
Getting	Started
This	topic	explains	how	to	begin	using	NI-HWS	with	your	application
development	environment	(ADE),	lists	files	to	include	in	your	application,
and	mentions	special	considerations	for	each	ADE.
To	successfully	build	your	application,	you	need	to	install	one	of	the
following	ADEs	along	with	NI-HWS:

LabVIEW
LabWindows™/CVI™
C/C++



Basic	Programming	Flows
The	following	diagrams	show	the	basic	programming	flows	for
applications	using	NI-HWS.
Basic	Write	Programming	Flow Basic	Read	Programming	Flow

The	high-level	Store	and	Retrieve	functions	and	VIs	combine	all	the
above	steps.



NI-HWS	Key	Concepts
Groups,	waveforms,	and	scaling	are	concepts	central	to	the	NI-HWS	API.



Groups
Groups	are	like	folders,	giving	NI-HWS	a	one-level-deep	storage
hierarchy.	A	single	HWS	file	may	contain	multiple	groups.	Each	group
may	contain	multiple	waveforms.	A	group	attribute	applies	to	all	the
waveforms	contained	in	the	group.
When	only	one	group	is	in	a	file,	the	group	does	not	need	to	be	named.	If
a	group	is	named	and	is	the	only	one	in	the	file,	the	name	is	also	not
required	to	access	any	of	the	waveforms	stored	in	that	group.	When	two
or	more	groups	are	in	the	file,	a	group	name	is	required.



Waveforms
A	waveform	is	stored	in	an	HWS	file	as	an	array	of	analog	or	digital	data.
The	elements	in	an	analog	data	array	can	include	the	following	types:

Analog	waveform	data	type	(WDT)
Double-precision	floating-point	number	(F64)
8-bit	signed	integer	(I8)
16-bit	signed	integer	(I16)
32-bit	signed	integer	(I32)

The	elements	in	a	digital	data	array	can	include	the	following	types:
Digital	waveform	data	type	(WDT)
8-bit	unsigned	integer	(U8)
16-bit	unsigned	integer	(U16)
32-bit	unsigned	integer	(U32)
Note		The	Waveform	Data	Type	(WDT)	(supported	in	LabVIEW	versions	7.0	and	later	and	in
the	C	API	for	NI-HWS	1.4	and	later)	is	a	convenient	way	to	manage	data	storage.

You	can	also	save	digital	data	in	a	two-dimensional	array	of	unsigned
integers.	In	this	representation,	you	can	think	of	your	waveform	as	a	table
where	the	columns	represent	samples,	and	the	rows	represent	devices,
as	shown	in	the	following	figure.

Note		Rows	are	contiguous	in	memory.

Waveforms	are	stored	in	groups	with	one	or	more	waveforms	per	group.



A	waveform	attribute	is	intended	to	apply	only	to	its	waveforms,	not	to	the
group.
A	waveform	reference	is	required	to	read	or	write	any	waveform	data	or
attributes.	Waveform	names	are	used	to	obtain	waveform	references.
However,	if	only	one	waveform	is	in	the	group,	the	waveform	name	is	not
needed.	When	two	or	more	waveforms	are	in	a	group,	the	waveform
name	is	required.
Refer	to	Data	Conversion	for	more	information	about	changing	one
waveform	type	to	another.



Data	Conversion
NI-HWS	can	convert	some	waveform	data	from	the	data	type	in	which	it
was	stored	to	a	different	data	type	when	the	data	is	read	or	retrieved.	The
table	below	shows	the	supported	type	conversions.	A	"Yes"	in	a	box
means	that	data	stored	as	one	data	type	can	be	retrieved	as	the	other
data	type;	a	dash	means	the	conversion	is	not	supported.
F64	and	DBL	are	both	used	by	NI-HWS	to	mean	double-precision
floating-point	numbers.



Analog	Data	Types

Stored	Type
Retrieved	Type

Analog
WDT

Analog
I8

Analog
I16

Analog
I32

Analog
F64

Analog
WDT

Yes — — — Yes

Analog
F64

Yes — — — Yes

Analog
I8

Yes Yes Yes Yes Yes

Analog
I16

Yes — Yes Yes Yes

Analog
I32

Yes — — Yes Yes



Digital	Data	Types

Stored	Type
Retrieved	Type

Digital
WDT

Digital
1D	U8

Digital
2D	U8

Digital
1D	U16

Digital
2D	U16

Digital
1D	U32

Digital
2D	U32

Digital
WDT

Yes — — — — — —

Digital
1D	U8

Yes Yes Yes Yes Yes Yes Yes

Digital
2D	U8

Yes — Yes — Yes — Yes

Digital
1D	U16

Yes Yes* Yes* Yes Yes Yes Yes

Digital
2D	U16

Yes — Yes* — Yes — Yes

Digital
1D	U32

Yes Yes* Yes* Yes* Yes* Yes Yes

Digital
2D	U32

Yes — Yes* — Yes* — Yes

*For	digital	waveforms,	smaller	data	types	can	read	larger	data	types	with	the	following	restrictions:	the
data	must	be	mapped	and	all	mapped	bits	must	be	within	the	smaller	data	types	range.

Waveforms	are	stored	in	groups	with	one	or	more	waveforms	per	group.
A	waveform	attribute	is	intended	to	apply	only	to	its	waveforms,	not	to	the
group.
A	waveform	reference	is	required	to	read	or	write	any	waveform	data	or
attributes.	Waveform	names	are	used	to	obtain	waveform	references.
However,	if	only	one	waveform	is	in	the	group,	the	waveform	name	is	not
needed.	When	two	or	more	waveforms	are	in	a	group,	the	waveform
name	is	required.



Scaling
NI-HWS	stores	polynomial	scaling	coefficients	that	are	intended	to	be
applied	to	analog	waveform	data	by	your	application	or	your	hardware.
The	offset	and	gain	parameters	in	the	high-level	store	and	retrieve
functions	and	VIs	are	identical	to	the	first	two	elements	in	the	polynomial
coefficient	scaling	array	in	the	Get	and	Set	Scaling	Coefficients
functions	and	VIs.

Notes		When	analog	data	is	stored	in	an	integer	format,	but	read	back	with	a	floating	point
Read	function	or	VI,	NI-HWS	scales	the	data	before	returning	it.

You	cannot	apply	scaling	to	digital	waveforms.



Using	NI-HWS	in	LabVIEW
This	topic	assumes	that	you	are	using	the	LabVIEW	ADE	and	that	you
are	familiar	with	the	ADE.
To	develop	an	NI-HWS	application	in	LabVIEW,	follow	these	general
steps:

1.	 Open	an	existing	or	new	LabVIEW	VI.
2.	 From	the	Functions	Palette,	locate	the	NI-HWS	VIs	inside	the	NI-

FGEN,	NI-HSDIO,	NI-SCOPE	or	Instrument	Drivers	palettes.
3.	 Select	the	VIs	that	you	want	to	use	and	drop	them	on	the	block

diagram	to	build	your	application.



Using	NI-HWS	in	LabWindows/CVI
This	topic	assumes	that	you	are	using	the	LabWindows/CVI	ADE	to
manage	your	code	development	and	that	you	are	familiar	with	the	ADE.
To	develop	an	NI-HWS	application	in	LabWindows/CVI,	follow	these
general	steps:

1.	 Open	an	existing	or	new	project	file.
2.	 Load	the	NI-HWS	function	panel	(nihws.fp)	from	<CVI>\instr	by

selecting	Instrument»Load.
3.	 Use	the	function	panel	to	navigate	the	function	hierarchy	and

generate	function	calls	with	the	proper	syntax	and	variable	values.



Using	NI-HWS	in	C/C++
This	topic	assumes	that	you	are	using	a	C/C++	ADE	to	manage	your
code	development	and	that	you	are	familiar	with	the	ADE.
To	develop	an	NI-HWS	application	in	C/C++,	follow	these	general	steps:

1.	 Open	an	existing	or	new	C/C++	project.
2.	 Make	sure	that	you	include	the	NI-HWS	header	file	(niHWS.h)	as

follows	in	your	source	code	files:	#include	"niHWS.h"
3.	 Specify	the	directory	that	contains	the	NI-HWS	header	file	under

C/C++»Preprocessor»Additional	include	directories.	The	NI-
HWS	header	files	are	located	in	the	<NI-HWS>\Include	directory.

4.	 Add	the	NI-HWS	import	library	(nihws.lib)	to	the	project	under
Link»General»Object/Library	Modules.	The	NI-HWS	import
library	files	are	located	in	the	<NI-HWS>\Lib	directory.

5.	 Add	NI-HWS	function	calls	to	your	application.
6.	 Build	your	application.

Tip		By	default,	C	passes	parameters	by	value.	Remember	to	pass	pointers	to	variables	when
you	need	to	pass	by	address.



Using	Attributes	with	NI-HWS
NI-HWS	contains	high-level	functions	and	VIs	that	set	most	of	the
waveform	storage	attributes.
Some	attributes,	such	as	the	units	or	the	label	for	a	waveform	axis,	are
not	accessible	through	the	high-level	functions	and	VIs.	The	values	for
these	attributes	must	be	set	using	a	Set	Attribute	function.



Accessing	Attributes
In	LabVIEW,	you	can	access	attributes	with	the	Get	and	Set	Attribute	VIs.
A	pair	of	Get	and	Set	VIs	exists	for	both	the	Group	attributes	and	the
Waveform	attributes.
In	C,	attributes	are	accessed	with	the	Get	and	Set	Attribute	functions.
Refer	to	the	NI-HWS	VI	Reference	or	the	NI-HWS	C	Function	Reference
for	a	complete	listing	of	available	attributes.



Programming
Expand	this	topic	for	information	about	the	NI-HWS	programming	flow,
for	VI	and	C	function	reference	information,	and	for	error	and	status
codes.
VI	Function	Reference
C	Function	Reference

ms-its:niHWS_LV_ref.chm::/nihws_vi_ref.html
ms-its:niHWS_C_ref.chm::/nihws_c_ref.html

