS	AND	TESTING	FOR	A	LEVEL	OF	RELIABILITY
SUITABLE	FOR	USE	IN	OR	IN	CONNECTION	WITH	SURGICAL
IMPLANTS	OR	AS	CRITICAL	COMPONENTS	IN	ANY	LIFE	SUPPORT
SYSTEMS	WHOSE	FAILURE	TO	PERFORM	CAN	REASONABLY	BE
EXPECTED	TO	CAUSE	SIGNIFICANT	INJURY	TO	A	HUMAN.
(2)	IN	ANY	APPLICATION,	INCLUDING	THE	ABOVE,	RELIABILITY	OF
OPERATION	OF	THE	SOFTWARE	PRODUCTS	CAN	BE	IMPAIRED	BY
ADVERSE	FACTORS,	INCLUDING	BUT	NOT	LIMITED	TO
FLUCTUATIONS	IN	ELECTRICAL	POWER	SUPPLY,	COMPUTER
HARDWARE	MALFUNCTIONS,	COMPUTER	OPERATING	SYSTEM
SOFTWARE	FITNESS,	FITNESS	OF	COMPILERS	AND
DEVELOPMENT	SOFTWARE	USED	TO	DEVELOP	AN	APPLICATION,
INSTALLATION	ERRORS,	SOFTWARE	AND	HARDWARE
COMPATIBILITY	PROBLEMS,	MALFUNCTIONS	OR	FAILURES	OF
ELECTRONIC	MONITORING	OR	CONTROL	DEVICES,	TRANSIENT
FAILURES	OF	ELECTRONIC	SYSTEMS	(HARDWARE	AND/OR
SOFTWARE),	UNANTICIPATED	USES	OR	MISUSES,	OR	ERRORS	ON
THE	PART	OF	THE	USER	OR	APPLICATIONS	DESIGNER	(ADVERSE
FACTORS	SUCH	AS	THESE	ARE	HEREAFTER	COLLECTIVELY
TERMED	"SYSTEM	FAILURES").	ANY	APPLICATION	WHERE	A
SYSTEM	FAILURE	WOULD	CREATE	A	RISK	OF	HARM	TO
PROPERTY	OR	PERSONS	(INCLUDING	THE	RISK	OF	BODILY
INJURY	AND	DEATH)	SHOULD	NOT	BE	RELIANT	SOLELY	UPON	ONE
FORM	OF	ELECTRONIC	SYSTEM	DUE	TO	THE	RISK	OF	SYSTEM
FAILURE.	TO	AVOID	DAMAGE,	INJURY,	OR	DEATH,	THE	USER	OR
APPLICATION	DESIGNER	MUST	TAKE	REASONABLY	PRUDENT
STEPS	TO	PROTECT	AGAINST	SYSTEM	FAILURES,	INCLUDING	BUT
NOT	LIMITED	TO	BACK-UP	OR	SHUT	DOWN	MECHANISMS.
BECAUSE	EACH	END-USER	SYSTEM	IS	CUSTOMIZED	AND
DIFFERS	FROM	NATIONAL	INSTRUMENTS'	TESTING	PLATFORMS
AND	BECAUSE	A	USER	OR	APPLICATION	DESIGNER	MAY	USE
NATIONAL	INSTRUMENTS	PRODUCTS	IN	COMBINATION	WITH
OTHER	PRODUCTS	IN	A	MANNER	NOT	EVALUATED	OR
CONTEMPLATED	BY	NATIONAL	INSTRUMENTS,	THE	USER	OR



APPLICATION	DESIGNER	IS	ULTIMATELY	RESPONSIBLE	FOR
VERIFYING	AND	VALIDATING	THE	SUITABILITY	OF	NATIONAL
INSTRUMENTS	PRODUCTS	WHENEVER	NATIONAL	INSTRUMENTS
PRODUCTS	ARE	INCORPORATED	IN	A	SYSTEM	OR	APPLICATION,
INCLUDING,	WITHOUT	LIMITATION,	THE	APPROPRIATE	DESIGN,
PROCESS	AND	SAFETY	LEVEL	OF	SUCH	SYSTEM	OR
APPLICATION.



Technical	Support	and	Professional	Services
Visit	the	following	sections	of	the	National	Instruments	Web	site	at	ni.com
for	technical	support	and	professional	services:

Support—Online	technical	support	resources	at	ni.com/support
include	the	following:

Self-Help	Resources—For	answers	and	solutions,	visit	the
award-winning	National	Instruments	Web	site	for	software
drivers	and	updates,	a	searchable	KnowledgeBase,	product
manuals,	step-by-step	troubleshooting	wizards,	thousands	of
example	programs,	tutorials,	application	notes,	instrument
drivers,	and	so	on.
Free	Technical	Support—All	registered	users	receive	free
Basic	Service,	which	includes	access	to	hundreds	of
Applications	Engineers	worldwide	in	the	NI	Discussion
Forums	at	forums.ni.com.	National	Instruments	Applications
Engineers	make	sure	every	question	receives	an	answer.
For	information	about	other	technical	support	options	in	your
area,	visit	ni.com/services	or	contact	your	local	office	at
ni.com/contact.

Training	and	Certification—Visit	ni.com/training	for	self-paced
training,	eLearning	virtual	classrooms,	interactive	CDs,	and
Certification	program	information.	You	also	can	register	for
instructor-led,	hands-on	courses	at	locations	around	the	world.
System	Integration—If	you	have	time	constraints,	limited	in-house
technical	resources,	or	other	project	challenges,	National
Instruments	Alliance	Partner	members	can	help.	To	learn	more,
call	your	local	NI	office	or	visit	ni.com/alliance.

If	you	searched	ni.com	and	could	not	find	the	answers	you	need,	contact
your	local	office	or	NI	corporate	headquarters.	You	also	can	visit	the
Worldwide	Offices	section	of	ni.com/niglobal	to	access	the	branch	office
Web	sites,	which	provide	up-to-date	contact	information,	support	phone
numbers,	email	addresses,	and	current	events.

javascript:WWW(WWW_Support)
javascript:WWW(WWW_KB)
javascript:WWW(WWW_Manuals)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Service)
javascript:WWW(WWW_Contact)
javascript:WWW(WWW_Customer_Education)
javascript:WWW(WWW_Integration)
javascript:WWW(WWW_Global)


Measurement	&	Automation	Explorer	(MAX)
Configuration	Utility
Use	Measurement	&	Automation	Explorer	(MAX)	configuration	utility	to
configure	your	instrument-independent	test	system.	With	MAX,	you
create	and	configure	IVI	logical	names.	In	your	program,	you	pass	logical
names	to	one	of	the	class	driver	initialize	functions	to	identify	the
instruments	(also	known	as:	hardware	assets)	and	specific	drivers	(also
known	as:	software	modules)	to	use.

Note		MAX	is	not	included	in	the	IVI	Compliance	Package
available	for	download	from	ni.com/idnet.



Branch	Offices
Office Telephone	Number
Australia 1800	300	800
Austria 43	0	662	45	79	90	0
Belgium 32	0	2	757	00	20
Brazil 55	11	3262	3599
Canada 800	433	3488
China 86	21	6555	7838
Czech	Republic 420	224	235	774
Denmark 45	45	76	26	00
Finland 385	0	9	725	725	11
France 33	0	1	48	14	24	24
Germany 49	0	89	741	31	30
India 91	80	41190000
Israel 972	0	3	6393737
Italy 39	02	413091
Japan 81	3	5472	2970
Korea 82	02	3451	3400
Lebanon 961	0	1	33	28	28
Malaysia 1800	887710
Mexico 01	800	010	0793
Netherlands 31	0	348	433	466
New	Zealand 0800	553	322
Norway 47	0	66	90	76	60
Poland 48	22	3390150
Portugal 351	210	311	210
Russia 7	095	783	68	51
Singapore 1800	226	5886
Slovenia 386	3	425	4200



South	Africa 27	0	11	805	8197
Spain 34	91	640	0085
Sweden 46	0	8	587	895	00
Switzerland 41	56	200	51	51
Taiwan 886	02	2377	2222
Thailand 662	278	6777
United	Kingdom 44	0	1635	523545
United	States	(Corporate) 512	683	0100


	National Instruments IVI Driver Help
	Using Help
	Conventions
	Navigating Help (Windows Only)
	Searching Help (Windows Only)
	Printing Help File Topics (Windows Only)

	Related Documentation
	Glossary
	IVI Compliance Package
	What the Setup Program Installs
	IVI Class Drivers
	IVI Engine
	IVI Shared Components


	IVI Driver Help Introduction
	Instrument Driver Overview
	Historical Evolution of Instrument Drivers
	Advantages of IVI Drivers
	IVI Foundation
	IVI Instrument Specific Drivers Overview
	IVI Class Drivers Overview
	Interchangeability
	Using IVI Instrument Drivers

	IVI System Architecture
	Class Driver APIs
	Class Capability Groups
	Inherent IVI Capabilities
	Base Capabilities
	Extension Groups
	Instrument Specific Capabilities
	Class Driver Relationship to Instrument Specific Drivers


	Initial Settings
	Enabling Instrument Simulation
	Class Driver Simulation
	Disabling Unused Extensions
	Interchangeability Checking
	Interchangeability Checking Rules
	Viewing Interchangeability Warnings

	NI Spy

	Configuring Your System Using MAX
	IVI Class Driver Operation
	Using IVI Class Drivers
	Using Class Drivers in LabVIEW
	Using Class Drivers in LabWindows/CVI

	Developing an Instrument Independent Application
	Using Logical Names
	Naming Virtual Channels
	Using High-Level Configuration Functions
	Minimizing the Use of Extension Capability Groups
	Completely Specifying the State of the Instrument
	Using the Development Mode Settings for Inherent Attributes
	Following the Class Behavior Model
	Use MAX to Configure Instrument Specific Attributes

	Analyzing Your Program with NI Spy
	Configuring NI Spy
	Capturing Calls to IVI Class Drivers
	Call Properties

	Verifying Instrument Replacement Candidates
	Developing a Reference Program
	Testing the New Driver in Simulation Mode


	IVI Class Driver Simulation Overview
	Configuring Simulation
	Configuring the Simulation Driver Session

	Interactive Simulation
	VXIplug&play Function Simulation
	Status Code Simulation
	Measurement Data Simulation

	Non-Interactive Simulation
	Advanced Simulation Topics
	Modifying the Simulation Driver
	User-Interface Requirements
	Enabling Simulation after Initializing



	IVI Class Driver Help
	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	Warning Regarding the Use of NI Products

	Technical Support and Professional Services

