- "
MySQL Connector/Net

Users Guide
Send Feedback

- MySQL Connector/Net

Connector/Net lets you easily develop .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required
ADO.NET interfaces and integrates into ADO.NET aware tools. Developers
can build applications using their choice of .NET languages. Connector/Net is
a fully managed ADO.NET driver written in 100% pure C#.

Connector/Net includes full support for:

Features provided by MySQL Server up to and including MySQL
Server version 5.5.

Large-packet support for sending and receiving rows and BLOBs up to
2 gigabytes in size.

Protocol compression, which enables compressing the data stream
between the client and server.

Connections using TCP/IP sockets, named pipes, or shared memory on
Windows.

Connections using TCP/IP sockets or Unix sockets on Unix.
The Open Source Mono framework developed by Novell.
Fully managed, does not utilize the MySQL client library.

This document is intended as a user's guide to Connector/Net and includes a
full syntax reference. Syntax information is also included within the
Documentation.chm file included with the Connector/Net distribution.

If you are using MySQL 5.0 or later, and Visual Studio as your development
environment, you can also use the MySQL Visual Studio Plugin. The plugin
acts as a DDEX (Data Designer Extensibility) provider: you can use the data
design tools within Visual Studio to manipulate the schema and objects
within a MySQL database. For more information, see [9f3f194e-ad35-4379-
b04d-5dce4b34ceba].

= Note

Connector/Net 5.1.2 and later include the Visual Studio Plugin by default.

supports full versions of Visual Studio 2005, 2008, and 2010, although certain
features are only available in Visual Studio 2010 when using version 6.3.2
and later. Note that does not currently support Express versions of Microsoft
products, including Microsoft Visual Web Developer.

Key topics:

e For connection string properties when using the class, see Connection
Options.

Send comments on this topic to support@oracle.com

Copyright © 2004,2013, Oracle and/or its affiliates. All rights reserved.

mailto:support%40oracle.com?Subject=MySQL Connector/Net
http://www.mysql.com

- "
MySQL Connector/Net

Installation
Send Feedback

- Connector/Net Installation

Connector/Net runs on any platform that supports the .NET framework. The
.NET framework is primarily supported on recent versions of Microsoft
Windows, and is supported on Linux through the Open Source Mono
framework (see http://www.mono-project.com).

Connector/Net is available for download from
http://dev.mysql.com/downloads/connector/net/.

http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/5.2.html

- Installing Connector/Net on Windows
On Windows, installation is supported either through a binary installation
process or by downloading a Zip file with the Connector/Net components.

Before installing, ensure that your system is up to date, including installing
the latest version of the .NET Framework.

- Installing Connector/Net using the Installer

Using the installer is the most straightforward method of installing
Connector/Net on Windows and the installed components include the source
code, test code and full reference documentation.

Connector/Net is installed through the use of a Windows Installer (.msi)
installation package, which can be used to install Connector/Net on all
Windows operating systems. The MSI package in contained within a Zip
archive named mysql-connector-net-version.zip, where indicates the
Connector/Net version.

To install Connector/Net:

1. Double-click the MSI installer file extracted from the Zip you
downloaded. Click Next to start the installation.

2. You must choose the type of installation to perform.

For most situations, the Typical installation is suitable. Click the
Typical button and proceed to Step 5. A Complete installation installs
all the available files. To conduct a Complete installation, click the
Complete button and proceed to step 5. To customize your installation,
including choosing the components to install and some installation
options, click the Custom button and proceed to Step 3.

The Connector/Net installer will register the connector within the
Global Assembly Cache (GAC) - this will make the Connector/Net
component available to all applications, not just those where you
explicitly reference the Connector/Net component. The installer will
also create the necessary links in the Start menu to the documentation
and release notes.

3. If you have chosen a custom installation, you can select the individual
components to install, including the core interface component,
supporting documentation (a CHM file) samples and examples, and the
source code. Select the items, and their installation level, and then click
Next to continue the installation.

= Note

For Connector/Net 1.0.8 or lower and Connector 5.0.4 and lower the
installer will attempt to install binaries for both 1.x and 2.x of the
.NET Framework. If you only have one version of the framework
installed, the connector installation may fail. If this happens, you can
choose the framework version to be installed through the custom
installation step.

4. You will be given a final opportunity to confirm the installation. Click
Install to copy and install the files onto your machine.

5. Once the installation has been completed, click Finish to exit the
installer.

Unless you choose otherwise, Connector/Net is installed in C:\Program
Files\MySQL\MySQL Connector Net X.X.X, where is replaced with the
version of Connector/Net you are installing. New installations do not
overwrite existing versions of Connector/Net.

Depending on your installation type, the installed components will include
some or all of the following components:

e bin: Connector/Net MySQL libraries for different versions of the .NET
environment.

e docs: Connector/Net documentation in CHM format.

e samples: Sample code and applications that use the Connector/Net
component.

e src: The source code for the Connector/Net component.

You may also use the /quiet or /q command-line option with the msiexec tool
to install the Connector/Net package automatically (using the default options)
with no notification to the user. Using this method the user cannot select
options. Additionally, no prompts, messages or dialog boxes will be
displayed.

C:\> msiexec /package connector-net.msi /quiet

To provide a progress bar to the user during automatic installation, use the
/passive option.

- Installing Connector/Net using the Zip packages

If you are having problems running the installer, you can download a Zip file
without an installer as an alternative. That file is called mysql-connector-net-
version-noinstall.zip. Once downloaded, you can extract the files to a
location of your choice.

The file contains the following directories:
¢ bin: Connector/Net MySQL libraries for different versions of the .NET
environment.
¢ Docs: Connector/Net documentation in CHM format.
e Samples: Sample code and applications that use the Connector/Net
component.
Connector/Net 6.0.x has a different directory structure:
e Assemblies: A collection of DLLs that make up the connector
functionality.
¢ Documentation: Connector/Net documentation in CHM format.
e Samples: sample code and applications that use the Connector/Net

component.

There is also another Zip file available for download called mysq]l-
connector-net-version-src.zip. This file contains the source code
distribution.

The file contains the following directories:
¢ Documentation: Source files to build the documentation into the
compiled HTML (CHM) format.
e Installer: Source files to build the Connector/Net installer program.
e MySql.Data: Source files for the core data provider.

e MySql.VisualStudio: Source files for the Microsoft Visual Studio
extensions.

e MySql.Web: Source files for the web providers. This includes code for
the membership provider, role provider and profile provider. These are
used in ASP.NET web sites.

e Samples: Source files for several example applications.
o Tests: A spreadsheet listing test cases.
¢ VisualStudio: Resources used by the Visual Studio plugin.
Finally, ensure that MySql.Data.dll is accessible to your program at build

time (and run time). If using Microsoft Visual Studio, add MySql.Data as a
Reference to your project.

= Note

If using 6.3.5 and above, the MySql.Data file provided will work with
both .NET Framework 2.x and 4.x.

- Installing Connector/Net on Unix with Mono

There is no installer available for installing the Connector/Net component on
your Unix installation. Before installing, please ensure that you have a
working Mono project installation. You can test whether your system has
Mono installed by typing:

shell> mono --version
The version of the Mono JIT compiler is displayed.

To compile C# source code, make sure a Mono C# compiler is installed. Note
that there are two Mono C# compilers available, mcs, which accesses the 1.0-
profile libraries, and gmcs, which accesses the 2.0-profile libraries.

To install Connector/Net on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the
contents to a directory of your choice, for example: ~/connector-net/.

2. In the directory where you unzipped the connector to, change into the
bin directory. Ensure the file MySql.Data.dll is present.

3. You must register the Connector/Net component, MySql.Data, in the
Global Assembly Cache (GAC). In the current directory enter the
gacutil command:

root-shell> gacutil /i MySql.Data.dll

This will register MySql.Data into the GAC. You can check this by
listing the contents of /usr/lib/mono/gac, where you will find
MySql.Data if the registration has been successful.

You are now ready to compile your application. You must ensure that when
you compile your application you include the Connector/Net component
using the command-line option. For example:

shell> gmcs -r:System.dll -r:System.Data.dll -
r:MySqgl.Data.dll HelloWorld.cs

Note, the assemblies that are referenced depend on the requirements of the
application, but applications using Connector/Net must provide as a
minimum.

You can further check your installation by running the compiled program, for
example:

shell> mono Helloworld.exe

- Installing Connector/Net from the source code

Obtaining the source code

To obtain the most recent development source tree, you first need to
download and install Bazaar. You can obtain Bazaar from the Bazaar VCS
Website. Bazaar is supported by any platform that supports Python, and is
therefore compatible with any Linux, Unix, Windows or Mac OS X host.
Instructions for downloading and installing Bazaar on the different platforms
are available on the Bazaar Web site.

The most recent development source tree is available from our public
Subversion trees at http://dev.mysqgl.com/tech-resources/sources.html.

To check out out the Connector/Net sources, change to the directory where
you want the copy of the Connector/Net tree to be stored, then use the
following command:

shell> bzr branch lp:connectornet/trunk

To download a specific version of Connector/Net, specify the version number
instead of trunk. For example, to obtain a copy of the 6.0 version of the
source tree:

shell> bzr branch lp:connectornet/6.0
Source packages are also available on the downloads page.
Building the source code on Windows
The following procedure can be used to build the connector on Microsoft
Windows.
¢ Obtain the source code, either from the Subversion server, or through
one of the prepared source code packages.
e Navigate to the root of the source code tree.

e A Microsoft Visual Studio 2005 solution file is available to build the
connector, this is called MySQL-VS2005.sIn. Click this file to load the
solution into Visual Studio.

e Select Build, Build Solution from the main menu to build the solution.

http://bazaar-vcs.org
http://dev.mysql.com/tech-resources/sources.html

Building the source code on Unix

Support for building Connector/Net on Mono/Unix is currently not available.

Send comments on this topic to support@oracle.com

Copyright © 2004,2013, Oracle and/or its affiliates. All rights reserved.

mailto:support%40oracle.com?Subject=MySQL Connector/Net
http://www.mysql.com

- "
MySQL Connector/Net

Programming
Send Feedback

- Connector/Net Programming

Connector/Net comprises several classes that are used to connect to the
database, execute queries and statements, and manage query results.

The following are the major classes of Connector/Net:

MySqglCommand: Represents an SQL statement to execute against a
MySQL database.

MySqlCommandBuilder: Automatically generates single-table
commands used to reconcile changes made to a DataSet with the
associated MySQL database.

MySqlConnection: Represents an open connection to a MySQL Server
database.

MySqglDataAdapter: Represents a set of data commands and a database
connection that are used to fill a data set and update a MySQL database.

MySqglDataReader: Provides a means of reading a forward-only stream
of rows from a MySQL database.

MySqlException: The exception that is thrown when MySQL returns an
error.

MySqlHelper: Helper class that makes it easier to work with the
provider.

MySgqlTransaction: Represents an SQL transaction to be made in a
MySQL database.

In the following sections you will learn about some common use cases for
Connector/Net, including BLOB handling, date handling, and using
Connector/Net with common tools such as Crystal Reports.

- Connecting to MySQL Using Connector/Net

Introduction

All interaction between a .NET application and the MySQL server is routed
through a MySqglConnection object. Before your application can interact with
the server, a MySqlConnection object must be instanced, configured, and
opened.

Even when using the MySqlHelper class, a MySglConnection object is
created by the helper class.

In this section, we will describe how to connect to MySQL using the
MySqglConnection object.

- Creating a Connector/Net Connection String

The MySqlConnection object is configured using a connection string. A
connection string contains several key/value pairs, separated by semicolons.
Each key/value pair is joined with an equal sign.

The following is a sample connection string:
Server=127.0.0.1;Uid=root;Pwd=12345; Database=test;

In this example, the MySqlConnection object is configured to connect to a
MySQL server at 127.0.0.1, with a user name of root and a password of
12345. The default database for all statements will be the test database. All
other options may be found here: Connection Options.

= Note

Using the '@' symbol for parameters is now the preferred approach
although the old pattern of using '?" is still supported.

Please be aware however that using '@' can cause conflicts when user
variables are also used. To help with this situation please see the
documentation on the Allow User Variables connection string option,
which can be found here: Connection Options. The Old Syntax connection
string option has now been deprecated.

- Opening a Connection

Once you have created a connection string it can be used to open a connection
to the MySQL server.

The following code is used to create a MySqlConnection object, assign the
connection string, and open the connection.

Connector/NET can also connect using the native Windows authentication
plugin. See Using the Windows Native Authentication Plugin for further
information.

sac

Dim conn As New MySqgl.Data.MySqglClient.MySqlConnecti
Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& '"database=test;"

Try
conn.ConnectionString = myConnectionString
conn.Open()

Catch ex As MySqgl.Data.MySqglClient.MySqlException
MessageBox.Show(ex.Message)

End Try
=2 Copy
MySqgl.Data.MySqglClient.MySqglConnection conn;
string myConnectionString;
myConnectionString = "server=127.0.0.1;uid=root;" +

"pwd=12345;database=test;";

try

conn = new MySqgl.Data.MySqglClient.MySqglConnectio
conn.ConnectionString = myConnectionString;
conn.Open();

¥
catch (MySql.Data.MySqlClient.MySqlException ex)

{
}

MessageBox.Show(ex.Message);

You can also pass the connection string to the constructor of the
MySqglConnection class:

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& '"database=test;"

Try
Dim conn As New MySqgl.Data.MySqlClient.MySqlConn
conn.Open()

Catch ex As MySqgl.Data.MySqglClient.MySqlException
MessageBox.Show(ex.Message)

End Try

MySqgl.Data.MySqglClient.MySqglConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySqgl.Data.MySqglClient.MySqglConnectio
conn.Open();

¥
catch (MySql.Data.MySqlClient.MySqlException ex)

{
}

MessageBox.Show(ex.Message);

Once the connection is open it can be used by the other Connector/Net classes
to communicate with the MySQL server.

- Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to
add error handling to your .NET application. When there is an error
connecting, the MySqlConnection class will return a MySqlException object.
This object has two properties that are of interest when handling errors:

e Message: A message that describes the current exception.

e Number: The MySQL error number.

When handling errors, you can your application's response based on the error
number. The two most common error numbers when connecting are as
follows:

e (): Cannot connect to server.

e 1045: Invalid user name and/or password.

The following code shows how to adapt the application's response based on
the actual error:

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& '"database=test;"

Try
Dim conn As New MySqgl.Data.MySqglClient.MySqlConn
conn.Open()
Catch ex As MySqgl.Data.MySqglClient.MySqlException
Select Case ex.Number
Case 0
MessageBox.Show("Cannot connect to serve
Case 1045

MessageBox.Show("Invalid username/passwo
End Select
End Try

MySqgl.Data.MySqglClient.MySqglConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{
conn = new MySql.Data.MySqlClient.MySglConnectio
conn.Open();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
switch (ex.Number)
{
case 0:
MessageBox.Show("Cannot connect to serve
case 1045:
MessageBox.Show("Invalid username/passwo
}
}
4 Important

Note that if you are using multilanguage databases you must specify the
character set in the connection string. If you do not specify the character
set, the connection defaults to the latin1 charset. You can specify the
character set as part of the connection string, for example:

MySqlConnection myConnection = new MySqlConnection(™

"pwd=12345;database=test;Charset=1latini;");

- Using GetSchema on a Connection

The GetSchema() method of the connection object can be used to retrieve
schema information about the database currently connected to. The schema
information is returned in the form of a DataTable. The schema information is
organized into a number of collections. Different forms of the GetSchema()
method can be used depending on the information required. There are three
forms of the GetSchema() method:

e GetSchema() - This call will return a list of available collections.

e GetSchema(String) - This call returns information about the collection
named in the string parameter. If the string is used then a list of all
available collections is returned. This is the same as calling
GetSchema() without any parameters.

e GetSchema(String, String[]) - In this call the first string parameter
represents the collection name, and the second parameter represents a
string array of restriction values. Restriction values limit the amount of
data that will be returned. Restriction values are explained in more
detail in the Microsoft .NET documentation.

http://msdn.microsoft.com/en-us/library/ms254934(VS.80).aspx

- Collections
The collections can be broadly grouped into two types: collections that are
common to all data providers, and collections specific to a particular provider.
Common

The following collections are common to all data providers:

MetaDataCollections

DataSourcelnformation

DataTypes
Restrictions

ReservedWords

Provider-specific
The following are the collections currently provided by , in addition to the
common collections above:
e Databases
e Tables
e Columns
e Users
e Foreign Keys
e IndexColumns
e Indexes
¢ Foreign Key Columns
e UDF
e Views
¢ ViewColumns

e Procedure Parameters

e Procedures

e Triggers

Example Code

A list of available collections can be obtained using the following code:

using System;

using System.Data;

using System.Text;

using MySql.Data;

using MySql.Data.MySqlClient;

namespace ConsoleApplication2

{
class Program
{
private static void DisplayData(System.Data.l
{
foreach (System.Data.DataRow row in tabl
{
foreach (System.Data.DataColumn col
{
Console.WriteLine("{0} = {1}", ci
}
Console_WriteLine("::::::::::::::::::
}
}
static void Main(string[] args)
{
string connStr = "server=localhost;user=

MySqlConnection conn = new MySqglConnecti

try

Console.WritelLine("Connecting to MySl
conn.Open();

DataTable table = conn.GetSchema("Me
//DataTable table = conn.GetSchema("l

DisplayData(table);
conn.Close();
gatch (Exception ex)
i Console.WritelLine(ex.ToString());

Console.WritelLine('"Done.");

Further information on the GetSchema() method and schema collections can
be found in the Microsoft .NET documentation.

http://msdn.microsoft.com/en-us/library/kcax58fh(VS.80).aspx

- Using MySqlCommand

A MySqglCommand has the CommandText and CommandType properties
associated with it. The CommandText will be handled differently depending
on the setting of CommandType. CommandType can be one of:

1. Text - A SQL text command (default)
2. StoredProcedure - The name of a Stored Procedure

3. TableDirect - The name of a table (new in Connector/Net 6.2)

The default CommandType, Text, is used for executing queries and other
SQL commands. Some example of this can be found in the following section

The MySqlCommand Obiject.

If CommandType is set to StoredProcedure, set CommandText to the name of
the Stored Procedure to access.

If CommandType is set to TableDirect, all rows and columns of the named
table will be returned when you call one of the Execute methods. In effect,
this command performs a SELECT * on the table specified. The
CommandText property is set to the name of the table to query. This is
illustrated by the following code snippet:

=2 Copy

MySqlCommand cmd = new MySqglCommand();
cmd.CommandText = "mytable";

cmd.Connection = someConnection;
cmd.CommandType = CommandType.TableDirect;
MySqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())

{
Console.WritelLn(reader[0], reader[1l]...);

}

Examples of using the CommandType of StoredProcedure can be found in the

section Accessing Stored Procedures with Connector/Net.

Commands can have a timeout associated with them. This is useful as you
may not want a situation were a command takes up an excessive amount of
time. A timeout can be set using the CommandTimeout property. The
following code snippet sets a timeout of one minute:

MySqlCommand cmd = new MySqglCommand();
cmd.CommandTimeout = 60;

The default value is 30 seconds. Avoid a value of 0, which indicates an
indefinite wait. To change the default command timeout, use the connection
string option Default Command Timeout.

Prior to 6.2, MySqlCommand.CommandTimeout included user processing
time, that is processing time not related to direct use of the connector.
Timeout was implemented through a .NET Timer, that triggered after
CommandTimeout seconds. This timer consumed a thread.

6.2 introduced timeouts that are aligned with how Microsoft handles
SqlCommand.CommandTimeout. This property is the cumulative timeout for
all network reads and writes during command execution or processing of the
results. A timeout can still occur in the MySqlReader.Read method after the
first row is returned, and does not include user processing time, only 10
operations. The 6.2 implementation uses the underlying stream timeout
facility, so is more efficient in that it does not require the additional timer
thread as was the case with the previous implementation.

Further details on this can be found in the relevant Microsoft documentation.

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlcommand.commandtimeout.aspx

- Using Connector/Net with Connection Pooling

The Connector/Net supports connection pooling. This is enabled by default.
You can turn it off or adjust its performance characteristics using the
connection string options Pooling, Connection Reset, Connection Lifetime,
Cache Server Properties, Max Pool Size and Min Pool Size. See Creating a
Connector/Net Connection String for further information.

Connection pooling works by keeping the native connection to the server live
when the client disposes of a MySqlConnection. Subsequently, if a new
MySqglConnection object is opened, it will be created from the connection
pool, rather than creating a new native connection. This improves
performance.

To work as designed, it is best to let the connection pooling system manage
all connections. Do not create a globally accessible instance of
MySqglConnection and then manually open and close it. This interferes with
the way the pooling works and can lead to unpredictable results or even
exceptions.

One approach that simplifies things is to avoid manually creating a
MySqglConnection object. Instead use the overloaded methods that take a
connection string as an argument. Using this approach, Connector/Net will
automatically create, open, close and destroy connections, using the
connection pooling system for best performance.

Typed Datasets and the MembershipProvider and RoleProvider classes use
this approach. Most classes that have methods that take a MySglConnection
as an argument, also have methods that take a connection string as an
argument. This includes MySqlDataAdapter.

Instead of manually creating MySglCommand objects, you can use the static
methods of the MySqlHelper class. These take a connection string as an
argument, and they fully support connection pooling.

Starting with 6.2, there is a background job that runs every three minutes and
removes connections from pool that have been idle (unused) for more than
three minutes. The pool cleanup frees resources on both client and server
side. This is because on the client side every connection uses a socket, and on
the server side every connection uses a socket and a thread.

Prior to this change, connections were never removed from the pool, and the
pool always contained the peak number of open connections. For example, a
web application that peaked at 1000 concurrent database connections would
consume 1000 threads and 1000 open sockets at the server, without ever
freeing up those resources from the connection pool. Note, connections, no
matter how old, will not be closed if the number of connections in the pool is
less than or equal to the value set by the Min Pool Size connection string
parameter.

- Using the Windows Native Authentication Plugin

Connector/Net applications can authenticate to a MySQL server using the
Windows Native Authentication Plugin as of Connector/NET 6.4.4 and
MySQL 5.5.16. Users who have logged in to Windows can connect from
MySQL client programs to the server based on the information in their
environment without specifying an additional password. For background and
usage information about the authentication plugin, see, [windows-
authentication-plugin].

The interface matches the object. To enable, pass in Integrated Security to the
connection string with a value of yes or sspi.

Passing in a user ID is optional. When Windows authentication is set up, a
MySQL user is created and configured to be used by Windows authentication.
By default, this user ID is named auth_windows, but can be defined using a
different name. If the default name is used, then passing the user ID to the
connection string from Connector/NET is optional, because it will use the
auth_windows user. Otherwise, the name must be passed to the using the
standard user ID element.

- Using Connector/Net with Table Caching

This feature exists with Connector/NET versions 6.4 and above.

Table caching is a feature that can be used to cache slow-changing datasets on
the client side. This is useful for applications that are designed to use readers,
but still want to minimize trips to the server for slow-changing tables.

This feature is transparent to the application, and is disabled by default.

¢ To enable table caching, add 'table cache = true' to the connection string.

e Optionally, specify the 'Default Table Cache Age' connection string
option, which represents the number of seconds a table is cached before
the cached data is discarded. The default value is 60.

¢ You can turn caching on and off and set caching options at runtime, on a
per-command basis.

- Using the Connector/Net with Prepared Statements

Introduction

As of MySQL 4.1, it is possible to use prepared statements with
Connector/Net. Use of prepared statements can provide significant
performance improvements on queries that are executed more than once.

Prepared execution is faster than direct execution for statements executed
more than once, primarily because the query is parsed only once. In the case
of direct execution, the query is parsed every time it is executed. Prepared
execution also can provide a reduction of network traffic because for each
execution of the prepared statement, it is necessary only to send the data for
the parameters.

Another advantage of prepared statements is that it uses a binary protocol that
makes data transfer between client and server more efficient.

- Preparing Statements in Connector/Net

To prepare a statement, create a command object and set the .CommandText
property to your query.

After entering your statement, call the .Prepare method of the
MySqglCommand object. After the statement is prepared, add parameters for
each of the dynamic elements in the query.

After you enter your query and enter parameters, execute the statement using
the .ExecuteNonQuery(), .ExecuteScalar(), or .ExecuteReader methods.

For subsequent executions, you need only modify the values of the
parameters and call the execute method again, there is no need to set the
.CommandText property or redefine the parameters.

Dim conn As New MySglConnection
Dim cmd As New MySqglCommand

conn.ConnectionString = strConnection

Try

conn.Open()

cmd.

cmd.
cmd.

cmd.
cmd.

For

Connection = conn

CommandText = "INSERT INTO myTable VALUES(NUL
Prepare()

Parameters.AddwithValue("@number", 1)
Parameters.AddwithValue("@text", "One'")

1 =1 To 1000
cmd.Parameters("@number").vValue = 1
cmd.Parameters("@text").Value = "A string val

cmd.ExecuteNonQuery()

Next

Catch ex As MySqglException
MessageBox.Show("Error " & ex.Number & " has occ
End Try

MySqgl.Data.MySqglClient.MySqglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;

conn = new MySql.Data.MySqlClient.MySqglConnection();
cmd = new MySqgl.Data.MySqglClient.MySqlCommand();

conn.ConnectionString = strConnection;
try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "INSERT INTO myTable VALUES(NU
cmd.Prepare();

cmd.Parameters.AddwithvValue("@number", 1);
cmd.Parameters.Addwithvalue("@text", "One");

for (int i=1; i <= 1000; i++)

{
cmd.Parameters["@number"].Value = 1i;
cmd.Parameters["@text"].value = "A string va.
cmd.ExecuteNonQuery();

}

}
catch (MySql.Data.MySqlClient.MySqlException ex)

{

MessageBox.Show("Error " + ex.Number + " has occ
"Error", MessageBoxButtons.OK, MessageBoxIco

- Accessing Stored Procedures with Connector/Net

Introduction

MySQL server version 5 and up supports stored procedures with the SQL
2003 stored procedure syntax.

A stored procedure is a set of SQL statements that is stored in the server.
Clients make a single call to the stored procedure, passing parameters that can
influence the procedure logic and query conditions, rather than issuing
individual hardcoded SQL statements.

Stored procedures can be particularly useful in situations such as the
following:

e Stored procedures can act as an API or abstraction layer, allowing
multiple client applications to perform the same database operations.
The applications can be written in different languages and run on
different platforms. The applications do not need to hardcode table and
column names, complicated queries, and so on. When you extend and
optimize the queries in a stored procedure, all the applications that call
the procedure automatically receive the benefits.

e When security is paramount, stored procedures keep applications from
directly manipulating tables, or even knowing details such as table and
column names. Banks, for example, use stored procedures for all
common operations. This provides a consistent and secure environment,
and procedures can ensure that each operation is properly logged. In
such a setup, applications and users would not get any access to the
database tables directly, but can only execute specific stored procedures.

Connector/Net supports the calling of stored procedures through the
MySqlCommand object. Data can be passed in and out of a MySQL stored
procedure through use of the MySqlCommand.Parameters collection.

= Note

When you call a stored procedure, the command object makes an
additional SELECT call to determine the parameters of the stored
procedure. You must ensure that the user calling the procedure has the

SELECT privilege on the mysql.proc table to enable them to verify the
parameters. Failure to do this will result in an error when calling the
procedure.

This section will not provide in-depth information on creating Stored
Procedures. For such information, please refer to
http://dev.mysql.com/doc/;mysqgl/en/stored-routines.html.

A sample application demonstrating how to use stored procedures with
Connector/Net can be found in the Samples directory of your Connector/Net
installation.

http://dev.mysql.com/doc/;mysql/en/stored-routines.html

- Using Stored Routines from Connector/Net

Stored procedures in MySQL can be created using a variety of tools. First,
stored procedures can be created using the command-line client. Second,
stored procedures can be created using workbench. Finally, stored procedures
can be created using the .ExecuteNonQuery method of the MySqlCommand
object.

Unlike the command-line and GUI clients, you are not required to specify a
special delimiter when creating stored procedures in Connector/Net.

To call a stored procedure using Connector/Net, you create a
MySqglCommand object and pass the stored procedure name as the
.CommandText property. You then set the .CommandType property to
CommandType.StoredProcedure.

After the stored procedure is named, you create one MySqlCommand
parameter for every parameter in the stored procedure. IN parameters are
defined with the parameter name and the object containing the value, OUT
parameters are defined with the parameter name and the data type that is
expected to be returned. All parameters need the parameter direction defined.

After defining the parameters, you call the stored procedure by using the
MySglCommand.ExecuteNonQuery() method.

Once the stored procedure is called, the values of the output parameters can
be retrieved by using the .Value property of the MySqlConnector.Parameters
collection.

= Note

When a stored procedure is called using MySqlCommand.ExecuteReader,
and the stored procedure has output parameters, the output parameters are
only set after the MySqlDataReader returned by ExecuteReader is closed.

The following C# example code demonstrates the use of stored procedures. It
assumes the database 'employees' has already been created:

C#

using System;

using System.Collections.Generic;
using System.Ling;
using System.Text;

using System.Data;
using MySql.Data;
using MySql.Data.MySqlClient;

namespace UsingStoredRoutines

{

class Program

{

static void Main(string[]

{

MySglConnection conn
conn.ConnectionString

args)

new MySqglConnectit

= "server=localhos

MySglCommand cmd = new MySqlCommand();

try
{

Console.WriteLine("Connecting to MySl

conn.Open();

cmd.Connection = conn;

cmd.CommandText =

"DROP PROCEDURE IF

cmd.ExecuteNonQuery();

cmd.CommandText =

"DROP TABLE IF EXI:

cmd.ExecuteNonQuery();

cmd.CommandText =

"CREATE TABLE emp

cmd.ExecuteNonQuery();

cmd.CommandText =

"CREATE PROCEDURE
"IN fname VARCHAR(:
"BEGIN INSERT INTO
"VALUES(fname, lnal

cmd.ExecuteNonQuery();

}

catch (MySqlException ex)

{

Console.WriteLine ("Error " + ex.Numl

}

conn.Close();
Console.WriteLine("Connection closed.");

try
{

Console.WritelLine("Connecting to MySl
conn.Open();

cmd.

cmd.
cmd.

cmd.
cmd.

cmd.
cmd.

cmd.
cmd.

cmd.
cmd.

cmd.

Connection = conn;

CommandText
CommandType

"add_emp";
CommandType.Storedl

Parameters.AddwithValue("@lname"
Parameters["@lname"].Direction =

Parameters.AddwithValue("@fname"
Parameters["@fname"].Direction =

Parameters.AddwithValue("@bday",
Parameters["@bday"].Direction =

Parameters.AddwithValue("@empno"
Parameters["@empno"].Direction =

ExecuteNonQuery();

Console.WriteLine("Employee number:
Console.WritelLine("Birthday: " + cmd

}

catch (MySql.Data.MySqlClient.MySqlExcep

{

Console.WriteLine("Error " + ex.Numb

}

conn.Close();
Console.WritelLine('"Done.");

The following code shows the same application in Visual Basic:

Visual Basic

- Handling BLOB Data With Connector/Net

One common use for MySQL is the storage of binary data in BLOB columns.
MySQL supports four different BLOB data types: TINYBLOB, BLOB,
MEDIUMBLOB, and LONGBLOB, all described in [blob] and [storage-
requirements].

Data stored in a BLOB column can be accessed using Connector/Net and
manipulated using client-side code. There are no special requirements for
using Connector/Net with BLOB data.

Simple code examples will be presented within this section, and a full sample
application can be found in the Samples directory of the Connector/Net
installation.

- Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server.
Let's start by creating a table to be accessed. In my file tables, I usually have
four columns: an AUTO_INCREMENT column of appropriate size
(UNSIGNED SMALLINT) to serve as a primary key to identify the file, a
VARCHAR column that stores the file name, an UNSIGNED MEDIUMINT
column that stores the size of the file, and a MEDIUMBLOB column that
stores the file itself. For this example, I will use the following table
definition:

CREATE TABLE file(

file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PR
file_name VARCHAR(64) NOT NULL,

file_size MEDIUMINT UNSIGNED NOT NULL,

file MEDIUMBLOB NOT NULL);

After creating a table, you might need to modify the max_allowed_packet
system variable. This variable determines how large of a packet (that is, a
single row) can be sent to the MySQL server. By default, the server only
accepts a maximum size of 1MB from the client application. If you intend to
exceed 1MB in your file transfers, increase this number.

The max_allowed_packet option can be modified using MySQL
Administrator's Startup Variables screen. Adjust the Maximum permitted
option in the Memory section of the Networking tab to an appropriate setting.
After adjusting the value, click the Apply Changes button and restart the
server using the Service Control screen of MySQL Administrator. You can
also adjust this value directly in the my.cnf file (add a line that reads
max_allowed_packet=xxM), or use the SET max_allowed_packet=xxM;
syntax from within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of
BLOB data can take some time to complete. Try to set a value that will be
adequate for your intended use and increase the value if necessary.

- Writing a File to the Database

To write a file to a database, we need to convert the file to a byte array, then
use the byte array as a parameter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte
array, and inserts it into the file table:

Dim
Dim
Dim
Dim
Dim
Dim

conn As New MySglConnection
cmd As New MySqlCommand

SQL As String
FileSize As UInt32

rawData() As Byte
fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _

Try

& "uid=root;" _
& "pwd=12345;" _
& "database=test"

fs = New FileStream('"c:\image.png", FileMode.Ope
FileSize = fs.Length

rawData = New Byte(FileSize) {}

fs.Read(rawbData, 0, FileSize)

fs.Close()

conn.Open()

SQL = "INSERT INTO file VALUES(NULL, @FileName, ¢
cmd.Connection = conn

cmd.CommandText = SQL
cmd.Parameters.AddwithValue("@FileName", strFile

cmd.Parameters.AddwithvValue("@F1ileSize", FileSiz
cmd.Parameters.Addwithvalue("@F1ile", rawData)

cmd.ExecuteNonQuery()

MessageBox.Show("File Inserted into database suc
"Success!", MessageBoxButtons.OK, MessageBoxIcon

conn.Close()
Catch ex As Exception
MessageBox.Show("There was an error: " & ex.Messi
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

MySqgl.Data.MySqglClient.MySqglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;

conn = new MySql.Data.MySqlClient.MySqglConnection();
cmd = new MySqgl.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;"
"pwd=12345;database=test;";

try

{ |
fs = new FileStream(@"c:\image.png", FileMode.Op
FileSize = fs.Length;

rawData = new byte[FileSize];
fs.Read(rawbData, 0, FileSize);
fs.Close();

}

conn.Open();

sQL

cmd.
cmd.
cmd.
cmd.
cmd.

cmd.

= "INSERT INTO file VALUES(NULL, @FileName, (

Connection = conn;

CommandText = SQL;
Parameters.AddwithValue("@FileName", strFile
Parameters.AddwithvValue("@FileSize", FileSiz
Parameters.Addwithvalue("@File", rawData);

ExecuteNonQuery();

MessageBox.Show("File Inserted into database suc

"Success!", MessageBoxButtons.OK, MessageBox:

conn.Close();

catch (MySql.Data.MySqlClient.MySqlException ex)

{

}

MessageBox.Show("Error " + ex.Number + " has occ

"Error'", MessageBoxButtons.OK, MessageBoxIco

The Read method of the FileStream object is used to load the file into a byte
array which is sized according to the Length property of the FileStream

object.

After assigning the byte array as a parameter of the MySqlCommand object,
the ExecuteNonQuery method is called and the BLOB is inserted into the file

table.

- Reading a BLOB from the Database to a File on Disk

Once a file is loaded into the file table, we can use the MySqlDataReader
class to retrieve it.

The following code retrieves a row from the file table, then loads the data into
a FileStream object to be written to disk:

Dim conn As New MySglConnection
Dim cmd As New MySqglCommand
Dim myData As MySqglDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream
conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"
SQL = "SELECT file_name, file_size, file FROM file"
Try

conn.Open()

cmd.Connection = conn
cmd.CommandText = SQL

myData = cmd.ExecuteReader
If Not myData.HasRows Then Throw New Exception('
myData.Read()

FileSize = myData.GetUInt32(myData.GetOrdinal("f
rawData = New Byte(FileSize) {}

myData.GetBytes(myData.GetOrdinal("file"), 0, rai

fs = New FileStream("C:\newfile.png", FileMode.OQ|
fs.Write(rawData, 0, FileSize)
fs.Close()

MessageBox.Show("File successfully written to di

myData.Close()

conn.Close()
Catch ex As Exception

MessageBox.Show("There was an error: " & ex.Messi
End Try

MySql.Data.MySqlClient.MySglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;

conn = new MySql.Data.MySqlClient.MySqglConnection();
cmd = new MySqgl.Data.MySqglClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;"
"pwd=12345;database=test;";

SQL = "SELECT file_name, file_size, file FROM file";
try
{

conn.Open();

cmd.Connection = conn;

cmd.CommandText = SQL;
myData = cmd.ExecuteReader();

if (! myData.HasRows)
throw new Exception("There are no BLOBs to si

myData.Read();

FileSize = myData.GetUInt32(myData.GetOrdinal("f
rawData = new byte[FileSize];

myData.GetBytes(myData.GetOrdinal("file"), 0, rai

fs = new FileStream(@"C:\newfile.png", FileMode.!
fs.Write(rawData, 0, (int)FileSize);
fs.Close();

MessageBox.Show("File successfully written to di
"Success!", MessageBoxButtons.OK, MessageBox:

myData.Close();
conn.Close();

¥
catch (MySql.Data.MySqlClient.MySqlException ex)

{

MessageBox.Show("Error " + ex.Number + " has occ
"Error'", MessageBoxButtons.OK, MessageBoxIco

}

After connecting, the contents of the file table are loaded into a
MySqlDataReader object. The GetBytes method of the MySqlDataReader is
used to load the BLOB into a byte array, which is then written to disk using a
FileStream object.

The GetOrdinal method of the MySqglDataReader can be used to determine
the integer index of a named column. Use of the GetOrdinal method prevents
errors if the column order of the SELECT query is changed.

- Using the Connector/Net Interceptor Classes

An interceptor is a software design pattern that provides a transparent way to
extend or modify some aspect of a program, similar to a user exit. No
recompiling is required. With Connector/Net, the interceptors are enabled and
disabled by updating the connection string to refer to different sets of
interceptor classes that you instantiate.

Connector/Net includes the following interceptor classes:

e The lets you perform additional operations when a program issues a
SQL command. For example, you can examine the SQL statement for
logging or debugging purposes, substitute your own result set to
implement a caching mechanism, and so on. Depending on the use case,
your code can supplement the SQL. command or replace it entirely.

The BaseCommandInterceptor class has these methods that you can

override:

public
public
public
public

virtual bool ExecuteScalar(string sql, ref
virtual bool ExecuteNonQuery(string sql, r
virtual bool ExecuteReader(string sql, Com
virtual void Init(MySqglConnection connecti

If your interceptor overrides one of the Execute... methods, set the
returnValue output parameter and return true if you handled the event,
or false if you did not handle the event. The SQL command is processed
normally only when all command interceptors return false.

The connection passed to the Init method is the connection that is
attached to this interceptor.

e The lets you perform additional operations when a program encounters
a SQL exception. The exception interception mechanism is modeled
after the Connector/J model. You can code an interceptor class and
connect it to an existing program without recompiling, and intercept
exceptions when they are created. You can then change the exception
type and optionally attach information to it. This capability lets you turn

on and off logging and debugging code without hardcoding anything in
the application. This technique applies to exceptions raised at the SQL
level, not to lower-level system or I/O errors.

You develop an exception interceptor first by creating a subclass of the
BaseExceptionInterceptor class. You must override the
InterceptException() method. You can also override the Init() method to
do some one-time initialization.

Each exception interceptor has 2 methods:

public abstract Exception InterceptException(Exce
MySqglConnection connection);
public virtual void Init(MySglConnection connecti

The connection passed to Init() is the connection that is attached to this
interceptor.

Each interceptor is required to override InterceptException and return
an exception. It can return the exception it is given, or it can wrap it in a
new exception. We currently do not offer the ability to suppress the
exception.

Here are examples of using the FQN (fully qualified name) on the connection
string;:

MySqglConnection c1 = new MySglConnection(@"server=1o
commandinterceptors=CommandApp.MyCommandInterceptor, !

MySqglConnection c2 = new MySglConnection(@"server=1lo
exceptioninterceptors=ExceptionStackTraceTest.MyExce

In this example, the command interceptor is called
CommandApp.MyCommandInterceptor and exists in the CommandApp
assembly. The exception interceptor is called

ExceptionStackTraceTest. MyExceptionInterceptor and exists in the
ExceptionStackTraceTest assembly.

To shorten the connection string, you can register your exception interceptors
in your app.config or web.config file like this:

Once you have done that, your connection strings can look like these:

MySqglConnection c1 = new MySglConnection(@"server=1lo
commandinterceptors=myC");

MySqglConnection c2 = new MySglConnection(@"server=1lo
exceptioninterceptors=myE");

- Handling Date and Time Information in Connector/Net

Introduction

MySQL and the .NET languages handle date and time information differently,
with MySQL allowing dates that cannot be represented by a .NET data type,
such as '0000-00-00 00:00:00'". These differences can cause problems if not
properly handled.

The following sections demonstrate how to properly handle date and time
information when using Connector/Net.

- Fractional Seconds

Connector/Net 6.5 and higher support the fractional seconds feature
introduced in MySQL 5.6.4. Fractional seconds could always be specified in
a date literal or passed back and forth as parameters and return values, but the
fractional part was always stripped off when stored in a table column. In
MySQL 5.6.4 and higher, the fractional part is now preserved in data stored
and retrieved through SQL. For fractional second handling in MySQL 5.6.4
and higher, see [refman-5.6:fractional-seconds]. For the behavior of
fractional seconds prior to MySQL 5.6.4, see [refman-5.5:fractional-
seconds].

To use the more precise date and time types, specify a value from 1 to 6 when
creating the table column, for example TIME(3) or DATETIME(6),
representing the number of digits of precision after the decimal point.
Specifying a precision of 0 leaves the fractional part out entirely. In your C#
or Visual Basic code, refer to the Millisecond member to retrieve the
fractional second value from the MySqlDateTime object returned by the
GetMySqglDateTime function. The DateTime object returned by the
GetDateTime function also contains the fractional value, but only the first 3
digits.

For related code examples, see the following blog post:

https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support

https://blogs.oracle.com/MySqlOnWindows/entry/milliseconds_value_support_on_datetime

- Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use
invalid dates. Invalid MySQL dates cannot be loaded into native .NET
DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill
method of the MySqglDataAdapter class as invalid dates will cause a
System.ArgumentOutOfRangeException exception to occur.

- Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid
dates. This can be done on either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the
.NET DateTime class to handle dates. The DateTime class will only allow
valid dates, ensuring that the values in your database are also valid. The
disadvantage of this is that it is not useful in a mixed environment where
.NET and non .NET code are used to manipulate the database, as each
application must perform its own date validation.

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to
restrict invalid date values. For information on using the traditional SQL
mode, see [server-sql-mode].

- Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates
within your .NET application, it is possible to use invalid dates by means of
the MySqglDateTime data type.

The MySqlDateTime data type supports the same date values that are
supported by the MySQL server. The default behavior of Connector/Net is to
return a .NET DateTime object for valid date values, and return an error for
invalid dates. This default can be modified to cause Connector/Net to return
MySqlDateTime objects for invalid dates.

To instruct Connector/Net to return a MySqlDateTime object for invalid
dates, add the following line to your connection string:

Allow Zero Datetime=True

Please note that the use of the MySqlDateTime class can still be problematic.
The following are some known issues:

1. Data binding for invalid dates can still cause errors (zero dates like
0000-00-00 do not seem to have this problem).

2. The ToString method return a date formatted in the standard MySQL
format (for example, 2005-02-23 08:50:25). This differs from the
ToString behavior of the .NET DateTime class.

3. The MySqlDateTime class supports NULL dates, while the .NET
DateTime class does not. This can cause errors when trying to convert a
MySQLDateTime to a DateTime if you do not check for NULL first.

Because of the known issues, the best recommendation is still to use only
valid dates in your application.

- Handling NULL Dates

The .NET DateTime data type cannot handle NULL values. As such, when
assigning values from a query to a DateTime variable, you must first check
whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether
a value is NULL before making the assignment:

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime
myTime = myReader.GetDateTime(myReader.GetOrdina
Else
myTime = DateTime.MinValue
End If

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime"
myTime = myReader.GetDateTime(myReader.GetOrdina
else
myTime = DateTime.MinValue;

NULL values will work in a data set and can be bound to form controls
without special handling.

- Using the MySqlBulkIL.oader Class

features a bulk loader class that wraps the MySQL statement LOAD DATA
INFILE. This gives the ability to load a data file from a local or remote host
to the server. The class concerned is MySqlBulkLoader. This class has
various methods, the main one being load to cause the specified file to be
loaded to the server. Various parameters can be set to control how the data file
is processed. This is achieved through setting various properties of the class.
For example, the field separator used, such as comma or tab, can be specified,
along with the record terminator, such as newline.

The following code shows a simple example of using the MySqlBulkLoader
class. First an empty table needs to be created, in this case in the test
database:

=2 Copy
CREATE TABLE Career (
Name VARCHAR(100) NOT NULL,

Age INTEGER,
Profession VARCHAR(200)

),

A simple tab-delimited data file is also created (it could use any other field
delimiter such as comma):

=2 Copy

Table Career in Test Database
Name Age Profession

Tony 47 Technical Writer

Ana 43 Nurse
Fred 21 IT Specialist
Simon 45 Hairy Biker

Note that with this test file the first three lines will need to be ignored, as they
do not contain table data. This can be achieved using the
NumberOfLinesToSkip property. This file can then be loaded and used to

populate the Career table in the test database:

using System;

using System.Text;

using MySql.Data;

using MySql.Data.MySqlClient;

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{

string connStr = "server=localhost;user=
MySqlConnection conn = new MySqglConnecti

MySqlBulkLoader bl = new MySqglBulkLoader
bl.TableName = '"Career";
bl.FieldTerminator = "\t";
bl.LineTerminator = "\n";

bl.FileName = '"c:/career_data.txt";
bl.NumberOfLinesToSkip = 3;

try

{ o |
Console.WritelLine('"Connecting to MysS
conn.Open();

// Upload data from file
int count = bl.Load();
Console.WriteLine(count + " lines up.

string sql = "SELECT Name, Age, Prof
MySqlCommand cmd = new MySqglCommand (
MySqlDataReader rdr = cmd.ExecuteRea

while (rdr.Read())
{

}

rdr.Close();

Console.WriteLine(rdr[0] + "

conn.Close();

}
catch (Exception ex)
{
Console.WritelLine(ex.ToString());
}

Console.WritelLine('"Done.");

}

Further information on LOAD DATA INFILE can be found in [load-data].
Further information on MySqlBulkLoader can be found in the reference
documentation that was included with your connector.

- Using the Trace Source Object

6.2 introduced support for .NET 2.0 compatible tracing, using TraceSource
objects.

The .NET 2.0 tracing architecture consists of four main parts:

e Source - This is the originator of the trace information. The source is
used to send trace messages. The name of the source provided by is
mysql.

e Switch - This defines the level of trace information to emit. Typically,
this is specified in the app.config file, so that it is not necessary to
recompile an application to change the trace level.

o Listener - Trace listeners define where the trace information will be
written to. Supported listeners include, for example, the Visual Studio
Output window, the Windows Event Log, and the console.

e Filter - Filters can be attached to listeners. Filters determine the level of
trace information that will be written. While a switch defines the level
of information that will be written to all listeners, a filter can be applied
on a per-listener basis, giving finer grained control of trace information.

To use tracing a TraceSource object first needs to be created. To create a
TraceSource object in you would use code similar to the following:

TraceSource ts = new TraceSource("mysql");

To enable trace messages, configure a trace switch. There are three main
switch classes, BooleanSwitch, SourceSwitch, and TraceSwitch. Trace
switches also have associated with them a trace level enumeration, these are

Off, Error, Warning, Info, and Verbose. The following code snippet illustrates
creating a switch:

=2 Copy
ts.Switch = new SourceSwitch("MySwitch", "Verbose");

This creates a SourceSwitch, called MySwitch, and sets the trace level to
Verbose, meaning that all trace messages will be written.

It is convenient to be able to change the trace level without having to
recompile the code. This is achieved by specifying the trace level in
application configuration file, app.config. You then simply need to specify
the desired trace level in the configuration file and restart the application. The
trace source is configured within the system.diagnostics section of the file.
The following XML snippet illustrates this:

By default, trace information is written to the Output window of Microsoft
Visual Studio. There are a wide range of listeners that can be attached to the
trace source, so that trace messages can be written out to various destinations.
You can also create custom listeners to allow trace messages to be written to
other destinations as mobile devices and web services. A commonly used
example of a listener is ConsoleTraceListener, which writes trace messages to
the console.

To add a listener at run time, use code such as the following:
ts.Listeners.Add(new ConsoleTracelListener());

Then, call methods on the trace source object to generate trace information.
For example, the Tracelnformation(), TraceEvent(), or TraceData() methods
can be used.

The TraceInformation() method simply prints a string passed as a parameter.
The TraceEvent() method, as well as the optional informational string,
requires a TraceEventType value to be passed to indicate the trace message
type, and also an application specific ID. The TraceEventType can have a
value of Verbose, Information, Warning, Error, and Critical. Using the
TraceData() method you can pass any object, for example an exception
object, instead of a message.

To ensure than these generated trace messages gets flushed from the trace
source buffers to listeners, invoke the Flush() method. When you are finished
using a trace source, call the Close() method. The Close() method first calls
Flush(), to ensure any remaining data is written out. It then frees up resources,
and closes the listeners associated with the trace source.

=2 Copy

ts.TraceInformation("Informational message");
ts.TraceEvent(TraceEventType.Error, 3, "Optional erri

ts.TraceData(TraceEventType.Error, 3, ex); // pass e
ts.Flush();

ts.Close();

- Viewing MySQL Trace Information

This section describes how to set up your application to view MySQL trace
information.

The first thing you need to do is create a suitable app.config file for your
application. An example is shown in the following code:

This ensures a suitable trace source is created, along with a switch. The
switch level in this case is set to Verbose to display the maximum amount of
information.

In the application the only other step required is to add logging=true to the
connection string. An example application could be:

using
using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text,
System.Diagnostics;
MySql.Data;
MySql.Data.MySqlClient;
MySql.Wweb;

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{
string connStr = "server=localhost;user=
MySqlConnection conn = new MySqglConnecti
try
{

Console.WritelLine('"Connecting to MysS

conn.Open();

string sql =

"SELECT Name, HeadOfSta

MySqglCommand cmd = new MySqglCommand(:
MySqlDataReader rdr = cmd.ExecuteRea

while (rdr.Read())

{
¥

Console.WriteLine(rdr[0] + " --

rdr.Close();

conn.Close();

}

catch (Exception ex)

{

Console.WritelLine(ex.ToString());

}

Console.WritelLine('"Done.");

This simple application will then generate the following output:

Connecting to MySQL...

mysql

Information:

1

1:

Connection Opened: connect:

;password=****x*- logglng True'

mysql
mysql
mysql
mysql
mysql
mysql
mysql

Information:
Information:
Information:
Information:
Information:
Information:
Information:

3

O b~ wo o1 -

1:

RRrRRRRR

Query Opened: SHOW VARIABLI
Resultset Opened: field(s)
Resultset Closed. Total ro
Query Closed

Query Opened: SHOW COLLATII
Resultset Opened: field(s)
Resultset Closed. Total ro

mysgql Information:
mysgql Information:
mysgql Information:
mysgql Information:
mysgql Information:
mysgql Information:

Query Closed

Query Opened: SET characte
Resultset Opened: field(s)
Resultset Closed. Total ro
: Query Closed

© : 1: Set Database: world

mysgql Information: : 1: Query Opened: SELECT Name,
mysql Information: : 1: Resultset Opened: field(s)
American Samoa -- George W. Bush

Australia -- Elisabeth II

DwrRroOhwo
R R R R R

Wallis and Futuna -- Jacques Chirac

Vanuatu -- John Bani

United States Minor Outlying Islands -- George W. Bu
mysgql Information: 5 : 1: Resultset Closed. Total ro
mysgl Information: 6 : 1: Query Closed

Done.

mysql Information: 2 : 1: Connection Closed

The first number displayed in the trace message corresponds to the MySQL
event type:

1 ConnectionOpened: connection string

2 ConnectionClosed:

3 QueryOpened: mysql server thread id, query text

4 ResultOpened: field count, affected rows (-1 if select), inserted id (-1
if select)

5 ResultClosed: total rows read, rows skipped, size of resultset in bytes

6 QueryClosed:

7 StatementPrepared: prepared sql, statement id

8 StatementExecuted: statement id, mysql server thread id

9 StatementClosed: statement id

10 NonQuery: [varies]

11 UsageAdvisorWarning: usage advisor flag. NoIndex = 1, BadIndex =
2, SkippedRows = 3, SkippedColumns = 4, FieldConversion = 5.

12 Warning: level, code, message

13 Error: error number, error message

The second number displayed in the trace message is the connection count.

Although this example uses the ConsoleTraceListener, any of the other
standard listeners could have been used. Another possibility is to create a
custom listener that uses the information passed using the TraceEvent
method. For example, a custom trace listener could be created to perform
active monitoring of the MySQL event messages, rather than simply writing
these to an output device.

It is also possible to add listeners to the MySQL Trace Source at run time.
This can be done with the following code:

MySqlTrace.Listeners.Add(new
ConsoleTracelListener());

6.3.2 introduced the ability to switch tracing on and off at run time. This can
be achieved using the calls MySqlTrace.EnableQueryAnalyzer(string host, int
postInterval) and MySqlTrace.DisableQueryAnalyzer(). The parameter host is
the URL of the MySQL Enterprise Monitor server to monitor. The parameter
postlnterval is how often to post the data to MySQL Enterprise Monitor, in
seconds.

- Building Custom Listeners

To build custom listeners that work with the Trace Source, it is necessary to
understand the key methods used, and the event data formats used.

The main method involved in passing trace messages is the
TraceSource.TraceEvent method. This has the prototype:

public void TraceEvent(
TraceEventType eventType,
int id,
string format,
params Object[] args

)

This trace source method will process the list of attached listeners and call the
listener's TraceListener. TraceEvent method. The prototype for the
TraceListener. TraceEvent method is as follows:

public virtual void TraceEvent(
TraceEventCache eventCache,
string source,
TraceEventType eventType,
int id,
string format,
params Object[] args

)

The first three parameters are used in the standard as defined by Microsoft.
The last three parameters contain MySQL-specific trace information. Each of
these parameters is now discussed in more detail.

int id
This is a MySQL-specific identifier. It identifies the MySQL event type that
has occurred, resulting in a trace message being generated. This value is

http://msdn.microsoft.com/en-us/library/d193webf.aspx

defined by the MySqlTraceEventType public enum contained in the code:

=2 Copy

public enum MySqlTraceEventType : int
{

ConnectionOpened = 1,
ConnectionClosed,
QueryOpened,
ResultOpened,
ResultClosed,
QueryClosed,
StatementPrepared,
StatementExecuted,
StatementClosed,
NonQuery,
UsageAdvisorWarning,
Warning,

Error

}

The MySQL event type also determines the contents passed using the
parameter params Object[] args. The nature of the args parameters are
described in further detail in the following material.

string format

This is the format string that contains zero or more format items, which
correspond to objects in the args array. This would be used by a listener such
as ConsoleTraceListener to write a message to the output device.

params Object[] args

This is a list of objects that depends on the MySQL event type, id. However,
the first parameter passed using this list is always the driver id. The driver id
is a unique number that is incremented each time the connector is opened.
This enables groups of queries on the same connection to be identified. The
parameters that follow driver id depend of the MySQL event id, and are as
follows:

ConnectionOpened Connection string

ConnectionClosed No additional parameters

QueryOpened mysql server thread id, query text

ResultOpened field count, affected rows (-1 if select), inserted id
(-1 if select)

ResultClosed total rows read, rows skipped, size of resultset in
bytes

QueryClosed No additional parameters

StatementPrepared prepared sql, statement id

StatementExecuted statement id, mysql server thread id

StatementClosed statement id

NonQuery Varies

UsageAdvisorWarning usage advisor flag. NoIndex = 1, BadIndex = 2,
SkippedRows = 3, SkippedColumns = 4,
FieldConversion = 5.

Warning level, code, message
Error error number, error message

This information will allow you to create custom trace listeners that can
actively monitor the MySQL-specific events.

- Binary/Nonbinary Issues

There are certain situations where MySQL will return incorrect metadata
about one or more columns. More specifically, the server will sometimes
report that a column is binary when it is not and vice versa. In these
situations, it becomes practically impossible for the connector to be able to
correctly identify the correct metadata.

Some examples of situations that may return incorrect metadata are:

e Execution of SHOW PROCESSLIST. Some of the columns will be
returned as binary even though they only hold string data.

e When a temporary table is used to process a resultset, some columns
may be returned with incorrect binary flags.

e Some server functions such DATE_FORMAT will incorrectly return the
column as binary.

With the availability of BINARY and VARBINARY data types, it is
important that we respect the metadata returned by the server. However, we
are aware that some existing applications may break with this change, so we
are creating a connection string option to enable or disable it. By default,
Connector/Net 5.1 respects the binary flags returned by the server. You might
need to make small changes to your application to accommodate this change.

In the event that the changes required to your application would be too large,
adding respect binary flags=false' to your connection string causes the
connector to use the prior behavior: any column that is marked as string,
regardless of binary flags, will be returned as string. Only columns that are
specifically marked as a BLOB will be returned as BLOB.

- Character Set Considerations for Connector/Net

Treating Binary Blobs As UTF8

MySQL doesn't currently support 4-byte UTF8 sequences. This makes it
difficult to represent some multi-byte languages such as Japanese. To try and
alleviate this, Connector/Net now supports a mode where binary blobs can be
treated as strings.

To do this, you set the "Treat Blobs As UTF8' connection string keyword to
yes. This is all that needs to be done to enable conversion of all binary blobs
to UTF8 strings. To convert only some of your BLOB columns, you can
make use of the 'BlobAsUTF8IncludePattern'
and'BlobAsUTF8ExcludePattern' keywords. Set these to a regular expression
pattern that matches the column names to include or exclude respectively.

When the regular expression patterns both match a single column, the include
pattern is applied before the exclude pattern. The result, in this case, would be
that the column would be excluded. Also, be aware that this mode does not
apply to columns of type BINARY or VARBINARY and also do not apply to
nonbinary BLOB columns.

Currently, this mode only applies to reading strings out of MySQL. To insert
4-byte UTF8 strings into blob columns, use the .NET Encoding.GetBytes
function to convert your string to a series of bytes. You can then set this byte
array as a parameter for a BLOB column.

- Using Connector/Net with Crystal Reports

Introduction

Crystal Reports is a common tool used by Windows application developers to
perform reporting and document generation. In this section we will show how
to use Crystal Reports XI with MySQL and Connector/Net.

- Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing
the MySQL data while designing your report.

The first option is to use Connector/ODBC as an ADO data source when
designing your report. You will be able to browse your database and choose
tables and fields using drag and drop to build your report. The disadvantage
of this approach is that additional work must be performed within your
application to produce a data set that matches the one expected by your
report.

The second option is to create a data set in VB.NET and save it as XML. This
XML file can then be used to design a report. This works quite well when
displaying the report in your application, but is less versatile at design time
because you must choose all relevant columns when creating the data set. If
you forget a column you must re-create the data set before the column can be
added to the report.

The following code can be used to create a data set from a query and write it
to disk:

Dim myData As New DataSet

Dim conn As New MySglConnection

Dim cmd As New MySqglCommand

Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName,
& "country.name, country.population, country
& "FROM country, city ORDER BY country.conti

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myData.WriteXml("C:\dataset.xml", XmlWriteMode.W:
Catch ex As Exception

MessageBox.Show(ex.Message, "Report could not be
End Try

DataSet myData = new DataSet();
MySqgl.Data.MySqglClient.MySqglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;
MySql.Data.MySglClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqglConnection();
cmd = new MySqgl.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdap

conn.ConnectionString = "server=127.0.0.1;uid=root;"
"pwd=12345;database=test;";

try

{
cmd.CommandText = "SELECT city.name AS cityName, cC:
"country.name, country.population, country.contine
"FROM country, city ORDER BY country.continent, co
cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.Wr:

}
catch (MySql.Data.MySqlClient.MySqlException ex)

{

MessageBox.Show(ex.Message, "Report could not be c
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The resulting XML file can be used as an ADO.NET XML datasource when
designing your report.

If you choose to design your reports using Connector/ODBC, it can be
downloaded from dev.mysql.com.

http://dev.mysql.com/downloads/connector/odbc/3.51.html

- Creating the Report

For most purposes, the Standard Report wizard helps with the initial creation
of a report. To start the wizard, open Crystal Reports and choose the option
from the File menu.

The wizard first prompts you for a data source. If you use Connector/ODBC
as your data source, use the OLEDB provider for ODBC option from the
OLE DB (ADO) tree instead of the ODBC (RDO) tree when choosing a data
source. If using a saved data set, choose the ADO.NET (XML) option and
browse to your saved data set.

The remainder of the report creation process is done automatically by the
wizard.

After the report is created, choose the Report Options... entry of the File
menu. Un-check the Save Data With Report option. This prevents saved data
from interfering with the loading of data within our application.

- Displaying the Report

To display a report we first populate a data set with the data needed for the
report, then load the report and bind it to the data set. Finally we pass the
report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

¢ CrystalDecisions.CrystalReports.Engine
¢ CrystalDecisions.ReportSource
¢ CrystalDecisions.Shared
e CrystalDecisions.Windows.Forms
The following code assumes that you created your report using a data set

saved using the code shown in Creating a Data Source, and have a crViewer
control on your form named my Viewer.

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet

Dim conn As New MySglConnection

Dim cmd As New MySqglCommand

Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()

cmd.CommandText = "SELECT city.name AS cityName,
& "country.name, country.population, country
& "FROM country, city ORDER BY country.conti
cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.SetDataSource(myData)
myViewer .ReportSource = myReport
Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be
End Try

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySqgl.Data.MySqglClient.MySqglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;
MySql.Data.MySqglClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqglConnection();
cmd = new MySqgl.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdap

conn.ConnectionString = "server=127.0.0.1;uid=root;"
"pwd=12345;database=test;";

try

{
cmd.CommandText = "SELECT city.name AS cityName,

"country.name, country.population, country.c
"FROM country, city ORDER BY country.contine
cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.SetDataSource(myData);
myViewer .ReportSource = myReport;

}
catch (MySql.Data.MySqglClient.MySqlException ex)

{

MessageBox.Show(ex.Message, "Report could not be
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

A new data set it generated using the same query used to generate the
previously saved data set. Once the data set is filled, a ReportDocument is
used to load the report file and bind it to the data set. The ReportDocument is
the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using
Connector/ODBC. The data set replaces the table used in the report and the
report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a data
set with multiple tables must be created in our application. This enables each
table in the report data source to be replaced with a report in the data set.

We populate a data set with multiple tables by providing multiple SELECT
statements in our MySqlCommand object. These SELECT statements are
based on the SQL query shown in Crystal Reports in the Database menu's
Show SQL Query option. Assume the following query:

SELECT “country . Name , “country . Continent’, “cou
FROM “world . country ™ “country LEFT OUTER JOIN “wo
ORDER BY “country . Continent , “country . Name , 'C

This query is converted to two SELECT queries and displayed with the
following code:

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet

Dim conn As New MySglConnection

Dim cmd As New MySqglCommand

Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uild=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT name, population, coun
& "SELECT name, population, code, continent
cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.Database.Tables(0).SetDataSource(myData
myReport.Database.Tables(1).SetDataSource(myData
myViewer .ReportSource = myReport
Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be
End Try

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySqgl.Data.MySqglClient.MySqglConnection conn;
MySql.Data.MySqlClient.MySglCommand cmd;
MySql.Data.MySqglClient.MySqlDataAdapter myAdapter;

conn

new MySql.Data.MySqlClient.MySqglConnection();

cmd = new MySqgl.Data.MySqglClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdap

conn.ConnectionString = "server=127.0.0.1;uid=root;"
"pwd=12345;database=test;";

try
{

}

cmd.

cmd.

CommandText = "SELECT name, population, coun
"BY countrycode, name; <literal xmlns="http:.
"country ORDER BY continent, name";
Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.Database.Tables(0).SetDataSource(myData
myReport.Database.Tables(1).SetDataSource(myData
myViewer .ReportSource = myReport;

catch (MySql.Data.MySqlClient.MySqlException ex)

{

MessageBox.Show(ex.Message, "Report could not be

MessageBoxButtons.OK, MessageBoxIcon.Error);

It is important to order the SELECT queries in alphabetic order, as this is the
order the report will expect its source tables to be in. One SetDataSource
statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must
bind the tables together on the client-side, which will be slower than using a
pre-saved data set.

- ASP.NET Provider Model

provides support for the ASP.NET 2.0 provider model. This model enables
application developers to focus on the business logic of their application
instead of having to recreate such boilerplate items as membership and roles
support.

supplies the following providers:

e Membership Provider
e Role Provider
e Profile Provider
e Session State Provider (6.1 and later)
The following tables show the supported providers, their default provider and
the corresponding MySQL provider.
Membership Provider
System.Web.Security.SqlMembershipProvider MySql.Web.Security.MySQL.

Role Provider

System.Web.Security.SqlRoleProvider MySql.Web.Security.MySQLRolePro

Profile Provider

System.Web.Profile.SqlProfileProvider MySql.Web.Profile. MySQLProfileP:

SessionState Provider
System.Web.SessionState.InProcSessionStateStore MySql.Web.SessionState
= Note
The MySQL Session State provider uses slightly different capitalization on
the class name compared to the other MySQL providers.

Installing The Providers

The installation of Connector/Net 5.1 or later will install the providers and
register them in your machine's .NET configuration file, machine.config. The

additional entries created will result in the system.web section appearing
similar to the following code:

<system.web>
<processModel autoConfig="true" />
<httpHandlers />
<membership>
<providers>
<add name="AspNetSqglMembershipProvider" type="!
<add name="MySQLMembershipProvider" type="MySq.
</providers>
</membership>
<profile>
<providers>
<add name="AspNetSqlProfileProvider" connectio
<add name="MySQLProfileProvider" type="MySqgl.W
</providers>
</profile>
<roleManager>
<providers>
<add name="AspNetSqlRoleProvider" connectionSt!
<add name="AspNetWindowsTokenRoleProvider" app
<add name="MySQLRoleProvider" type="MySql.Web.!:
</providers>
</roleManager>
</system.web>

Each provider type can have multiple provider implementations. The default
provider can also be set here using the defaultProvider attribute, but usually
this is set in the web.config file either manually or by using the ASP.NET
configuration tool.

At time of writing, the MySqglSessionStateStore is not added to
machine.config at install time, and so add the following:

<sessionState>

<providers>
<add name="MySqglSessionStateStore" type="MySql.Ww
</providers>
</sessionState>

The SessionState Provider uses the customProvider attribute, rather than
defaultProvider, to set the provider as the default. A typical web.config file
might contain:

<system.web>
<membership defaultProvider="MySQLMembershipPro
<roleManager defaultProvider="MySQLRoleProvider
<profile defaultProvider="MySQLProfileProvider"
<sessionState customProvider="MySglSessionState!
<compilation debug="false">

This sets the MySQL Providers as the defaults to be used in this web
application.

The providers are implemented in the file mysql.web.dll and this file can be
found in your installation folder. There is no need to run any type of SQL
script to set up the database schema, as the providers create and maintain the
proper schema automatically.

Using The Providers

The easiest way to start using the providers is to use the ASP.NET
configuration tool that is available on the Solution Explorer toolbar when you
have a website project loaded.

In the web pages that open, you can select the MySQL membership and roles
providers by picking a custom provider for each area.

When the provider is installed, it creates a dummy connection string named
LocalMySqlServer. Although this has to be done so that the provider will
work in the ASP.NET configuration tool, you override this connection string
in your web.config file. You do this by first removing the dummy connection
string and then adding in the proper one, as shown in the following example:

<connectionStrings>

<remove name='"LocalMySqlServer'"/>

<add name="LocalMySqlServer" connectionString="senr
</connectionStrings>

Note the database to connect to must be specified.

Rather than manually editing configuration files, consider using the MySQL
Website Configuration tool to configure your desired provider setup. From
6.1.1 onwards, all providers can be selected and configured from this wizard.
The tool modifies your website.config file to the desired configuration. A
tutorial on doing this is available in the following section MySQL Website
Configuration Tool.

A tutorial demonstrating how to use the Membership and Role Providers can
be found in the following section Tutorial: ASP.NET Membership and Role
Provider.

Deployment

To use the providers on a production server, distribute the MySql.Data and
the MySqgl.Web assemblies, and either register them in the remote systems
Global Assembly Cache or keep them in your application's bin/ directory.

- Working with Partial Trust

.NET applications operate under a given trust level. Normal desktop
applications operate under full trust, while web applications that are hosted in
shared environments are normally run under the partial trust level (also
known as). Some hosting providers host shared applications in their own app
pools and allow the application to run under full trust, but this configuration
is relatively rare. The Connector/Net support for partial trust has improved
over time to simplify the configuration and deployment process for hosting
providers.

Connector/Net 6.5 fully enables our provider to run in a partial trust
environment when the library is installed in the Global Assembly Cache
(GAC). The new MySqlClientPermission class, derived from the .NET
DBDataPermission class, helps to simplify the permission setup.

Starting from 6.5 you can use the Connector/Net library inside any medium-
trust level environment without any issue.

The following list shows steps and code fragments needed to run a
Connector/Net application in a partial trust environment. For illustration
purposes, we use the Pipe Connections protocol in this example.

1. Configure the MySQL server to accept pipe connections, by adding the
--enable-named-pipe option on the command line. If you need more
information about this, see [windows-installation].

2. Confirm that the hosting provider has installed the Connector/Net
library (MySql.Data.dll) in the GAC.

3. Optionally, the hosting provider can avoid granting permissions globally
by using the new MySqlClientPermission class in the trust policies.
(The alternative is to globally enable the permissions
System.Net.SocketPermission,
System.Security.Permissions.ReflectionPermission,
System.Net.DnsPermission, and
System.Security.Permissions.SecurityPermission.)

4. Create a simple web application using Visual Studio 2010.

5. Add the reference in your application for the MySqgl.Data.MySqlClient

library.

6. Edit your web.config file so that your application runs using a Medium
trust level:

7. Add the MySql.Data.MySqlClient namespace to your server-code page.

8. Define the connection string:

MySqglConnectionStringBuilder myconnString = new M
myconnString.PipeName = "MySQL55";
myconnString.ConnectionProtocol = MySql

9. Define the MySqlConnection to use:

=2 Copy

MySqglConnection myconn = new MySqglConnection(myco
myconn.Open();

10. Retrieve some data from your tables:

MySglCommand cmd = new MySglCommand("Select * fro
MySqlDataAdapter da = new MySqglDataAdapter(cmd);
DataSetl tds = new DataSetl();

da.Fill(tds, tds.Tables[0O].TableName);
GridViewl.DataSource = tds;

GridViewl.DataBind();

myconn.Close()

11. Run the program. It should execute successfully, without requiring any
special code or encountering any security problems.

Starting with these versions, Connector/Net can be used under partial trust
hosting that has been modified to allow the use of sockets for communication.
By default, partial trust does not include SocketPermission. Connector/Net
uses sockets to talk with the MySQL server so the hosting provider must

create a new trust level that is an exact clone of partial trust but that has the
following permissions added:

e System.Net.SocketPermission

e System.Security.Permissions.ReflectionPermission

e System.Net.DnsPermission

e System.Security.Permissions.SecurityPermission

Connector/Net versions prior to 5.0.8 and 5.1.3 were not compatible with
partial trust hosting.

Send comments on this topic to support@oracle.com

Copyright © 2004,2013, Oracle and/or its affiliates. All rights reserved.

mailto:support%40oracle.com?Subject=MySQL Connector/Net
http://www.mysql.com

- "
MySQL Connector/Net

Connection Options
Send Feedback

- Connector/Net Connection String Options Reference

For usage information about connection strings, see Creating a Connector/Net
Connection String. The first table list options that apply generally to all server
configurations. The options related to systems using a connection pool are

split into a separate table.
Allow Batch, AllowBatch

Allow User Variables,
AllowUserVariables

Allow Zero Datetime,
AllowZeroDateTime

Auto Enlist, AutoEnlist

true

false

false

true

When true, multiple SQL statements
be sent with one command executio
Note: starting with MySQL 4.1.1, be
statements should be separated by tt
server-defined separator character.

Commands sent to earlier versions c
MySQL should be separated with ';'.

Setting this to true indicates that the
provider expects user variables in th
SQL. This option was added in
Connector/Net version 5.2.2.

If set to True,
MySgqglDataReader.GetValue() returr
MySqglDateTime object for date or
datetime columns that have disallow
values, such as zero datetime values
a System.DateTime object for valid
values. If set to False (the default se
it will cause a System.DateTime obj
be returned for all legal values and &
exception to be thrown for disallowe
values, such as zero datetime values

If AutoEnlist is set to true, which is
default, a connection opened using
TransactionScope participates in thit
scope, it commits when the scope
commits and rolls back if
TransactionScope does not commit.
However, this feature is considered
security sensitive and therefore canr

BlobAsUTF8ExcludePattern null

BlobAsUTF8IncludePattern

Certificate File,
CertificateFile

Certificate Password,
CertificatePassword

Certificate Store Location,
CertificateStoreLocation

Certificate Thumbprint,
CertificateThumbprint

CharSet, Character Set,
CharacterSet

null

null

null

null

null

used in a medium trust environment

A POSIX-style regular expression tt
matches the names of BLOB columi
do not contain UTF-8 character data
Character Set Considerations for
Connector/Net for usage details.

A POSIX-style regular expression tt
matches the names of BLOB colum
containing UTF-8 character data. Se
Character Set Considerations for
Connector/Net for usage details.

This option specifies the path to a
certificate file in PKCS #12 format (
For an example of usage, see Tutori:
Using SSL with. Was introduced wit
6.2.1.

Specifies a password that is used in
conjunction with a certificate specifi
using the option CertificateFile. For
example of usage, see Tutorial: Usir
SSL with. Was introduced with 6.2.]

Enables you to access a certificate h
a personal store, rather than use a
certificate file and password combin
For an example of usage, see Tutori:
Using SSL. with. Was introduced wit
6.2.1.

Specifies a certificate thumbprint to
ensure correct identification of a
certificate contained within a person
store. For an example of usage, see
Tutorial: Using SSL with. Was intro
with 6.2.1.

Specifies the character set that shoul
used to encode all queries sent to the
server. Resultsets are still returned i1

Check Parameters,
CheckParameters

Command Interceptors,
CommandInterceptors

Connect Timeout,
Connection Timeout,
ConnectionTimeout

Convert Zero Datetime,
ConvertZeroDateTime

Default Command Timeout,
DefaultCommandTimeout

Default Table Cache Age,
DefaultTableCacheAge

Encrypt, UseSSL

true

15

false

30

60

false

character set of the result data.

Indicates if stored routine parameter
should be checked against the servei

The list of interceptors that can inter
SQL command operations.

The length of time (in seconds) to w
a connection to the server before
terminating the attempt and generati
erTor.

True to have
MySglDataReader.GetValue() and
MySqlDataReader.GetDateTime() rt
DateTime.MinValue for date or date
columns that have disallowed values

Sets the default value of the commai
timeout to be used. This does not
supercede the individual command
timeout property on an individual
command object. If you set the comy
timeout property, that will be used. "
option was added in Connector/Net

Specifies how long a TableDirect re:
should be cached, in seconds. For us
information about table caching, see
Using Connector/Net with Table Ca:
This option was added in Connector
6.4.

For Connector/Net 5.0.3 and later, w
true, SSL encryption is used for all ¢
sent between the client and server if
server has a certificate installed.

Recognized values are true, false, ye
no. In versions before 5.0.3, this opt
had no effect. From version 6.2.1, th
option is deprecated and is replaced
SSL Mode. The option still works if

Exception Interceptors,
ExceptionInterceptors

Functions Return String,
FunctionsReturnString

Host, Server, Data Source,
DataSource, Address, Addr,
Network Address

Ignore Prepare,
IgnorePrepare

false

localhost

true

If this option is set to true, it is equiy
to SSL Mode = Preferred.

The list of interceptors that can triag
thrown MySqglException exceptions

Causes the connector to return
binary/varbinary values as strings, if
do not have a tablename in the meta

The name or network address of the
instance of MySQL to which to com
Multiple hosts can be specified sepa
by commas. This can be useful wher
multiple MySQL servers are configt
for replication and you are not conce
about the precise server you are
connecting to. No attempt is made b
provider to synchronize writes to the
database, so take care when using th
option. In Unix environment with M
this can be a fully qualified path to ¢
MySQL socket file. With this
configuration, the Unix socket will t
used instead of the TCP/IP socket.
Currently, only a single socket name
be given, so accessing MySQL in a
replicated environment using Unix
sockets is not currently supported.

When true, instructs the provider to
ignore any calls to
MySqglCommand.Prepare(). This op
provided to prevent issues with corr
of the statements when used with se
side prepared statements. If you use
server-side prepare statements, set tt
option to false. This option was adds
Connector/Net 5.0.3 and Connector/
1.0.9.

Initial Catalog, Database mysql
Interactive, Interactive false
Session, InteractiveSession
Integrated Security, no
IntegratedSecurity

Keep Alive, Keepalive 0
Logging false
Old Guids, OldGuids false

The case-sensitive name of the datal
to use initially.

If set to true, the client is interactive
interactive client is one where the se
variable CLIENT INTERACTIVE :
If an interactive client is set, the
wait_timeout variable is set to the v
of interactive_timeout. The client w:
then timeout after this period of inac
More details can be found in the ser
manual [server-system-variables].

Use Windows authentication when
connecting to server. By default, it i
turned off. To enable, specify a valu
yes. (You can also use the value sspi
alternative to yes.) For details, see L
the Windows Native Authentication
Plugin. This option was introduced i
Connector/Net 6.4.4.

For TCP connections, idle connectic
time measured in seconds, before th
keepalive packet is sent. A value of |
indicates that keepalive is not used.

When true, various pieces of inform
is output to any configured
TraceListeners. See Using the Trace
Source Object for further details.

This option was introduced in
Connector/Net 6.1.1. The backend
representation of a GUID type was
changed from BINARY(16) to
CHAR(36). This was done to allow
developers to use the server functior
UUID() to populate a GUID table -
UUID() generates a 36-character str
Developers of older applications car

Old Syntax, OldSyntax, Use
Old Syntax, UseOldSyntax

Password, pwd

Persist Security Info,
PersistSecurityInfo

Pipe Name, Pipe, PipeName

Port

Procedure Cache Size,
ProcedureCacheSize,
procedure cache,
procedurecache

Protocol, Connection
Protocol,
ConnectionProtocol

false

false

mysql

3306

25

socket

'0Old Guids=true' to the connection s
to use a GUID of data type BINARY

This option was deprecated in
Connector/Net 5.2.2. All code shoul
be written using the '@' symbol as tt
parameter marker.

The password for the MySQL accou
being used.

When set to false or no (strongly
recommended), security-sensitive
information, such as the password, i
returned as part of the connection if
connection is open or has ever been
open state. Resetting the connection
resets all connection string values,
including the password. Recognized
values are true, false, yes, and no.

When set to the name of a named pi
the MySqglConnection will attempt t
connect to MySQL on that named pi
This setting only applies to the Winc
platform.

The port MySQL is using to listen fi
connections. This value is ignored if
socket is used.

Sets the size of the stored procedure
cache. By default, Connector/Net st
the metadata (input/output data type
about the last 25 stored procedures t
To disable the stored procedure cact
the value to zero (0). This option wa
added in Connector/Net 5.0.2 and
Connector/Net 1.0.9.

Specifies the type of connection to r
to the server. Values can be: socket ¢
for a socket connection, pipe for a n

Replication false
Respect Binary Flags, true
RespectBinaryFlags

Shared Memory Name, MYSQL
SharedMemoryName

Sql Server Mode, false
sqlservermode

SSL Mode, SsIMode None

pipe connection, unix for a Unix soc
connection, memory to use MySQL
shared memory.

Indicates if this connection is to use
replicated servers.

Setting this option to false means th:
Connector/Net ignores a column's bi
flags as set by the server. This optio
added in Connector/Net version 5.1.

The name of the shared memory obj
use for communication if the connec
protocol is set to memory.

Allow SQL Server syntax. When set
true, enables Connector/Net to suppi
square brackets around symbols inst
backticks. This enables Visual Studi
wizards that bracket symbols with []
work with Connector/Net. This optic
incurs a performance hit, so should «
be used if necessary. This option wa
added in version 6.3.1.

This option has the following values

¢ None - do not use SSL.

o Preferred - use SSL if the serv
supports it, but allow connectic
all cases.

e Required - Always use SSL. C
connection if server does not
support SSL.

e VerifyCA - Always use SSL.
Validate the CA but tolerate nai
mismatch.

e VerifyFull - Always use SSL. |
the host name is not correct.

Table Cache, tablecache,
tablecaching

Treat BLOBs as UTEFS,
TreatBlobsAsUTF8

Treat Tiny As Boolean,
TreatTinyAsBoolean

Use Affected Rows,
UseAffectedRows

Use Procedure Bodies,
UseProcedureBodies,
procedure bodies

false

false

true

false

true

This option was introduced in 6.2.1.

Enables or disables caching of
TableDirect commands. A value of t
enables the cache while false disable
For usage information about table
caching, see Using Connector/Net w
Table Caching. This option was add
Connector/Net 6.4.

Setting this value to false indicates t
TINYINT(1) will be treated as an I
See [numeric-type-overview] for a
further explanation of the TINYINT
BOOL data types.

When true the connection will repor
changed rows instead of found rows
option was added in Connector/Net
version 5.2.6.

When set to true, the default value,
expects the body of the procedure to
viewable. This enables it to determir
parameter types and order. Set the o
to false when the user connecting to
database does not have the SELECT
privileges for the mysql.proc (stored
procedures) table, or cannot view
INFORMATION_SCHEMA.ROUT
In this case, cannot determine the ty
and order of the parameters, and mu
alerted to this fact by setting this opt
false. When set to false, does not rel
this information being available whe
procedure is called. Because will no
able to determine this information,
explicitly set the types of all the

User Id, UserID, Username,
Uid, User name, User

Compress, Use false
Compression,
UseCompression

Use Usage Advisor, Usage false
Advisor, UseUsageAdvisor

Use Performance Monitor, false
UsePerformanceMonitor,
userperfmon, perfmon

parameters before the call and add tl
parameters to the command in the s¢
order as they appear in the procedur
definition. This option was added in
and 1.0.10.

The MySQL login account being usi

Setting this option to true enables
compression of packets exchanged
between the client and the server. Tt
exchange is defined by the MySQL
client/server protocol.

Compression is used if both client ai
server support ZLIB compression, a
client has requested compression usi
this option.

A compressed packet header is: pacl
length (3 bytes), packet number (1 b
and Uncompressed Packet Length (:
bytes). The Uncompressed Packet L
is the number of bytes in the origina
uncompressed packet. If this is zero,
data in this packet has not been
compressed. When the compression
protocol is in use, either the client o
server may compress packets. Howe
compression will not occur if the
compressed length is greater than th
original length. Thus, some packets
contain compressed data while othel
packets will not.

Logs inefficient database operations

Indicates that performance counters
should be updated during execution.

The following table lists the valid names for options related to connection
pooling within the ConnectionString. For more information about connection
pooling, see Using Connector/Net with Connection Pooling.

Cache Server false Specifies whether server variable settings
Properties, are updated by a SHOW VARIABLES
CacheServerProperties command each time a pooled connection is

returned. Enabling this setting speeds up
connections in a connection pool
environment. Your application will not be
informed of any changes to configuration
variables made by other connections. This
option was added in Connector/Net 6.3.

Connection Lifetime, 0 When a connection is returned to the pool,

ConnectionLifeTime its creation time is compared with the
current time, and the connection is
destroyed if that time span (in seconds)
exceeds the value specified by Connection
Lifetime. This is useful in clustered
configurations to force load balancing
between a running server and a server just
brought online. A value of zero (0) causes
pooled connections to have the maximum
connection timeout.

Connection Reset, false If true, the connection state will be reset

ConnectionReset when it is retrieved from the pool. The
default value of false avoids making an
additional server round trip when obtaining
a connection, but the connection state is

not reset.
Maximum Pool Size, 100 The maximum number of connections
Max Pool Size, allowed in the pool.
maximumpoolsize
Minimum Pool Size, 0 The minimum number of connections
Min Pool Size, allowed in the pool.
MinimumPoolSize

Pooling true When true, the MySqlConnection object is

drawn from the appropriate pool, or if
necessary, is created and added to the
appropriate pool. Recognized values are
true, false, yes, and no.

Send comments on this topic to support@oracle.com

Copyright © 2004,2013, Oracle and/or its affiliates. All rights reserved.

mailto:support%40oracle.com?Subject=MySQL Connector/Net
http://www.mysql.com

- "
MySQL Connector/Net

Tutorial
Send Feedback

- Connector/Net Tutorials

- Tutorial: An Introduction to Connector/Net Programming

This section provides a gentle introduction to programming with
Connector/Net. The example code is written in C#, and is designed to work
on both Microsoft .NET Framework and Mono.

This tutorial is designed to get you up and running with Connector/Net as
quickly as possible, it does not go into detail on any particular topic.
However, the following sections of this manual describe each of the topics
introduced in this tutorial in more detail. In this tutorial you are encouraged
to type in and run the code, modifying it as required for your setup.

This tutorial assumes you have MySQL and Connector/Net already
installed. It also assumes that you have installed the World example
database, which can be downloaded from the MySQL Documentation page.
You can also find details on how to install the database on the same page.

= Note

Before compiling the example code, make sure that you have added
References to your project as required. The References required are
System, System.Data and MySql.Data.

http://dev.mysql.com/doc/;index-other.html

- The MySqlConnection Object

For your Connector/Net application to connect to a MySQL database, it
must establish a connection by using a MySqlConnection object.

The MySqlConnection constructor takes a connection string as one of its
parameters. The connection string provides necessary information to make
the connection to the MySQL database. The connection string is discussed
more fully in Connecting to MySQL Using Connector/Net. For a list of
supported connection string options, see Connection Options.

The following code shows how to create a connection object:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutoriall

{
public static void Main()
{
string connStr = "server=localhost;user=roo
MySqglConnection conn = new MySqglConnection(
try
{

Console.WriteLine("Connecting to MySQL.
conn.Open();
// Perform database operations

}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}

conn.Close();

Console.WritelLine('"Done.");

When the MySqglConnection constructor is invoked, it returns a connection
object, which is used for subsequent database operations. Open the
connection before any other operations take place. Before the application
exits, close the connection to the database by calling Close on the
connection object.

Sometimes an attempt to perform an Open on a connection object can fail,
generating an exception that can be handled using standard exception
handling code.

In this section you have learned how to create a connection to a MySQL
database, and open and close the corresponding connection object.

- The MySqlCommand Object

Once a connection has been established with the MySQL database, the next
step is do carry out the desired database operations. This can be achieved
through the use of the MySqlCommand object.

You will see how to create a MySqlCommand object. Once it has been
created, there are three main methods of interest that you can call:

e ExecuteReader - used to query the database. Results are usually

returned in a MySqlDataReader object, created by ExecuteReader.

e ExecuteNonQuery - used to insert and delete data.

e ExecuteScalar - used to return a single value.
Once a MySqlCommand object has been created, you will call one of the
above methods on it to carry out a database operation, such as perform a
query. The results are usually returned into a MySqlDataReader object, and

then processed, for example the results might be displayed. The following
code demonstrates how this could be done.

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial2

{
public static void Main()
{
string connStr = "server=localhost;user=roo
MySqglConnection conn = new MySqglConnection(
try
{

Console.WriteLine("Connecting to MySQL.

conn.Open();

string sql = "SELECT Name, HeadOfState
MySglCommand cmd = new MySqlCommand(sqgl
MySqlDataReader rdr = cmd.ExecuteReader

while (rdr.Read())

¢ Console.WriteLine(rdr[O]+" -- "+rdr
adr.Close();

gatch (Exception ex)

i Console.WritelLine(ex.ToString());

conn.Close();
Console.WritelLine('"Done.");

When a connection has been created and opened, the code then creates a
MySqlCommand object. Note that the SQL query to be executed is passed
to the MySqlCommand constructor. The ExecuteReader method is then
used to generate a MySqglReader object. The MySqlReader object contains
the results generated by the SQL executed on the command object. Once
the results have been obtained in a MySqlReader object, the results can be
processed. In this case, the information is printed out by a while loop.
Finally, the MySqlReader object is disposed of by running its Close method
on it.

In the next example, you will see how to use the ExecuteNonQuery
method.

The procedure for performing an ExecuteNonQuery method call is simpler,
as there is no need to create an object to store results. This is because
ExecuteNonQuery is only used for inserting, updating and deleting data.
The following example illustrates a simple update to the Country table:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial3

{

public static void Main()
{
string connStr = "server=localhost;user=roo
MySqglConnection conn = new MySqglConnection(
try
{
Console.WriteLine("Connecting to MySQL.
conn.Open();

string sql = "INSERT INTO Country (Name
MySqlCommand cmd = new MySglCommand(sql
cmd.ExecuteNonQuery();

}

catch (Exception ex)

{
}

conn.Close();
Console.WriteLine("Done.");

Console.WriteLine(ex.ToString());

}

The query is constructed, the command object created and the
ExecuteNonQuery method called on the command object. You can access
your MySQL database with the command interpreter and verify that the
update was carried out correctly.

Finally, you will see how the ExecuteScalar method can be used to return a
single value. Again, this is straightforward, as a MySqlDataReader object
is not required to store results, a simple variable will do. The following
code illustrates how to use ExecuteScalar:

using System;
using System.Data;

using MySql.Data;
using MySql.Data.MySqlClient;

public class Tutorial4

{
public static void Main()
{
string connStr = "server=localhost;user=roo
MySqglConnection conn = new MySqglConnection(
try
{

Console.WriteLine("Connecting to MySQL.
conn.Open();

string sql = "SELECT COUNT(*) FROM Coun
MySqlCommand cmd = new MySglCommand(sql
object result = cmd.ExecuteScalar();

if (result != null)

{
int r = Convert.ToInt32(result);
Console.WriteLine("Number of countr
}
} |
catch (Exception ex)
{

Console.WriteLine(ex.ToString());

}

conn.Close();
Console.WritelLine('"Done.");

}

This example uses a simple query to count the rows in the Country table.
The result is obtained by calling ExecuteScalar on the command object.

- Working with Decoupled Data

Previously, when using MySqlDataReader, the connection to the database
was continually maintained, unless explicitly closed. It is also possible to
work in a manner where a connection is only established when needed. For
example, in this mode, a connection could be established to read a chunk of
data, the data could then be modified by the application as required. A
connection could then be reestablished only if and when the application
writes data back to the database. This decouples the working data set from
the database.

This decoupled mode of working with data is supported by Connector/Net.
There are several parts involved in allowing this method to work:

e Data Set - The Data Set is the area in which data is loaded to read or
modify it. A DataSet object is instantiated, which can store multiple
tables of data.

e Data Adapter - The Data Adapter is the interface between the Data
Set and the database itself. The Data Adapter is responsible for
efficiently managing connections to the database, opening and closing
them as required. The Data Adapter is created by instantiating an
object of the MySqlDataAdapter class. The MySqlDataAdapter
object has two main methods: Fill which reads data into the Data Set,
and Update, which writes data from the Data Set to the database.

e Command Builder - The Command Builder is a support object. The
Command Builder works in conjunction with the Data Adapter. When
a MySqlDataAdapter object is created, it is typically given an initial
SELECT statement. From this SELECT statement the Command
Builder can work out the corresponding INSERT, UPDATE and
DELETE statements that would be required to update the database.
To create the Command Builder, an object of the class
MySqglCommandBuilder is created.

Each of these classes will now be discussed in more detail.

Instantiating a DataSet object

A DataSet object can be created simply, as shown in the following example
code snippet:

=2 Copy
DataSet dsCountry;

dsCountry = new DataSet();
Although this creates the DataSet object, it has not yet filled it with data.
For that, a Data Adapter is required.
Instantiating a MySqglDataAdapter object

The MySqlDataAdapter can be created as illustrated by the following
example:

MySqlDataAdapter daCountry;

string sql = "SELECT Code, Name, HeadOfState FROM C
daCountry = new MySqglDataAdapter (sql, conn);

Note, the MySqlDataAdapter is given the SQL specifying the data to work
with.

Instantiating a MySqlCommandBuilder object

Once the MySqlDataAdapter has been created, it is necessary to generate
the additional statements required for inserting, updating and deleting data.
There are several ways to do this, but in this tutorial you will see how this
can most easily be done with MySqlCommandBuilder. The following code
snippet illustrates how this is done:

MySqlCommandBuilder cb = new MySqlCommandBuilder (da

Note that the MySqlDataAdapter object is passed as a parameter to the
command builder.

Filling the Data Set

To do anything useful with the data from your database, you need to load it
into a Data Set. This is one of the jobs of the MySqlDataAdapter object,
and is carried out with its Fill method. The following example code
illustrates this:

=2 Copy
DataSet dsCountry;
dsCountry = new DataSet();

daCountry.Fill(dsCountry, "Country");

Note the Fill method is a MySqlDataAdapter method, the Data Adapter
knows how to establish a connec tion with the database and retrieve the
required data, and then populates the Data Set when the Fill method is
called. The second parameter is the table in the Data Set to update.

Updating the Data Set

The data in the Data Set can now be manipulated by the application as
required. At some point, changes to data will need to be written back to the
database. This is achieved through a MySqlDataAdapter method, the
Update method.

=2 Copy
daCountry.Update(dsCountry, "Country");
Again, the Data Set and the table within the Data Set to update are
specified.
Working Example

The interactions between the DataSet, MySqlDataAdapter and
MySglCommandBuilder classes can be a little confusing, so their operation
can perhaps be best illustrated by working code.

In this example, data from the World database is read into a Data Grid
View control. Here, the data can be viewed and changed before clicking an

update button. The update button then activates code to write changes back
to the database. The code uses the principles explained above. The
application was built using the Microsoft Visual Studio to place and create
the user interface controls, but the main code that uses the key classes
described above is shown below, and is portable.

using
using
using
using
using
using
using
using

using
using

System;
System.Collections.Generic;
System.ComponentModel;
System.Data;
System.Drawing;
System.Ling;

System.Text,
System.wWindows.Forms;

MySql.Data;
MySql.Data.MySqlClient;

namespace WindowsFormsApplication5

{

public partial class Forml : Form

{

MySqlDataAdapter daCountry;
DataSet dsCountry;

public Forml()
{

}

private void Forml_Load(object sender, Even

{

InitializeComponent();

str