
Mizu	WebPhone
	

Contents
About
Usage

Steps
Web	Softphone
Click-to-call
Developers
Designers

Features,	technology	and	licensing
Feature	list
Requirements
Technical	details
Version	history
Licensing

Integration	and	customization
Details
User	interface	Skin/Design
Integration	with	server	side	applications
Development

Parameters
SIP	account	settings
Engine	related	settings
Call	divert	and	other	settings
User	interface	related	settings
Parameter	security

JavaScript	API
About
Basic	example
Functions
Events

FAQ
Resources
	

About																											
The	Mizu	WebPhone	is	a	universal	SIP	client	to	provide	VoIP
capability	for	all	browsers	using	a	variety	of	technologies
compatible	with	most	OS/browsers.	Since	it	is	based	on	the
open	standard	SIP	and	RTP	protocols,	it	can	inter-operate	with
any	other	SIP-based	network,	allowing	people	to	make	true	VoIP
calls	directly	from	their	browsers.	Compatible	with	all	SIP
softphones	(X-Lite,	Bria,	Jitsi	others),	devices	(gateways,	ATA’s,
IP	Phones,	others),	proxies	(SER,	OpenSIPS,	others),	PBX
(Asterisk,	Elastix,	Avaya,	3CX,	Broadsoft,	Alcatel,	NEC,	others),
VoIP	servers	(Mizu,	Voipswitch,	Cisco,	Huawei,	others),	service
providers	(Vonage,	others)	and	any	SIP	capable	endpoint	(UAC,
UAS,	proxy,	others).
	
The	Mizu	WebPhone	is	truly	cross-platform,	running	from	both
desktop	and	mobile	browsers,	offering	the	best	browser	to	SIP
phone	functionality	in	all	circumstances,	using	a	variety	of	built-
in	technologies	referred	as	“engines”:

·									NS	(Native	Service/Plugin)
·									WebRTC
·									Java	applet
·									Flash
·									App
·									P2P/Callback
·									Native	Dial

	
The	engine	to	use	is	automatically	selected	by	default	based	on
OS,	browser	and	server	availability	(It	can	be	also	set	manually
from	the	configuration	or	priorities	can	be	changed).	This	multi-
engine	capability	has	considerable	benefits	over	other	naive
implementations.
The	webphone	can	be	used	with	the	provided	user	interface	(as
a	ready	to	use	softphone	or	click	to	call	button)	or	as	a
JavaScript	library	via	its	API.
The	provided	user	interfaces	are	implemented	as	simple

https://en.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol

HTML/CSS	and	can	be	fully	customized,	modified,	extended	or
removed/replaced.

Usage																										
The	webphone	is	an	all-in-one	VoIP	client	module	which	can	be
used	as-is	(as	a	ready	to	use	softphone	or	click	to	call)	or	as	a
JavaScript	library	(to	implement	any	custom	VoIP	client	or	add
VoIP	call	capabilities	to	existing	applications).	You	can	create
custom	VoIP	solutions	from	scratch	with	some	JavaScript
knowledge	or	use	it	as	a	turn-key	solution	if	you	don’t	have	any
programming	skills	as	the	webphone	is	highly	customizable	by
just	changing	its	numerous	settings.
	

Steps
1.							Download

The	package	can	be	downloaded	from	here:	webphone
download.
It	includes	everything	you	need	for	a	browser	to	SIP	solution:	the
engines,	the	JavaScript	API,	the	skins	and	also	a	few	usage
examples.
	
2.							Deploy

You	can	find	the	requirements	here	which	need	to	be	fulfilled	to
be	able	to	use	the	webphone.
Unzip	and	copy	the	webphone	folder	into	your	webserver	and
refer	it	from	your	html	(for	example	from	your	main	page)	or
open	one	of	the	included	html	in	your	browsers	by	specifying	its
exact	URL.	For	example:
http://yourdomain.com/webphone/techdemo_example.html
	
Note1:	You	might	have	to	enable	the	.jar,	.exe,	.swf,	.dll,	.so,	.pkg,	.dmg	and	.dylib
mime	types	in	your	webserver	if	not	enabled	by	default	(these	files	might	be	used	in
some	circumstances	depending	on	the	client	OS/browser).
Note2:	If	you	wish	to	use	(also)	the	WebRTC	engine	then	your	site	should	be	secured
(HTTPS	with	a	valid	SSL	certificate).	Latest	Chrome	and	Opera	requires	secure
connection	for	both	your	website	(HTTPS)	and	websocket	(WSS).	If	your	website
doesn’t	have	an	SSL	certificate	then	we	can	host	the	webphone	for	you	for	free	or	you
can	install	a	cheap	or	free	certificate.
Alternatives:

https://www.mizu-voip.com/Portals/0/Files/webphone.zip
http://yourdomain.com/webphone/techdemo_example.html
mailto:webphone@mizu-voip.com?subject=webphone%20hosting
https://www.namecheap.com/
https://www.startssl.com/
https://letsencrypt.org/

o				You	can	also	test	it	without	a	webserver	by	launching	the	html	files	from	your
desktop,	although	some	engines	might	not	work	correctly	this	way

o				You	can	also	test	it	by	using	the	online	demo	hosted	by	Mizutech	website,	but	in
this	case	you	will	not	be	able	to	change	the	configuration	(you	can	still	set	any
parameters	from	the	user	interface	or	from	URL)
	

3.							Integrate
The	webphone	can	be	used	as	a	turn-key	ready	to	use	solution
or	as	a	Java-Script	library	to	develop	custom	software.
There	are	multiple	ways	to	use	it:

o			Use	one	of	the	supplied	templates	(the	“softphone”	or	the
“click	to	call”)	and	customize	it	after	your	needs.	You	can
place	one	of	them	as	an	iframe	or	div	to	your	website

o			Integrate	the	webphone	with	your	webpage,	website	or	web
application

o			Integrate	the	webphone	with	your	server	side	application	(if
you	are	a	server	side	developer)

o			Create	your	custom	solution	by	using	the	webphone	as	a
JavaScript	library	(if	you	are	a	JavaScript	developer)

	
	
4.							Settings

The	webphone	has	a	long	list	of	parameters	which	you	can	set
to	customize	it	after	your	needs.
You	can	set	these	parameters	multiple	ways	(in	the
webphone_api.js	file,	pass	by	URL	parameter	or	via	the
setparameter()	API).
If	you	are	using	the	webphone	with	a	SIP	server	(not	peer	to
peer)	then	you	must	set	at	least	the	“serveraddress”	parameter.
The	easiest	way	to	start	is	to	just	enter	the	required	parameters
(serveraddress,	username,	password	and	any	other	youm	might
wish)	in	the	webphone_api.js	file.
	
5.							Design

If	you	are	a	designer	then	you	might	create	your	own	design	or
modify	the	existing	HTML/CSS.	For	simple	design	changes	you
don’t	need	to	be	a	designer.	Colors,	branding,	logo	and	others
can	be	specified	by	the	settings	for	the	supplied	“softphone”

https://www.webvoipphone.com/webphone_online_demo/index.html

and	“click	to	call”	skins.
Mizutech	can	also	supply	a	ready	to	use	pre-customized	build	of
the	softphone	skin	with	your	settings	and	branding	for	no	extra
cost	(ask	for	it).
Please	note	that	the	webphone	also	works	without	any	GUI.
	
6.							Launch

Launch	one	of	the	examples	(the	html	files	in	the	webphone
folder)	or	your	own	html	(from	desktop	by	double	clicking	on	it
or	from	browser	by	entering	the	URL).	You	might	launch	the
“index.html”	to	see	the	included	templates.
At	first	start	the	webphone	might	offer	to	enable	or	download	a
native	plugin	if	no	other	suitable	engine	are	supported	and
enabled	by	default	in	your	browser.
It	will	also	ask	for	a	SIP	username/password	if	you	use	the
default	GUI	and	these	are	not	preset.
On	init,	the	webphone	will	register	(connect)	to	your	VoIP	server
(this	can	be	disabled	if	not	needed).
Then	you	should	be	able	to	make	calls	to	other	UA	(any
webphone	or	SIP	endpoint	such	as	X-Lite	or	other	softphone)	or
to	pstn	numbers	(mobile/landline)	if	outbound	call	service	is
enabled	by	your	server	or	VoIP	provider.
	
Examples	and	ready	to	use	solutions	(found	in	the	webphone
folder):

·									index.html:	just	an	index	page	with	direct	links	to	the
below	examples	for	your	convenience

·									minimal_example.html:	shortest	example	capable	to
make	a	call

·									basic_example.html:	a	basic	usage	example
·									techdemo_example.html:	a	simple	tech	demo.	You	might
make	any	tests	by	using	this	html	or	change/extend	it	to	fit
your	needs

·									softphone.html:	a	full	featured,	ready	to	use	browser
softphone.	You	can	use	it	as	is	on	your	website	as	a	web
dialer.	For	example	you	can	include	it	in	an	iframe	or	div	on
your	website.	Change	the	parameters	in	the

mailto:webphone@mizu-voip.com?subject=Customized/branded%20webphone

webphone_api.js).	You	can	further	customize	it	by	changing
the	parameters	or	changing	its	design.

·									softphone_launch.html:	a	simple	launcher	for	the	above
(since	the	softphone.html	is	used	usually	in	an	iFrame)

·									click2call_example.html:	a	ready	to	use	browser	to	SIP
click	to	call	solution.	You	might	further	customize	after	your
needs

·									linkify_example.html:	can	be	used	to	convert	all	phone
number	strings	on	a	website	to	click	to	call

·									custom:	you	can	easily	create	any	custom	browser	VoIP
solution	by	using	the	webphone	java	script	library

	
More	details	about	customization	can	be	found	here.
You	can	find	how	it	works	from	here.
Another	quick	start	guide	can	be	found	here.
	

Web	Softphone
The	webphone	package	contains	a	ready	to	use	web	softphone.
	
Just	copy	the	webphone	folder	to	your	webserver	and	change
the	“serveraddress”	setting	in	the	in	webphone_api.js	file	to
your	SIP	server	IP	or	domain	to	have	a	fully	featured	softphone
presented	on	your	website.	You	can	just	simply	include	(refer	to)
the	softphone.html	via	an	iframe	(this	way	you	can	even	preset
the	webphone	parameters	in	the	iframe	URL)	div	or	on	demand.
Note:	you	might	have	to	enable	the	following	mime	types	in
your	web	server	if	not	enabled	by	default:	.jar,	.swf,	.dll,	.dylib,
.so,	.pkg,	.dmg,	.exe
	
The	web	softphone	can	be	configured	via	URL	parameters	or	in
the	"webphone_api.js"	file,	which	can	be	found	in	the	root
directory	of	the	package.	The	most	important	configuration	is
the	“serveraddress”	parameter	which	should	be	set	to	your	SIP
server	IP	address	or	domain	name.	More	details	about	the
parameters	can	be	found	below	in	this	documentation	in	the
“Parameters”	section.

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=WebPhone+-How+It+Works%3f
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=WebPhone+Quick+Start

	
We	can	also	send	you	a	build	with	all	your	branding	and	settings
pre-set:	contact	us.
See	the	“User	interface	Skin/Design”	chapter	for	more	details.
	

Click-to-call
The	webphone	package	contains	a	ready	to	use	click	to	call
solution.
Just	copy	the	whole	webphone	folder	to	your	website,	set	the
parameters	in	the	webphone_api.js	file	and	use	it	from	the
click2call_example.html.
Rewrite	or	modify	after	your	needs	with	your	custom	button
image	or	you	can	just	use	it	via	a	simple	URI	or	link	such	as:
http://www.yourwebsite.com/webphonedir/click2call_example.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
You	can	find	more	details	in	the	click	to	call	section.
	

Developers
Developers	can	use	the	webphone	as	a	JavaScript	library	to
create	any	custom	VoIP	solution	integrated	in	any	webpage	or
web	application.
Just	include	the	"webphone_api.js"	to	your	project	or	html	and
start	using	the	webphone	API.
	
See	the	development	section	for	the	details.
	
	

Designers
If	you	are	a	designer,	you	can	modify	all	the	included
HTML/CSS/images	or	create	your	own	design	from	scratch	using
any	technology	that	can	bind	to	JS	such	as	HML5/CSS,	Flash	or
others.
For	simple	design	changes	you	don’t	need	to	be	a	designer.

mailto:webphone@mizu-voip.com?subject=Custom%20web%20softphone%20request
http://www.yourwebsite.com/webphonedir/click2call_example.html?wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1

Colors,	branding,	logo	and	others	can	be	set	by	the	settings.
See	the	“User	Interface	Skin/Design”	section	for	more	details.

Features,	technology	and	licensing
The	WebPhone	is	a	cross-platform	SIP	client	running	entirely	in
clients	browsers	compatible	with	all	browsers	and	all	SIP
servers,	IP-PBX	or	softswitch.	The	webphone	is	completely	self-
hosted	without	any	cloud	dependencies,	completely	owned	and
controlled	by	you	(just	copy	the	files	to	your	Web	server).
	

Feature	list
·									Standard	SIP	voice	calls	(in/out),	video,	chat,	conference
and	others	(Session	Initiation	Protocol)

·									Maximum	browsers	compatibility.	Runs	in	all	browsers
with	Java,	WebRTC	or	native	plugin	support	(Chrome,
Firefox,	IE,	Edge,	Safari,	Opera)

·									Includes	several	different	technologies	to	make	phone
calls	(engines):	Java	applet,	WebRTC,	NS	(Native	Service	or
Plugin),	Flash,	App,	Native	and	server	assisted	conference
rooms,	P2P	and	callback

·									SIP	and	RTP	stack	compatible	with	any	standard	VoIP
servers	and	devices	like	Cisco,	Voipswitch,	Asterisk,
softphones,	ATA		and	others

·									Transport	protocols:	UDP,	TCP,	HTTP,	RTMP,	websocket
(uses	UDP	for	media	whenever	possible)

·									Encryption:	SIPS,	TLS,	DTLS,	SRTP,	end	to	end	encryption
for	webphone	to	webphone	calls

·									NAT/Firewall	support:	auto	detect	transport	method
(UDP/TCP/HTTP),	stable	SIP	and	RTP	ports,	keep-alive,	rport
support,	proxy	traversal,	auto	tunneling	when	necessary,
ICE/STUN/TURN	protocols	and	auto	configuration,	firewall
traversal	for	corporate	networks,	VoIP	over	HTTP/TCP	when
firewalls	blocks	the	UDP	ports	with	full	support	for	ICE	TCP
candidates

·									Works	over	the	internet	and	also	on	local	LAN’s	(perfectly
fine	to	be	used	with	your	own	internal	company	PBX)

·									RFC’s:	2543,	3261,	7118,	2976,	3892,	2778,	2779,	3428,

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+engine+support+grid

3265,	3515,	3311,	3911,	3581,	3842,	1889,	2327,	3550,
3960,	4028,	3824,	3966,	2663,	6544,	5245	and	others

·									Supported	methods:	REGISTER,	INVITE,	re-INVITE,
ACK,PRACK,	BYE,	CANCEL,	UPDATE,	MESSAGE,	INFO,
OPTIONS,	SUBSCRIBE,	NOTIFY,	REFER

·									Audio	Codec:	PCMU,	PCMA,	G.729,	GSM,	iLBC,	SPEEX,
OPUS	(including	wide-band	HD	audio)

·									Video	codec:	H.263,	H.264	and	VP8	for	WebRTC		only
·									SIP	compatible	codec	auto	negotiation	and	adjustment	(for
example	G.729	-	wideband	or	WebRTC	G.711	to	G.729
transcoding	if	needed)

·									Call	divert:	rewrite,	redial,	mute,	hold,	transfer,	forward,
conference

·									Call	park	and	pickup,	barge-in	(with	NS)
·									Voice	call	recording
·									IM/Chat	(RFC	3428),	SMS,	file	transfer,	DTMF,	voicemail
(MWI)

·									Multi-line	support
·									Contact	management:	flags,	synchronization,	favorites,
block,	presence	(DND/online/offline/others)

·									Balance	display,	call	timer,	inbound/outbound	calls,	caller-
id	display

·									High	level	JavaScript	API:	web	developers	can	easily	build
any	custom	VoIP	functionality	using	the	webphone	as	a	JS
library

·									Stable	API:	new	releases	are	always	backward	compatible
so	you	can	upgrade	with	no	changes	in	your	code

·									Integration	with	any	website	or	application	including
simple	static	pages,	apps	with	client	side	code	only	(like	a
simple	static	page)	or	any	server	side	stack	such	as	PHP,
.NET,	java	servlet,	J2EE,	Node.js	and	others	(sign-up,	CRM,
callcenter,	payments	and	others)

·									Phone	API	accessible	from	any	JavaScript	framework	(such
as	AngularJS,	React,	jQuery	and	others)	or	from
plain/vanilla	JS	or	not	use	the	JS	API	at	all

·									Branding	and	customization:	customizable	user	interface
with	your	own	brand,	skins	and	languages	(with	ready	to

use,	modifiable	themes)
·									Flexibility:	all	parameters/behavior	can	be
changed/controlled	by	URL	parameters,	preconfigured
parameters,	from	javascript	or	from	server	side

	
	

Requirements
Server	side:

·									Any	web	hosting	for	the	webphone	files	(any	webserver
is	fine:	IIS,	nginx,	Apache,	NodeJS,	Java,	others;	any	OS:
Windows,	Linux,	others).
Chrome	and	Opera	requires	secure	connection	for	WebRTC
engine	to	work	(otherwise	this	engine	will	be	automatically
skipped).	We	can	also	host	the	webphone	for	free	if	you
wish	on	secure	http.	Note	that	the	web	phone	itself	doesn’t
require	any	framework,	just	host	it	as	static	files	(no	PHP,
.NET,	JEE,	NodeJS	or	similar	server	side	scripting	is	required
to	be	supported	by	your	webserver)

·									At	least	one	SIP	account	at	any	VoIP	service	provider	or
your	own	SIP	server	or	IP-PBX	(such	as	Asterisk,	Voipswitch,
3CX,	FreePBX,	Trixbox,	Elastix,	SER,	Cisco	and	others)

·									Optional:	WebRTC	capable	SIP	server	or	SIP	to	WebRTC
gateway	(Mizutech	free	WebRTC	to	SIP	service	is	enabled
by	default.	The	webphone	can	be	used	and	works	fine	also
without	WebRTC,	however	if	you	prefer	this	technology	then
free	software	is	available	and	Mizutech	also	offers	WebRTC
to	SIP	gateway	(free	with	the	Advanced	license)	and	free
service	tier.	Common	VoIP	servers	also	has	built-in	WebRTC
support	nowadays)
	

Client	side:
·									Any	browser	supporting	WebRTC	OR	Java	OR	native
plugins	with	JavaScript	enabled	(most	browsers	are
supported)

·									Audio	device:	headset	or	microphone/speakers
	

https://www.doubango.org/webrtc2sip/
https://www.mizu-voip.com/Software/WebRTCtoSIP.aspx
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Asterisk+WebRTC

Compatibility:
·									OS:	Windows	(XP,Vista,7,8,10)	,	Linux,	MAC	OSX,	Android,
iOS	(app	only),	BlackBerry,	Chromium	OS	and	others

·									Browsers:	Firefox,	Chrome,	IE	(6+),	Edge,	Safari,	Opera
and	others

·									Different	OS/browser	might	have	different	compatibility
level	depending	on	the	usable	engines.	For	example	the
rarely	used	Flash	engine	doesn’t	implement	all	the
functionalities	of	the	WebRTC/Java/NS	engines	(these
differences	are	handled	automatically	by	the	webphone
API)

	
If	you	don't	have	an	IP-PBX	or	VoIP	account	yet,	you	can	use	or
test	with	our	SIP	VoIP	service.

·									Server	address:	voip.mizu-voip.com
·									Account:	create	free	VoIP	account	from	here	or	use	the
following	username/passwords:
webphonetest1/webphonetest1,
webphonetest2/webphonetest2	(other	people	might	also
use	these	public	accounts	so	calls	might	be	misrouted)

	

Technical	details
The	goal	of	this	project	is	to	implement	a	VoIP	client	compatible
with	all	SIP	servers,	running	in	all	browsers	under	all	OS	with	the
same	user	interface	and	API.	At	this	moment	no	technology
exists	to	implement	a	VoIP	engine	to	fulfill	these	requirements
due	to	browser/OS	fragmentation.	Also	different	technologies
have	some	benefits	over	others.	We	have	achieved	this	goal	by
implementing	different	“VoIP	engines”	targeting	each
OS/browser	segment.	This	also	has	the	advantage	of	just	barely
run	a	VoIP	call,	but	to	offer	the	best	possible	quality	for	all
environments	(client	OS/browser).	All	these	engines	are	covered
by	a	single,	easy	to	use	unified	API	accessible	from	JavaScript.
To	ease	the	usage,	we	also	created	a	few	different	user
interfaces	in	HTML/JS/CSS	addressing	the	most	common	needs
such	as	a	VoIP	dialer	and	a	click	to	call	user	interface.

https://www.mizu-voip.com/Services/VoIPServices.aspx
http://voip.mizu-voip.com:8000/

	
More	details	about	how	it	works	can	be	found	here.
	
Each	engine	has	its	advantages	and	disadvantages.	The	sip
webphone	will	automatically	choose	the	“best”	engine	based	on
your	preferences,	OS/Browser/server	side	support	and	the
enduser	preferences	(this	can	be	overridden	by	settings	if	you
have	some	special	requirements):	VoIP	availability	in	browsers.
	

Engines

NS
Our	native	VoIP	engine	implemented	as	a	native	service	or	browser	plugin.	The
engine	works	like	a	usual	SIP	client,	connecting	directly	from	client	PC	to	your	SIP
server,	but	it	is	fully	controlled	from	web	(the	client	browser	will	communicate	in	the
background	with	the	native	engine	installed	on	the	client	pc/mobile	device,	thus	using
this	natively	installed	sip/media	stack	for	VoIP).
Pros:

·									All	features	all	supported,	native	performance
Cons

·									Requires	install	(one	click	installer)
	

WebRTC
A	new	technology	for	media	streaming	in	modern	browsers	supporting	common	VoIP
features.	WebRTC	is	a	built-in	module	in	modern	browsers	which	can	be	used	to
implement	VoIP.	Signaling	goes	via	websocket	(unencrypted	or	TLS)	and	media	via
encrypted	UDP	(DTLS-SRTP).	These	are	then	converted	to	normal	SIP/RTP	by	the	VoIP
server	or	by	a	gateway.
Pros:

·									Comfortable	usage	in	browsers	with	WebRTC	support	because	it	is	has	no
dependencies	on	plugins

Cons:
·									It	is	a	black-box	in	the	browser	with	a	restrictive	API
·									Lack	of	popular	VoIP	codec	such	as	G.729	(this	can	be	solved	by	CPU	intensive
server	side	transcoding)

·									A	WebRTC	to	SIP	gateway	may	be	required	if	your	VoIP	server	don’t	have	built-
in	support	for	WebRTC	(there	are	free	software	for	this	and	we	also	provide	a
free	service	tier,	included	by	default)

Flash

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=WebPhone+-How+It+Works%3f
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+engine+support+grid
https://en.wikipedia.org/wiki/WebRTC

A	browser	plugin	technology	developed	by	Adobe	with	its	proprietary	streaming
protocol	called	RTMP.
Pros:

·									In	some	old/special	browsers	only	Flash	is	available	as	a	single	option	to
implement	VoIP

Cons:
·									Requires	server	side	Flash	to	SIP	gateway	to	convert	between	flash	RTMP	and
SIP/RTP	(we	provide	free	service	tier)

·									Basic	feature	set
	

Java	Applet
Based	on	our	powerful	JVoIP	SDK,	compatible	with	all	JRE	enabled	browsers.	Using	the
Java	Applet	technology	you	can	make	SIP	calls	from	browsers	the	very	same	way	as	a
native	dialer,	connecting	directly	from	client	browser	to	SIP	server	without	any
intermediary	service	(SIP	over	UDP/TCP	and	RTP	over	UDP).
Pros:

·									All	SIP/media	features	are	supported,	all	codecs	including	G.729,	wideband
and	custom	extra	modules	such	as	call	recording

·									Works	exactly	as	a	native	softphone	or	ip	phone	connecting	directly	from	the
user	browser	to	your	SIP	capable	VoIP	server	or	PBX	(but	with	your	user
interface)

Cons:
·									Java	is	not	supported	by	some	browser,	most	notable	mobile	devices	and
Chrome	which	has	dropped	NPAPI	support	required	for	the	Java	plugin	(in	this
case	the	webphone	will	use	WebRTC,	Flash	or	Native	engine	instead	of	Java)

·									Some	browsers	may	ask	for	user	permission	to	activate	the	Java	plugin
	

App
Some	platforms	don’t	have	any	suitable	technology	to	enable	VoIP	in	browsers	(a
minor	percentage,	most	notably	iOS/Safari).	In	these	cases	the	webphone	can	offer	to
the	user	to	install	a	native	softphone	application.	The	apps	are	capable	to	fully	auto-
provision	itself	based	on	the	settings	you	provide	in	your	web	application	so	once	the
user	installs	the	app	from	the	app	store,	then	on	first	launch	it	will	magically	auto-
provision	itself	with	most	of	your	settings/branding/customization/user	interface	as
you	defined	for	the	webphone	itself.
Pros:

·									Covering	platforms	with	lack	of	VoIP	support	in	browsers	(most	notable:	iOS
Safari)

Cons:
·									No	API	support.	Not	the	exactly	same	HTML	user	interface	(although	highly
customized	based	on	the	settings	you	provided	for	the	webphone)

	

P2P	and	callback

https://en.wikipedia.org/wiki/Real_Time_Messaging_Protocol
http://www.oracle.com/technetwork/java/applets-137637.html
https://en.wikipedia.org/wiki/Softphone

These	are	just	“virtual”	engines	with	no	real	client	VoIP	stack.
·									P2P	means	server	initiated	phone	to	phone	call	initiated	by	an	API	call	into
your	VoIP	server.	Then	the	server	will	first	call	you	(on	your	regular
mobile/landline	phone)	and	once	you	pick	it	up	it	will	dial	the	other	number	and
you	can	start	talking		(Just	set	the	“p2p”	setting	to	point	to	your	VoIP	server	API
for	this	to	work)

·									Callback	is	a	method	to	make	cheap	international	calls	triggering	a	callback
from	the	VoIP	server	by	dialing	its	callback	access	number.	It	might	be	used
only	as	a	secondary	engine	if	you	set	a	callback	access	number	(Just	set	the
“callback”	setting	to	point	to	your	VoIP	server	API	for	this	to	work)

	
These	are	treated	as	a	secondary	(failback)	engines	and	used	only	if	no	other	engines
are	available	just	to	be	able	to	cover	all	uncommon/ancient	devices	with	lack	of
support	for	all	the	above	engines	which	is	very	rare.	However	it	might	be	possible
that	these	fits	into	your	business	offer	and	in	that	case	you	might	increase	their
priority	to	be	used	more	frequently.

Native	Dial
This	means	native	calls	from	mobile	using	your	mobile	carrier	network.	This	is	a
secondary	“engine”	to	failback	to	if	no	any	VoIP	capabilities	were	found	on	the	target
platform	or	there	is	no	network	connection.	In	these	circumstances	the	webphone	is
capable	to	simply	trigger	a	phone	call	from	the	user	smartphone	if	this	option	is
enabled	in	the	settings.	Rarely	used	if	any.

	
	
The	most	important	engines	are:	Java,	WebRTC,	NS	and	Flash.	The	other	engines	are
to	provide	support	for	exotic	and	old	browsers	maximizing	the	coverage	for	all
OS/browser	combinations	ensuring	that	enduser	has	call	capabilities	regardless	of	the
circumstances.

API
All	the	above	engines	are	covered	with	an	easy	to	use	unified	Java	Script	API,	hiding
all	the	differences	between	the	engines	as	described	below	in	the	“JavaScript	API”
section.
	

GUI
The	webphone	can	be	used	with	or	without	a	user	interface.
The	user	interface	can	be	built	using	any	technology	with	JS	binding.	The	most
convenient	is	HTML/CSS,	but	you	can	also	use	any	others	such	as	Flash.
The	webphone	package	comes	with	a	few	prebuilt	feature	rich	responsive	user
interfaces	covering	the	most	common	usage	such	as	a	full	featured	softphone	user
interface	and	a	click	to	call	implementation.	You	are	free	to	use	these	as	is,	modify
them	after	your	needs	or	create	your	own	from	scratch.	For	more	details	check	the
“User	interface	Skin/Design”	section.
	

http://www.voip-info.org/wiki/view/CallBack

Version	history
Major	changes	by	release	are	listed	here:

Version	0.2	(February	12,	2015)
-internal	beta	version	with	basic	skin	and	basic	call

functionality

Version	0.6	(July	3,	2015)
-engines:	WebRTC	beta	and	Java	Applet	v.1.0
-more	SIP	settings
-early	beta	version	with	basic	SIP	call	functionality

Version	0.9	(September	9,	2015)
-call-divert	functionalities	(voicemail,	transfer,	others)
-conference
-NS	(Native	Service	or	Plugin)
-examples	and	documentation
-better	skinning
-better	OS/browser	handling
-automatic	engine	selection
-WebRTC	stable	incoming	and	outgoing	calls
-upgrade	to	latest	Java	Applet	and	WebRTC	engine
-more	JavaScript	SIP	API

Version	1.0	(November	6,	2015)
-new:	flash	engine
-WebRTC	improvements
-stable	API,	modules	and	file	structure
-improved	auto	engine	selection
-chat
-app	engine
-secondary	engines	(p2p,	native	dial,	callback)
-custom	builds	based	on	customer	settings

Version	1.2	(January	18,	2016)

-callback	API	for	simplified	API	(use	simple	call	back	instead
of	notification	string	parsing)

-server	API	for	the	webphone	state	machine	(so	you	can
easily	catch	all	important	events	from	server	code)

-WebRTC	engine	upgrade	to	latest	version
-presence	(not	fully	standard	compliant	yet	but	working)
-added	file	transfer
-new	missed	call/chat	notifications
-http	vs	https	bug	fixes
-NS	engine	availability	from	https
-reset	setting	parameter	and	API
-last	call	detailed	statistics
-called	number	normalization
-one-way	audio	fix	on	WebRTC
-WebRTC	fix	for	Android
-many	other	improvements	and	bug	fixes

Version	1.3	(February	05,	2016)
-new:	audio	device	selection
-new:	favorite	or	block	contact
-new:	setsipheader/getsipheader
-improved:	capability	call	special	url's	on	events	(server	API

integration)
-improved:	number	rewrite	rules
-improved:	feedback	for	file	transfer
-fix:	ns	engine	unregister	on	webpage	close
-fix:	increase	cseq	for	re-invite
-other	improvements	and	bug	fixes

Version	1.4	(April	11,	2016)
-new:	WebRTC	to	SIP	gateway	(free	as	both	software	and

service	for	all	our	web	sip	library	customers)
-new:	TURN	(WebRTC	works	now	even	if	all	UDP	is	blocked

and	only	port	TCP	80	is	allowed)
-new:	auto	codec	convert	when	necessary	(for	example	to

G.729	from	WebRTC)

-new:	App	engines	for	iOS	and	Android
-new:	WebRTC	on	Android
-new:	HTTP	to	HTTPS	gateway	(used	automatically	if

hosting	website	is	not	secure	which	is	required	by	Chrome	for
WebRTC)

-new:	WebRTC	caller-id
-improved:	WebRTC	NAT	handling
-improved:	STUN
-improved:	end	to	end	encryption
-improved:	softphone	skin
-fix:	java	freezing	improvements
-fix:	WebRTC	caller-id

Version	1.5	(April	27,	2016)
-new:	call	recording	(voicerecupload)
-new:	8	new	call-divert	related	settings	and	API’s
-new:	callcenter	integration
-improved:	engine	selection
-improved:	VoIP	over	TCP	using	TURN	only	when	necessary
-improved:	usage	on	local	LAN’s
-improved:	WebRTC	(various	fixes)
-fix:	auto	engine	select	related	bugs,	unnecessary	java

popups
-fix:	NS	engine	discover	issues
-fix:	mute/unmute,	hold/unhold
-fix:	CTRL+C,	CTRL+V	in	the	softphone	skin
-more	than	20	other	bug	fixes	and	small	improvements

especially	engine	detect/choose	related
	

Version	1.6	(July	1,	2016)
-new:	video
-new:	conference	rooms	(server	assisted)
-new:	audio	device	list,	get,	set	functions
-new:	web	call-me
-new:	peer	to	peer	media	auto	discover

-new:	call	forward
-new:	auto	WebRTC	server	discovery	(for	example	it	can

detect	automatically	if	webrtc	is	enabled	in	Asterisk	and	other
servers)

-new:	softphone	skin	now	can	be	inserted	also	in	a	DIV
(previously	it	was	working	only	in	iframe)

-new:	callback	(you	can	specify	a	callbacknumber
parameter	if	your	server	has	a	callback	access	number)

-new:	sip	outbound	proxy	setting
-new:	call	transfer	options
-new:	CDR	records	after	calls	(can	be	easily	posted	to

server	API)
-new:	group	chat
-improved:	webrtc	engine
-improved:	click	to	call
-improved:	presence
-improved:	voicemail
-improved:	conference
-improved:	voice	recording
-improved:	android	native	dialer	auto-configuration
-improved:	themes	(color	theme/skinning)
-improved:	TURN	and	STUN	handling	and	auto-discovery
-improved:	user	interface	integration	(div,	popup,	flying,

others)
-improved:	chat	(reliability,	smiles,	file-transfer,	groups)
-improved:	NS	engine	versioning	and	auto	upgrade
-fix:	voip	engine	auto	select	related	issues,	settings

save/restore
-fix:	init	delay
-fix:	ns	engine	localhost	certificate,	https/wss	issues
-fix:	more	than	44	bug-fixes	mostly	based	on	customer

feedback	and	additional	tests
-the	old	documentation	for	this	version	can	be	found	here

Version	1.8	(November	28,	2016)
-new:	MAC	OS	WebRTC	plugin
-new:	multi-line	(manage	multiple	simultaneous	calls)

https://www.mizu-voip.com/Portals/0/Files/old_Webphone_Documentation.pdf

-new:	ICE	TCP	candidate	(RFC	6544)
-new:	UPNP	NAT	for	NS	and	Java	engines	(better	NAT

handling	behind	UPNP	capable	routers)
-new:	redial	or	re-INVITE	on	fast	call	failure	or	on	no	media

with	changed	stun	and	codec
-new:	auto	call	forward	on	no	answer

(“callforwardonnoanswer”	setting)
-new:	more	settings	such	as	language,	disablesamecall,

checkvolumelevel,	inbounddtmf	,	outbounddtmf,
usecommdevice,	etc

-new:	stop()	and	getworkdir()	api
-new:	auto	NS	service	upgrade	in	background	(only	if	NS	is

actually	used	and	only	to	known	good	new	versions)
-improved:	DTMF	between	SIP	and	WebRTC	(both	INFO	and

RFC	2866	are	supported)
-improved:	stun	and	turn	(earlier	public	IP	discovery,

doesn’t	use	on	local	LAN’s)
-improved:	more	native	audio	features	on	Windows
-improved:	http/https

view/api/download/upload/autoprovisioning	(autodetect,	https-
http	proxy	and	ssl	bypass	options)

-improved:	fast	init	with	no	more	delays	when	coming	from
settings	and	engine	init	speedups

-improved:	fast	cleanup	and	exit	for	the	java	engine
-improved:	conference	for	WebRTC
-improved:	NS	engine	auto	upgrade
-improved:	iOS	app	engine	via	SIP	softphone
-improved:	various	transfer	related	improvements	including

WebRTC	to	SIP	call	transfer
-improved:	usage	from	behind	NAT	or	firewalls	(now

capable	to	use	both	TURN	and	TCP	candidates	if	UDP	is	blocked)
-improved:	various	other	WebRTC-SIP	related

improvements
-improved:	documentation
-fix:	embed	in	webpage	related	issues	and

webphonebasedir
-fix:	onRegistered	to	catch	all	SIP	register	events

-fix:	settings	save/load,	keep	last	good	VoIP	method
-fix:	chat	between	SIP	and	WebRTC
-fix:	file	transfer	related	bugs
-fix:	flash	VoIP	engine	only	when	really	necessary	(no	any

other	options)
-fix:	DNS	SRV	record	timeout	handling
-fix:	fixed	problem	with	AEC	for	wideband	speex	and	opus

with	NS	and	Java
-fix:	audio	device	list	on	Windows
-fix:	ptime	settings	for	G.729
-fix:	reject	double	outbound	calls	to	same	destination
-fix:	various	GUI	related	bugs	on	the	softphone	skin
-fix:	various	auto	engine	detect,	prioritization	and	usage

related	bugs
-fix:	more	than	110	other	minor	fixes	and	improvements

	

Version	1.9	(December	24,	2016)
-new:	no	need	to	explicitly	set	the	webphonebasedir

anymore	as	it	is	always	guessed	correctly	from	now
-new:	call	forward	and	transfer	now	works	between	SIP	and

WebRTC	endpoints
-new:	NS	self-upgrade	in	background	capability	(with	no

user	interaction	required)
-new:	checkmicrophone	setting
-new:	global	instance	(ability	to	use	the	same	webphone

instance	on	multiple	webpages	opened	in	different
tabs/windows	in	the	client	browser)

-new:	call	recover	with	redial	on	no	or	bad	response
-new:	MAC	OS	webrtc	plugin	as	pkg	(webrtcplugin.pkg)
-new:	capability	to	initiate	calls	even	if	not	registered,

registrar	disabled	or	register	failed
-new:	more	call	details	onCdr	such	as	displayname	and	call

disconnect	reason
-improved:	better	audio/camera	recording	permission

handling
-improved:	TURN	and	TCP	candidates	(now	it	works	in	all

circumstances	with	WebRTC)
-improved:	WebRTC-SIP	protocol	conversion
-improved:	WebRTC-SIP	codec	conversion	(for	example

Opus	to	G.729	and	inverse)
-improved:	Android	app	engine
-improved:	better	aec	and	denoise
-improved:	update	to	latest	OpenSSL	for	the	WebRTC	DTLS

and	websocket	TLS
-improved:	settings	management	(now	the	server	side

settings	from	webphone_js.api	are	applied	immediately	and
exactly	as-is)

-improved:	more	flexible	parameter	handling	(handle	when
pass	number	as	string	or	bool	as	number	and	others)

-improved:	auto	hide	disconnected	call	page	after	some
time

-improved:	click-to-call	related	improvements
-improved:	Asterisk	WebRTC	auto	discover
-improved:	registerless	usage	(register=0)
-improved:	permissible	demo	license	limitations
-improved:	WebRTC	trickle	ICE
-improved:	chat	reliability
-improved:	number	rewrite	rules
-improved:	call	divert	now	propagated	also	to	server	side

(will	safely	handle	servers	with	no	such	support)
-improved:	usage	without	sipserver	(call	to	sip	uri	should

work;	serverless	peer	to	peer	functionality)
-fix:	click-to-call	related	bugs
-fix:	autostart:	0,	start	and	register	only	when	clicked
-fix:	mute()	should	mute	also	the	speaker	if	called	with

parameter	0	or	1;	also	webrtc	mute	is	fixed	now
-fix:	on	hold	fail,	call	is	disconnected,	but	the	disconnect	is

not	discovered	by	the	GUI
-fix:	send	dtmf	while	in	webrtc	call	doesn't	display	any

feedback
-fix:	keypress	events
-fix:	loading	cached	old	settings	problem
-fix:	ERROR,	catch	on	common:	ParamAsBool

ReferenceError:	isNumber	is	not	defined	(isNumber	is	not
defined)	

-fix:	ERROR,	catch	on	notifications:	ProcessNotifications,
not:	STATUS,1,Finished	ReferenceError:	GetParameter	is	not
defined

-fix:	WRTC,	ERROR,	InvalidAccessError:	RTCPeerConnection
constructor	passed	invalid	RTCConfiguration

-fix:	flash	engine	offer	only	if	no	any	other	better	choice
-fix:	java	no	applethandle	after	going	to	settings	and	back

(maybe	go	to	settings	and	select	java	engine	even	if	selected)
-fix:	settings	not	always	read	correctly	if	webphone	is	used

as	SDK	and	this	causes	discrepancies	in	engine	selection
-fix:	detailed	loglevel	fixed
-fix:	call	start	while	webphone	is	initializing
-fix:	video	chat	one	side	only	now	fixed
-fix:	call	recording	with	WebRTC	engine

Version	2.0	(February	22,	2017)
-new:	getsipmessage	API
-new:	allowcallredirect	parameter
-new:	playdtmfsound	parameter
-new:	onDisplay	callback
-new:	earlymedia	parameter
-new:	server/user-agent	based	licensing	for	the	gold

version
-new:	option	to	disable	all	toasts/popups		
-new:	muteholdalllines	parameter
-improvement:	multi-line;	a	lot	of	improvements	regarding

line	management
-improved:	setline()	now	accepts	also	peer	phonenumber	or

sip	call-id
-improved:	conference	API	add	parameter	and	other

conference	related
-improved:	call	transfer	and	forward	between	SIP	and

WebRTC	(and	inverse)
-improved:	more	robust	un-register

-improved:	cookie	and	indexDB	localforage
-improved:	call	setup	without	recording	device	(no

microphone)
-improved:	NS	engine	once	click	installer	improvements

and	auto-configuration
-improved:	Safari	compatibility
-improved:	handle	Firefox	52+	no	Java/NPAPI	support
-improved:	playsound	API
-improved:	get	the	call	disconnect	reason	on	hangup	(from

SIP	disc.	code	but	also	from	Reason	and	Warning	headers)
-fix:	WebRTC-SIP	converter	blind	accept	any

username/password	in	registrations	(now	properly	forward	as
SIP	REGISTER	with	digest	authentication)

-fix:	ice	timeout
-fix:	IsRegistered
-fix:	don't	touch	the	NS	engine	if	not	needed
-fix:	globalline	defaults	to	-1	if	not	multiline
-fix:	webphone_api.voicerecord
-fix:	getsipheader	mixed	up	bug
-fix:	call	timer	display
-fix:	accidental	call	disconnects
-fix:	IE	7	and	IE	8	compatibility
-fix:	password	sometime	encoded	incorrectly
-fix:	username	vs	sipusername
-fix:	SendDtmf	ReferenceError:	message	is	not	defined
-fix:	settings	management
-fix:	garbage	characters	in	balance	display	(credit/currency)
-fix:	NS	engine	XP	and	vista	compatibility
-fix:	NS	engine	compatibility	with	x32	(32	bit)	OS	versions
-fix:	NS	engine	compatibility	with	non-english	Windows

versions
-fix:	autologin	not	working	if	server/user/password	is	set
-fix:	if	username	or	password	is	preset	then	don't	display

user/pwd	input	for	the	softphone	skin
-numerous	other	improvements	and	minor	bug	fixes

	

Licensing
The	webphone	is	sold	with	unlimited	client	license	(Advanced
and	Gold)	or	restricted	number	of	licenses	(Basic	and	Standard).
You	can	use	it	with	any	VoIP	server(s)	on	your	own	and	you	can
deploy	it	on	any	webpage(s)	which	belongs	to	you	or	your
company.	Your	VoIP	server(s)	address	(IP	or	domain	name)	and
optionally	your	website(s)	address	will	be	hardcoded	into	the
software	to	protect	the	licensing.	You	can	find	the	licensing
possibilities	on	the	pricing	page.	After	successful	tests	please
ask	for	your	final	version	at	webphone@mizu-voip.com.
Mizutech	will	deliver	your	webphone	build	within	one	workday
after	your	payment.
Release	versions	don’t	have	any	limitations	(mentioned	below	in
the	“Demo	version”	section)	and	are	customized	for	your
domain(s).	All	“mizu”	and	“mizutech”	words	and	links	are
removed	so	you	can	brand	it	after	your	needs	(with	your
company	name,	brand-name	or	domain	name),	customize	and
skin	(we	also	provide	a	few	skin	which	can	be	freely	used	or
modified).
Your	final	build	must	be	used	only	for	you	company	needs
(including	your	direct	sip	endusers	or	service	customers).
Title,	ownership	rights,	and	intellectual	property	rights	in	the
Software	shall	remain	with	MizuTech.
The	agreement	and	the	license	granted	hereunder	will
terminate	automatically	if	you	fail	to	comply	with	the	limitations
described	herein.	Upon	termination,	you	must	destroy	all	copies
of	the	Software.	The	software	is	provided	"as	is"	without	any
warranty	of	any	kind.	You	must	accept	the	software	SLA	before
to	use	the	webphone.
You	may:

·									Use	the	webphone	on	any	number	of	computers,
depending	on	your	license

·									Give	the	access	to	the	webphone	for	your	customers
or	use	within	your	company

·									Offer	your	VoIP	services	via	the	webphone								
·									Integrate	the	webphone	to	your	website	or	web

https://www.mizu-voip.com/Support/Webphonepricing.aspx
mailto:webphone@mizu-voip.com
https://www.mizu-voip.com/portals/0/Files/WebphoneSLA.pdf

application
·									Use	the	webphone	on	multiple	webpage’s	and	with
multiple	VoIP	servers	(after	the	agreement	with
Mizutech).	All	the	VoIP	servers	must	be	owned	by	you
or	your	company.	Otherwise	please	contact	our
support	to	check	the	possibilities

You	may	not:
·									Resell	the	webphone	as	is
·									Sell	“webphone”	services	for	third	party	VoIP
providers	and	other	companies	usable	with	any	third-
party	VoIP	servers	(except	if	coupled	with	your	own
VoIP	servers)

·									Resell	the	webphone	or	any	derivative	work	which
might	compete	with	the	Mizutech	“webphone”
software	offer

·									Reverse	engineer,	decompile	or	disassemble	or
modify	the	software	in	any	way	except	modifying	the
settings	and	the	HTML/CSS	skins	or	the	included
JavaScript	examples

Note:	It	is	perfectly	fine	to	sell	or	promote	it	as	a	“webphone	service”	if	that	is	tied	to
your	own	SIP	servers.	But	if	you	sell	it	as	webphone	software	which	can	be	used	with
any	server	than	you	are	actually	selling	the	same	as	Mizutech	and	this	is	not	allowed
by	the	license.
	
There	are	the	following	legal	ways	to	use	the	webphone:
-you	have	your	own	SIP	server(s)	and	the	webphone	will	be	used	with	these	server(s)
	(your	customers	can	integrate	the	webphone	into	any	application	or	website	but	they
will	use	the	webphone	via	your	VoIP	server)
-you	are	building	some	application	or	website	(such	as	a	CRM),	so	the	webphone	will
be	tightly	integrated	with	your	solution	
-both	of	the	above	(webphone	used	via	your	own	SIP	server	from	within	your	own
website	or	application)
Let	us	know	if	you	wish	to	use	the	webphone	in	some	other	way,
not	covered	by	this	license.
	
Demo	version
The	downloadable	demo	version	can	be	used	to	try	and	test
before	any	purchase.	The	demo	version	has	all	features	enabled
but	with	some	restrictions	to	prevent	commercial	usage.	The
limitations	are	the	followings:

https://www.mizu-voip.com/Software/WebPhone.aspx
https://www.mizu-voip.com/Portals/0/Files/webphone.zip

·									maximum	10	simultaneous	webphone	at	the	same	time
·									will	expire	after	several	months	of	usage		(usually	2	or	3
months)

·									maximum	~100	sec	call	duration	restriction
·									maximum	10	calls	/	session	limitation.	(After	~10	calls	you
will	have	to	restart	your	browser)

·									will	work	maximum	~20	minutes	after	that	you	have	to
restart	it	or	restart	the	browser

·									can	be	blocked	from	Mizutech	license	service
	
In	short:	the	demo	version	can	be	used	for	all	kind	of	tests	or
development,	but	it	can’t	be	used	for	production.
Note:	for	the	first	few	calls	and	in	some	circumstances	the
limitations	might	be	weaker	than	described	above,	with	fewer
restrictions.
On	request	we	can	also	provide	test	builds	with	only	trial	period
limitation	(will	expire	after	~3	weeks	of	usage)	and	without	the
above	demo	limitations.
See	the	pricing	and	order	your	licensed	copy	from	here.
	

https://www.mizu-voip.com/Support/Webphonepricing.aspx

Integration	and	customization
The	webphone	is	a	flexible	VoIP	web	client	which	can	be	used
for	various	purposes	such	as	a	dialer	on	your	website,	a	click	to
call	button	for	contacts	or	integrated	with	your	web	application
(contact	center,	CRM,	social	media	or	any	other	application
which	requires	VoIP	calls).
	

Details
The	webphone	can	be	customized	by	its	numerous	settings,
webphone	API’s	and	by	changing	its	HTML/CSS.
	
Deploy:
The	webphone	can	be	deployed	as	a	static	page	(just	copy	the
webphone	file	to	your	website),	as	a	dynamic	page	(with
dynamically	generated	settings)	or	used	as	a	JavaScript	VoIP
library	by	web	developers.	You	can	embed	the	webphone	to
your	website	in	a	div,	in	an	iFrame	or	on	demand,	as	a	module
or	as	a	separate	page.	The	webphone	settings	can	be	set	also
by	URL	parameters	so	you	can	just	launch	it	from	a	link	with	all
the	required	settings	specified.
	
VoIP	platform:
All	you	need	to	use	the	webphone	is	a	SIP	account	at	any	VoIP
service	provider	or	your	own	softswitch/IP-PBX.
Free	SIP	accounts	can	be	obtained	from	numerous	VoIP	service
providers	or	you	can	use	our	service.	(Note	that	free	accounts
are	free	only	for	VoIP	to	VoIP	calls.	For	outbound	pstn/mobile	you
will	need	to	top-up	your	account).
If	you	wish	to	host	it	yourself	then	you	can	use	any	SIP	server
software.	For	example	FreePBX	for	linux	or	the	advanced	/	free
VoIP	server	for	windows	by	Mizutech.	We	can	also	provide	our
WebRTC	to	SIP	gateway	(for	free	with	the	Advanced	or	Gold
license)	if	your	softswitch	don’t	have	support	for	WebRTC	and
you	need	a	self-hosted	solution.

https://www.google.com/search?q=sip+service+provider+create+accout
https://www.mizu-voip.com/Services/VoIPServices.aspx
https://en.wikipedia.org/wiki/List_of_SIP_software
https://www.freepbx.org/
https://www.mizu-voip.com/Software/VoIPServer.aspx
https://www.mizu-voip.com/Software/VoIPServer/FreeSoftswitch.aspx
https://www.mizu-voip.com/Software/WebRTCtoSIP.aspx

	
Technical	settings:
The	most	important	parameter	that	you	will	need	to	set	is	the
“serveraddress”	which	have	to	be	set	to	the	domain	or	IP:port	of
your	SIP	server.
If	you	wish,	you	might	change	also	other	sip	account,	call-divert
or	VoIP	engine	related	settings	after	your	needs.
	
Integration:
You	can	integrate	the	webphone	with	your	web-site	or	web-
application:
-using	your	own	web	server	API
-and/or	using	the	webphone	client	side	JavaScript	API	to	insert
any	business	logic	or	AJAX	call	to	your	server	API
The	webphone	library	doesn’t	depend	on	any	framework	(as	it	is
a	pure	client	side	library)	but	you	can	integrate	it	with	any
server	side	framework	if	you	wish	(PHP,	.NET,	NodeJS,	J2EE	or
any	server	side	scripting	language)	or	work	with	it	only	from
client	side	(from	your	JavaScript).
On	the	client	side	you	can	use	the	webphone	API	from	any
JavaScript	framework	(such	as	AngularJS,	React,	jQuery	and
others)	or	from	plain/vanilla	JS	or	not	use	the	JS	API	at	all.
	
Design
You	can	completely	change	any	of	the	included	skins	(click	to
call	button,	softphone),	or	change	the	softphone	colors	or	create
your	user	interface	from	scratch	with	your	favorite	tool	and	call
the	webphone	API	from	there.
	
Custom	application:
For	deep	changes	or	to	create	your	unique	VoIP	client	or	custom
application	you	will	need	to	use	the	JavaScript	API.
See	the	development	section	for	more	details.
	
Branding:
Since	the	webphone	is	usually	used	within	your	website	context,
your	website	is	already	your	brand	and	no	additional	branding	is

required	inside	the	webphone	application	itself.	However	the
softphone	skin	(if	you	are	using	this	turn-key	GUI)	has	its	own
branding	options	which	can	be	set	after	your	requirements.
Additionally	you	can	change	the	webphone	HTML/CSS	design
after	your	needs	if	more	modifications	are	required.
	
On	request,	we	can	send	your	webphone	build	already
preconfigured	with	your	preferences.
For	this	just	answer	the	points	from	the	voip	client
customization	page	(as	many	as	possible)	and	send	to	us	by
email.	Then	we	will	generate	and	send	your	webphone	build
within	one	work-day.	All	the	preconfigured	parameters	can	be
further	changed	by	you	via	the	webphone	settings.
	
Of	course,	this	is	relevant	only	if	you	are	using	a	skin	shipped
with	the	webphone,	such	as	the	softphone.html.	Otherwise	you
can	create	your	custom	solution	using	the	webphone	library
with	your	unique	user	interface	or	integrate	into	your	existing
website.
	
	

User	interface	Skin/Design
You	can	use	the	webphone	with	or	without	a	user	interface.
The	webphone	is	shipped	with	a	few	ready	to	use	open	source
user	interfaces	such	as	a	softphone	and	click	to	call	skins.	Both
of	these	can	be	fully	customized	or	you	can	modify	their	source
to	match	your	needs.	You	can	also	create	any	custom	user
interface	using	any	technique	such	as	HTML/CSS	and	bind	it	to
the	web	phone	javascript	API.
The	default	user	interface	for	the	softphone	and	other	included
apps	can	be	easily	changed	by	modifying	parameters	or
changing	the	html/css.	For	simple	design	changes	you	don’t
need	to	be	a	designer.	Colors,	branding,	logo	and	others	can	be
set	by	the	settings	parameters.
Also	you	can	easily	create	your	own	app	user	interface	from

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=General+softphone+customization
mailto:webphone@mizu-voip.com?subject=Custom%20webphone

scratch	with	any	tool	(HTML/CSS	or	others)	and	call	the
webphone	Java	Script	API	from	your	code.
	
In	short,	there	are	two	ways	to	achieve	your	own	(any	kind	of)
custom	user	interface:
A.						Use	one	of	the	skins	provided	by	the	webphone
Here	you	also	have	two	possibilities:

o			Quick	customization	changing	the	webphone	built-in	user-
interface	related	settings	(you	can	change	the	colors,
behaviors	and	others)

o			If	you	are	a	web	developer,	then	have	a	look	at	the	html
and	JavaScript	source	code	and	modify	it	after	your
needs	(we	provide	all	the	source	code	for	these;	it	can	be
found	also	in	the	downloadable	demo)

B.						Create	your	own	user	web	VoIP	user	interface	and	use	the
webphone	as	a	JavaScript	library	from	there.
The	webphone	has	an	easy	to	use	API	which	can	be	easily
integrated	with	any	user	interface.	For	example	from	your
“Call”	button,	just	call	the	webphone
webphone_api.js.call(number)	function.	Have	a	look	at	the
“minimal_example.html”,	“basic_example.html”	or
“techdemo_example.html”	(You	can	also	use	the	provided
samples	as	a	template	to	start	with	and	modify/extend	it	after
your	needs)

	

Quick/Basic	skin	change
Just	use	the	“colortheme”	parameter	to	make	quick	and	wide
changes.
Then	have	a	look	at	the	“User	interface	related”	parameters
(described	in	the	“Parameters”	section)	and	change	them	after
your	needs	(set	logo,	branding,	translate	and	others).
	
We	can	also	send	you	a	web	softphone	with	your	preferred	skin.
For	this	just	set	your	customization	on	the	online	designer	form
and	send	us	the	parameters.
We	can	also	send	you	fully	customized	and	branded	web

https://www.mizu-voip.com/Portals/0/Files/webphone.zip
https://www.mizu-voip.com/G/webphone/skin_customizer/index.html

softphone	with	your	preferences.	For	this	just	send	us	the
customization	details.

Advanced	skinning
Web	developers/designers	can	easily	modify	the	existing	skins
or	create	their	own.
For	the	softphone	application	all	the	HTML	source	code	can	be
found	in	"softphone.html"	file	as	a	single-page	application
model.
There	are	a	few	possibilities	to	change	the	skins:

·									If	you	need	only	minor/color	changed,	then	just	change
the	color	theme

·									You	might	also	change	the	jQuery	theme:
The	jQuery	mobile	Theme	Roller	generated	style	sheet	can
be	found	in	this	file:	"css\themes\wphone_1.0.css".
Current	jQuery	mobile	version	is	1.4.2.	Using	the	Theme
roller,	you	can	create	new	styles:
http://themeroller.jquerymobile.com/
The	style	sheet	which	overrides	the	"generated"	one	(in
which	all	the	customizations	are	defined)	is
"css/mainlayout.css".

·									You	can	also	manually	edit	the	html	and	css	file	with	your
favorite	editor	to	change	it	after	your	needs

·									Or	just	create	your	design	with	your	favorite	tools	and	call
the	web	sip	phone	API	from	there

	
Note:	If	you	are	using	the	webphone	as	a	javascript	library	then
you	can	customize	the	“choose	engine”	popup	in
"css\pmodal.css".
	
If	you	have	different	needs	or	don’t	like	the	default	skins,	just
create	your	own	from	scratch	and	call	the	webphone	JavaScript
API	from	your	code.	Using	the	API	you	can	easily	add	VoIP	call
capabilities	also	to	existing	website	or	project	with	a	few
function	calls	as	described	in	the	“Java	Script	API”	section	below.
	

mailto:webphone@mizu-voip.com?subject=Custom%20Web%20Softphone%20request
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=General+softphone+customization

Click	to	call
You	can	use	the	webphone	library	to	implement	your	custom
click-to-call	solution	or	use	one	of	the	skin	templates	for	click	to
call.
There	are	multiple	ways	to	achieve	click	to	call	functionality	with
the	sip	webphone:

Use	the	Click2Call	template
The	webphone	package	contains	a	ready	to	use	click	to	call
solution:	Just	copy	the	whole	webphone	folder	to	your	website,
set	the	parameters	in	the	webphone_api.js	file	and	use	the
click2call_example.html.
You	can	completely	customize	the	click2call	example	for	your
needs	(change	any	settings,	change	the	html/css/javascript,	use
your	custom	button	image).

Launch	from	URL
You	can	pass	any	setting	as	URL	parameter	and	the	webphone
(and	the	included	templates)	can	be	easily	parametrized	to	act
as	a	click	to	call	solution:
http://www.yourwebsite.com/webphonedir/click2call_example.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
	
A	working	example	with	the	click	to	call	skin:
https://www.mizu-
voip.com/g/users/sanyi/webrtc_test/click2call_example.html?
wp_serveraddress=voip.mizu-
voip.com&wp_username=webphonetest1&wp_password=webphonetest1&wp_callto=testivr3&wp_autoaction=1
	
This	will	launch	the	click	to	call	page	and	will	initiate	the	call
automatically.	You	can	find	more	examples	here.
	
You	can	also	use	any	other	skins	for	click	to	call.	For	example
here	is	with	the	softphone	skin:
https://www.mizu-
voip.com/g/users/sanyi/webrtc_test/softphone.html?

http://www.yourwebsite.com/webphonedir/click2call_example.html?wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
https://www.mizu-voip.com/g/users/sanyi/webrtc_test/click2call_example.html?wp_serveraddress=voip.mizu-voip.com&wp_username=webphonetest1&wp_password=webphonetest1&wp_callto=testivr3&wp_autoaction=1
https://www.mizu-voip.com/g/users/sanyi/webrtc_test/softphone.html?wp_serveraddress=voip.mizu-voip.com&wp_username=webphonetest1&wp_password=webphonetest1&wp_callto=testivr3&wp_autoaction=1

wp_serveraddress=voip.mizu-
voip.com&wp_username=webphonetest1&wp_password=webphonetest1&wp_callto=testivr3&wp_autoaction=1

Custom	click	to	call	solution
You	can	easily	create	your	custom	click	to	call	solution	from
scratch	by	using	the	webphone	as	a	library/SDK.
A	simple	click	to	call	example	can	be	found	in	the	webphone
package:	"click2call_example.html"
The	following	parameters	must	be	configured	in	order	to	make	a
call:	serveraddress,	username,	password,	callto.
	
A	Step	by	step	guide	to	add	click	to	call	button	to	your
web	page:
Put	the	below	code	in	your	web	page's	<head>	section:
<link	rel="stylesheet"	href="css/click2call/click2call.css"	/>
				<script	src="webphone_api.js"></script>
				<script	src="js/click2call/click2call.js"></script>
				<script>
								/**Configuration	parameters*/
								webphone_api.parameters['serveraddress']	=		'';
								webphone_api.parameters['username']	=	'';
								webphone_api.parameters['password']	=	'';
								webphone_api.parameters['md5']	=		'';
								webphone_api.parameters['realm']	=	'';
								webphone_api.parameters['callto']	=	'';
								webphone_api.parameters['autoaction']	=	1;
</script>
	
Copy	this	html	element	in	you	page,	where	you	want	the
click	to	call	button	to	show	up:
<div	id="c2k_container_0"	title=""><a	href="tel://CALLTO"
id="c2k_alternative_url">CALLTO</div>
	
Customize	the	button
Customization	options	can	be	found	in	click2call.js	file	located	in
js/click2call/	folder.

The	following	customizations	are	available:
-	button	color	(for	call	and	hang	up	states)
-	text	displayed	on	the	button	(for	call	and	hang	up	states)
-	button	width,	height	and	corner	radius
-	chat	window	default	state:	open	or	collapsed
The	styling	can	be	further	customized	from	click2call.css	located
in	css/click2call/	folder.
	
Use	as	a	chat	window
The	click	to	call	button	can	also	be	used	as	a	chat	window.	This
is	controlled	by	the	"autoaction"	parameter:	1=call,	2=chat.
The	chat	window	can	also	be	opened	by	accessing	the	menu
and	selecting	the	Chat	item.
The	menu	can	be	accessed	by	right	clicking	or	by	long	clicking
on	the	button.
	
Floating	button
The	click	to	call	can	also	be	used	as	a	floating	button	on	your
page.	The	floating	related	configurations	can	be	found	in
click2call.js	file	located	in	js/click2call/	folder.
To	enable	floating,	set	the	"float_button"	config	to	true	and
specify	two	direction	coordinates	for	the	floating.	For	example	to
have	a	floating	button	on	the	top	right	corner	of	your	page,
located	from	100	pixels	from	the	top	and	10	pixels	from	the
right:
var	float_button	=	true;
var	float_distance_from_top	=	100;
var	float_distance_from_right	=	10;
	
Floating	webphone	skin
To	float	the	webphone	skin	over	your	web	page,	just	set	the
following	CSS	attributes	for	the	container	HTML	element	of	the
webphone	(which	can	be	a	DIV	or	an	iframe):
//	this	aligns	the	webphone	to	the	bottom-right	corner	of	you
page
z-index:	1000;	position:	fixed;	bottom:	0px;	right:	0px;
If	you	wanted	for	instance	to	set	it	in	the	top-left	corner,	then

the	CSS	attributes	would	be:
z-index:	1000;	position:	fixed;	top:	0px;	left:	0px;
	
Multiple	instances
To	add	more	than	one	click	to	call	button	to	a	page,	include	the
script	part	in	the	<head>	section	once,	and	copy	the	container
<div>	increasing	the	id	index	number	for	every	instance.
ex:
<div	id="c2k_container_0"	title="55555"></div>
<div	id="c2k_container_1"	title="66666"></div>
<div	id="c2k_container_2"	title="77777"></div>
<div	id="c2k_container_3"	title="88888"></div>
These	id	indexes	must	be	unique	and	increasing.
The	callto	parameter	can	be	set	as	the	title	attribute	of	the
<div>	element.
	
Load	on	demand
You	can	also	load	the	sip	web	phone	on	demand	as	explained
here.
	
Auto-call
If	you	wish	to	make	a	call	automatically,	then	just	initialize	the
webphone	as	described	above	and
-either	set	also	the	“autoaction”	parameter	to	1
-or	make	the	call	with	the	webphone_api.call(number)	API	from
the	onLoaded()	or	from	the	onRegistered()	callback.
Note:
o				Even	if	you	initiate	a	call	form	onLoaded	and	the	webphone	is	not	yet	registered	-
and	it	needs	to	register-,	then	it	will	handle	registration	first	then	it	will	initialize
the	call	automatically.

o				If	your	IP-PBX	doesn’t	require	registrations,	then	just	set	the	“register”	setting	to	0.
	

Integration	with	web	server	side
applications

This	section	is	mostly	for	server	side	developers.	If	you	have	more	JavaScript	skills
then	we	recommend	to	just	use	the	JavaScript	API	directly	as	described	in	the
development	section.

	
First	of	all	it	is	important	to	mention	that	the	webphone	doesn’t
have	any	server	side	framework	dependencies.	You	can	host	it
on	any	webserver	without	any	framework	(.PHP,	.NET,	Node.Js	ot
others	installed).
	
The	webphone	is	running	entirely	on	the	client	side	(in	the	user
browser	as	a	browser	sip	plugin)	and	can	be	easily	manipulated
via	its	JavaScript	SIP	API,	however	you	can	easily	integrate	the
webphone	with	any	server	side	application	or	script	be	it	.NET,
PHP,	Node.Js,	J2EE	or	any	other	language	or	framework	even	if
you	don’t	have	JavaScript	experience.	Just	create	a	HTTP	API	to
catch	events	such	as	login/call	start/disconnect	and	drive	your
app	logic	accordingly.
	
The	most	basic	things	you	can	do	is	to	dynamically	generate
the	webphone	parameters	per	session	depending	on	your
needs.	For	example	if	the	user	is	already	logged-in,	then	you
can	pass	its	SIP	username/password	for	the	webphone	(possibly
encoded).
For	this,	just	generate	the	webphone_api.js	dynamically	or	pass
the	parameters	in	the	URI.
	
For	a	tighter	integration	you	will	just	have	to	call	into	your
server	from	the	webphone.
This	can	be	done	with	simple	XMLHttp	/AJAX	or	websocket
requests	against	your	server	HTTP	API,	then	process	the	events
in	your	server	code	according	to	your	needs.	The	requests	can
be	generated	using	the	built-in	HTTP	API	events	or	you	can	just
post	them	yourself	from	your	custom	JavaScript	code	using
websocket	or	ajax	requests.	Usually	these	requests	will	be	made
from	callback	events	which	are	triggered	on	web	phone	state
machine	changes,	but	you	are	free	to	place	ajax	request
anywhere	in	your	code	such	as	click	on	a	button.
	
Example:
For	example	if	you	need	to	save	each	call	details	(date,	caller,

called,	duration,	others)	into	a	server	side	database,	then	just
define	a	“oncalldetails”	or	similarly	named	API	in	your	server
side	application	which	can	be	called	via	simple	HTTP	request	in
one	of	the	following	ways:
	
1.							Using	the	built-in	HTTP	API	integration	capabilities:
Just	set	the	scurl_onincalldisconnected	to	your	HTTP	API.
For	example:	https://mydomain.com/myapi/oncalldetails/	
(or	wherever	your	API	can	be	called).	This	method	is	very
convenient	if	you	are	a	server	side	developer	with	no
JavaScript	knowledge	as	you	don’t	need	to	touch	any
JavaScript	to	implement	this.

	
2.							Using	custom	AJAX	requests:
Use	the	onCdr()	API	to	setup	a	callback	which	will	be
triggered	after	each	call.
Send	an	AJAX	request	(XMLHttpRequest	or		jQuery	get	or
post)	to	your	application	server	with	the	CDR	details.
(You	can	pass	the	details	in	HTTP	GET	URL	parameters	or	in
HTTP	POST	body	in	your	preferred	format	such	as	clear
text,	json,	xml	or	other).

	
Then	you	will	receive	request	to	this	API	entry	on	your	app
server	and	you	can	process	them	accordingly	(load	the	URL
parameters	and	store	in	your	database).
	
For	auto-provisioning	from	a	server	side	application,	you	can
create	an	API	to	return	all	the	webphone	parameters	(settings)
and	set	the	“scurl_setparameters”	setting	to	this	API	URL.

Custom	HTTP	API	integration
You	can	integrate	the	webphone	with	your	server	code	using
your	custom	HTTP	(AJAX)	API	URI’s.
Just	set	one	or	more	of	the	following	settings	to	point	to	your
server	application	HTTP	API	entries	which	will	be	called
automatically	as	the	webphone	state	machine	changes:

·									scurl_onstart:	will	be	called	when	the	webphone	is

https://mydomain.com/myapi/oncalldetails/

starting
·									scurl_onoutcallsetup:	will	be	called	on	outgoing	call	init
·									scurl_onoutcallringing:	will	be	called	on	outgoing	call
ring

·									scurl_onoutcallconnected:	will	be	called	on	outgoing
call	connect

·									scurl_onoutcalldisconnected:	will	be	called	on	outgoing
call	disconnect	with	call	details	(CDR)

·									scurl_onincallsetup:	will	be	called	on	incoming	call
·									scurl_onincallringing:	will	be	called	on	incoming	call	ring
·									scurl_onincallconnected:	will	be	called	on	incoming	call
connect

·									scurl_onincalldisconnected:	will	be	called	on	incoming
call	disconnect	with	call	details	(CDR)

·									scurl_oninchat:	will	be	called	on	incoming	instant
message

·									scurl_onoutchat:	will	be	called	on	outgoing	instant
message

·									scurl_setparameters:	will	be	called	after	"onStart"
event(url)	and	can	be	used	to	provision	the	webphone	from
server	API.	The	answer	should	contain	parameters	as
key/value	pairs,	ex:	username=xxx,password=yyy

·									scurl_displaypeerdetails:	will	be	called	at	the	beginning
of	incoming	and	outgoing	calls	to	return	details	about	the
peer	from	your	server	API	(like	full	name,	address	or	other
details	from	your	CRM).	It	will	be	displayed	at	the	location
specified	by	the	“displaypeerdetails”	parameter.	You	can
return	any	string	as	clear	text	or	html	which	can	be
displayed	as-is.

	
For	example:	scurl_onoutcallsetup:
https://mydomain.com/myapi/?
user=USERNAME&called=CALLEDUMBER
(Your	API	will	be	called	each	time	the	webphone	user	makes	an
outgoing	call	and	the	parameters	in	uppercase	will	be	replaced
at	runtime	in	the	same	way	as	described	for	the	links	setting)
	

https://mydomain.com/myapi/?user=USERNAME&called=CALLEDUMBER

For	API	request,	the	webphone	will	try	to	fetch	the	result	using
the	following	techniques	(first	available):	AJAX/XHTTP,	CORS,
JSONP	and	websocket	(if	available).

Integration	with	third	party	systems	and
CRM’s
You	can	use	the	webphone	library	to	implement	your	custom
click-to-call	solution	or	use	one	of	the	skin	templates	for	click	to
call.
The	VoIP	web	sip	phone	browser	plugin	doesn’t	depend	on	any
framework	and	can	be	integrated	with	any	system	or	CRM	with
JavaScript	binding	support.	Usually	you	just	need	to	include	the
webphone_api.js,	set	the	basic	parameters	in	the
webphone_api.js	(such	as	serveraddress/username/password	to
be	used,	but	these	can	be	passed	also	by	the	API)	and	just	use
the	call()	function	to	make	an	outgoing	calls.	Incoming	calls	are
handled	automatically	and	with	a	few	more	API	calls	you	can
easily	implement	features	such	as	call	transfer,	conference,
chat,	dtmf	or	video	call.
	
For	example	here	is	tutorial	for	Salesforce	webphone	integration
in	case	if	you	are	interested	in	this	platform	or	some	details
about	VoIP	callcenter	integration.
	
Consult	your	CRM	documentation	to	find	the	details	about
integration	third-party	general	modules	(or	even	better	if	it	has
an	interface	specific	for	third	party	phone	integrations).	Contact
us	if	you	need	help	with	any	integration.
	

Development
This	section	is	for	JavaScript	developers.		You	can	use	this	webphone	also	without	any
JavaScript	skills:
·									If	you	don’t	have	any	programming	skills:		customize	and	use	the	included	turn-
key	templates	(for	example	the	“softphone.html”)	on	your	website.

·									If	you	are	a	server-side	developer	not	comfortable	with	JS:	take	advantage	of	the
server	integration	capabilities

	

https://www.mizu-voip.com/Portals/0/Files/SalesforceWebPhone.pdf
mailto:webphone@mizu-voip.com?subject=webphone%20integration

Developers	can	use	the	webphone	as	an	SDK	(JavaScript	library)
to	create	any	custom	VoIP	solution,	standalone	or	integrated	in
any	webpage	or	web	application.

Setup
First	of	all	you	should	deploy	the	webphone	on	your	webserver
(Copy	the	webphone	folder	to	your	webserver	and	adjust	any
settings	you	might	need	according	to	your	SIP	server).	You	can
also	launch	it	from	local	file	system	on	your	dev	environment
(works	with	some	limitations),	but	better	if	you	use	it	from	a
webserver.
	
The	library	parameters	can	be	preconfigured	in
webphone_api.js,	changed	runtime	from	JavaScript,	passed	by
URL	parameters	or	set	dynamically	by	any	server	side	script
such	as	PHP,	.NET,	java	servlet,	J2EE	or	Node.js.
	
The	webphone	doesn’t	require	any	extra	client	or	server	side	framework	(it	is	a	client
side	VoIP	implementation	which	can	be	used	from	simple	JavaScript)	however	you	are
free	to	use	your	own	favorite	framework	or	libraries	to	interact	with	the	web	phone
(for	example	use	with	jQuery	on	the	client	side	or	integrate	into	your
PHP/.ASP/.NET/J2EE/NodeJS	or	other	server	side	framework	or	use	it	straight	without
any	frameworks	involved).
	
	
The	downloadable	demo	version	has	some	limitations	to	disable
commercial	usage,	however	if	your	development	process	is
affected	by	these	then	you	can	request	a	trial	from	mizutech
with	all	demo	limitation	removed.

API
The	public	JavaScript	API	can	be	found	in	"webphone_api.js"	file,
under	global	javascript	namespace	"webphone_api".
Just	include	the	"webphone_api.js"	to	your	project	or	html	and
start	using	the	webphone	API.
	
The	API	reference	can	be	found	here.

mailto:webphone@mizu-voip.com?subject=webphone%20trial

Simple	example
A	minimal	implementation	can	be	achieved	with	less	than	5
lines	of	code	on	your	website.	See	the	minimal_example.html
(found	in	the	webphone	package)
Example:
<head>
																<!--	Include	the	webphone_api.js	to	your	webpage	-->

<script	src="webphone_api.js"></script>
</head>
<body>
<script>
																//Wait	until	the	webphone	is	loaded,	before	calling	any	API	functions

webphone_api.onLoaded(function	()	{
	
																																//Set	parameters	(Replace	upper	case	worlds	with	your	settings)

//Alternatively	these	can	be	also	preset	in	your	webphone_api.js	file	or
passed	as	URL	parameters

																																webphone_api.setparameter('serveraddress',	SERVERADDRESS);
																																webphone_api.setparameter('username',	USERNAME);
																																webphone_api.setparameter('password',	PASSWORD);
																																//See	the	“Parameters”	section	below	for	more	options
	
																																//Start	the	webphone	(optional	but	recommended)
																																webphone_api.start();
	
																																//These	API	calls	below	actually	should	be	placed	behind	separate
functions	(button	clicks)
																																//Make	a	call	(Usually	initiated	by	user	action,	such	as	click	on	a
click	to	call	button.	Number	can	be	extension,	SIP	username,	SIP	URI	or
mobile/landline	phone)
																																webphone_api.call(NUMBER);
	
																																//Hang-up	(usually	called	from	“disconnect”	button	click)
																																webphone_api.hangup();
	
																																//Send	instant	message	(Number	can	be	extension,	SIP	username.
Usually	called	from	a	“send	chat”	button)
																																webphone_api.sendchat(NUMBER,	MESSAGETEXT);

});
//You	should	also	handle	events	from	the	webphone	and	change	your	GUI

accordingly	(onXXX	callbacks)
</script>
</body>
	

Other	examples
See	the	html	files	in	the	webphone	folder	for	more	examples.
o			a	very	simple	but	functional	basic	example	can	be	found	in
the	webphone	package:	basic_example.html

o			as	a	better	example,	see	the	tech	demo	page
(techdemo_example.html	/	techdemo_example.js).

o			a	basic	example	for	incoming	calls	is	implemented	in	the
incoming_example.html

o			click2call.html	is	a	ready	to	use	click	to	call	implementation		
o			softphone.html	implements	a	fully	features	browser	softphone
	
You	can	also	try	the	same	examples	from	our	online	demo.
	
You	are	free	to	use/modify	any	of	these	file	and	adjust	it	after
your	needs	or	create	your	own	solution	from	scratch.
For	a	general	implementation	we	would	recommend	to	start
with	the	“techdemo_example”	and	modify/improve	it	after	your
needs.

Advanced	functions
Most	of	the	traditional	VoIP	functionalities	(in/our	calls,	chat,	call
divert)	can	be	handled	very	easily	with	the	webphone,	however
some	advanced	features	might	require	special	care	if	you	wish
to	interact	with	them.
Lots	of	things	can	be	achieved	by	the	webphone	parameters,
without	the	need	of	any	programming	effort.
Here	are	some	examples	for	advanced	usage:
	
o			settings/auto-provisioning:	it	can	be	done	easily	with	the
setparameter	API	but	you	might	have	special	needs	which
would	require	to	pass	the	parameters	in	a	special	way.	See
the	beginning	of	the	parameters	section	for	the	possibilities
and	some	more	in	the	FAQ.

o			multiple	lines:	handled	automatically	but	you	might	need	to
handle	it	explicitly	if	required	for	your	project

o			low-level	engine	messages:	this	is	only	for	advanced	users

https://www.webvoipphone.com/webphone_online_demo/index.html

and	rarely	needed	to	intercept	these	messages.	You	might
use	the	getEvents	callback	for	this	but	it	is	recommended	to
use	the	others	such	as	the	onCallStateChange	to	handle	the
web	VoIP	phone	events.

o			low-level	interaction	with	the	native	engines:	if	somehow	you
have	some	extra	requirements	which	is	not	available	with	this
high-level	API	then	you	might	use	the	low-level	jvoip	API	with
the	NS	and	Java	engines

o			dtmf,	call	transfer,	hold,	forward:	we	took	special	care	to	make
these	as	simple	to	use	as	possible	so	all	of	these	can	be
handled	by	a	single	API	call

o			conference:	handled	automatically	by	default	via	a	single	API
call	but	optionally	you	might	implement	some	specific	user
interface	to	display	all	parties

o			parameter	encryption/obfuscation:	usually	not	required	since
you	are	working	with	them	in	the	otherwise	secure	user
session,	but	if	you	wish	to	use	it	then	it	is	described	here

o			video:	you	must	provide	a	html	element	where	the	video	have
to	be	displayed	and	manage	this	GUI	accordingly:	<div
id="video_container"></div>

o			chat,	sms:	these	also	requires	some	extra	user	interface	to
send	the	messages	and	display	the	call	history

o			manipulating	SIP	messages:	requires	some	VoIP/SIP	skills	if
you	need	to	interact	this	way	with	your	VoIP	server	and	you
can	use	the	setsipheader/getsipheader	API’s

	
Note:	all	of	these	are	implemented	in	the	“softphone”	skin
which	is	included	with	the	webphone	so	you	might	use/modify
this	skin	if	you	need	a	complete	softphone	like	solution	instead
to	develop	your	own	from	scratch	(if	you	don’t	have	specific
requirements	which	can’t	be	handled	by	customizing	the
softphone	skin)
	
For	more	details,	see	the	“JavaScript	API”	section	below	in	this
documentation.
	

Parameters

The	parameters	can	be	used	to	customize	the	user	interface	or
control	the	settings	like	the	SIP	server	domain,	authentication,
called	party	number,	autodial	and	many	others.
Most	of	the	settings	are	optional	except	the	"serveraddress"
(but	also	this	can	be	provided	at	runtime	via	the	API).
The	other	important	parameters	are	the	SIP	user	credentials
(username,	password)	and	the	called	number	(callto)	which
you	can	also	preset	(for	example	if	you	wish	to	implement	click
to	call)	however	these	are	usually	entered	by	user	(and
optionally	can	be	saved	in	local	cookie	for	later	reuse).
	
The	webphone	parameters	can	be	set	in	multiple	ways
(statically	and	dynamically)	to	allow	maximum	flexibility	and
ease	the	usage	for	any	work-flow.
Use	one	(or	more)	of	the	following	methods	for	the	webphone
configuration:
	

·									Preset	the	settings	in	the	"webphone_api.js"	file,	under
"parameters"	variable	(in	"parameters"	Javascript	object	at
the	beginning	of	the	file)

·									Use	the	setparameter()	API	call	from	JavaScript	(Other
function	calls	might	also	change	settings	parameters)

·									Webpage	URL	query	string	(The	webphone	will	look	at	the
embedding	document	URL	at	startup.	Prefix	all	keys	with
“wp_”.	For	example	&wp_username=x	or	any	other
parameter	specified	in	this	documentation)

·									Via	the	scurl_setparameters	settings	which	can	load	the
parameters	from	your	server	side	application	(This	will	be
called	after	"onStart"	event	and	can	be	used	to	provision
the	webphone	from	server	API.	The	answer	should	contain
parameters	as	key/value	pairs,	ex:
username=xxx,password=yyy)

·									Cookies	(prefix	all	keys	with	“wp_”.	For	example

wp_username)
·									SIP	signaling	(sent	from	server)	with	the	x-mparam	header
(or	x-mparamp	if	need	to	persist).	Example:	x-
mparam=loglevel=5;aec=0

·									Auto-provisioning:	the	browser	phone	is	also	capable	to
download	it’s	settings	from	a	config	file	based	on	user
entered	OP	CODE	(although	this	way	of	configuration	is	a
little	bit	redundant	for	a	web	app,	since	you	can	easily
create	different	versions	of	the	app	–for	example	by
deploying	it	in	different	folders-	already	preconfigured	for
your	customers,	providing	a	direct	link	to	the	desired
version	instead	of	asking	the	users	to	enter	an	additional
OPCODE)

·									User	input:	You	can	let	the	user	to	modify	the	settings.	For
example	to	enter	username/password	for	SIP
authentication	(For	example	using	the	softphone	skin	most
of	the	settings	can	be	specified	by	the	users	which	might
overwrite	server	side	settings	loaded	from	the
webphone_api.js	file)

·									Also	see	here	and	here
	
Any	of	these	methods	can	be	used	or	they	can	be	even	mixed.
	
The	quick	and	easiest	way	to	start	is	to	just	set	all	the	required
parameters	in	the	webphone_api.js	file.	For	example:

var	parameters	=	{
serveraddress:	'voip.mizu-voip.com',	//your	SIP	server	URI	(or	IP:port)
username:	'webphonetest1',		//the	username	is	usually	specified	by	the
enduser	and	not	need	to	be	set	here
password:	'webphonetest1',		//the	password	is	usually	specified	by	the
enduser	and	not	need	to	be	set	here
displayname:	'John	Smith',	//optional	display	name
brandname:	'BestPhone',	//your	brand	name
rejectonbusy:	true,	//will	reject	incoming	call	if	user	already	in	call
ringtimeout:	50,	//disconnect	the	call	after	50	sec	on	no	answer
loglevel:	5,	//enable	detailed	logs

	};
	
Usually	you	might	set	some	parameters	in	the	above

webphone_api.js	file	(the	common	parameters	applicable	for	all
users),	then	you	use	one	of	the	other	methods	to	specify
instance	specific	parameters	(for	example	user	credentials	for
auto	login).
	
Note:

·									For	a	basic	usage	you	will	have	to	set	only	your	VoIP
server	ip	or	domain	name	(“serveraddress”	parameter).
The	SIP	username/password	are	asked	from	the	user	with
the	default	skins	if	not	preconfigured.
The	rest	of	the	parameters	are	optional	and	should	be

changed	only	if	you	have	a	good	reason	for	it.
·									Some	parameters	(username/password,	displayname)	are
usually	set	by	the	user	via	some	user	interface	(using	the
setparameter()	API),	however	in	some	situation	you	might
hardcode	them	on	the	server	side	webphone_api.js	file.	For
example	if	you	have	some	static	IVR	service	and	the	caller
user	identity	doesn’t	matter.

·									All	parameters	can	be	passed	as	strings	and	will	be
converted	to	the	proper	type	internally	by	the	webphone
browser	plugin.

·									Don’t	remove	or	comment	out	already	set	parameters
because	the	old	value	might	be	already	cached	by	the
browser	webphone.	Instead	of	this	you	should	just	set	to
“NULL”/”DEF”	or	its	default	value.	Details	here.

·									Prefix	parameter	name	with	“ucfg_”	if	it	should	prefer
client	side	settings	(otherwise	server	side	settings	defined
in	the	webphone_api.js	will	overwrite	the	client	settings).
Example:	ucfg_aec:	2

·									Parameters	can	be	also	encrypted	or	obfuscated.	See	the
“Parameter	security”	section	for	the	details.

	
	

SIP	account	settings
Credentials	and	other	SIP	parameters:

serveraddress
(string)
The	address	of	your	SIP	server	(domain	or	IP	+	port).
It	can	be	specified	as	IP	address	or	as	A	or	SRV	domain	name.
Specify	also	the	port	if	your	server	is	not	using	the	default	5060;
in	this	case	append	the	port	after	the	address	separated	by
colon.
Examples:

mydomain.com	(this	will	use	the	default	SIP	port:	5060)
sip.mydomain.com:5062
10.20.30.40:5065

	
This	is	the	single	most	important	parameter	(along	with	the
username/password	but	those	can	be	also	entered	by	the	user).
Default	value	is	empty.

username
(string)
This	is	the	SIP	username	(used	for	authentication	and	as	A
number/Caller-ID	for	the	outgoing	calls).
Default	value	is	empty.
	
Note:
o				The	username/password	parameters	are	usually	supplied	by	the	user	(via	some
user	interface	and	then	calling	the	setparameter()	API,	however	in	some	cases	you
might	just	set	it	statically	in	the	webphone_api.js	file	(when	caller	user	credentials
doesn’t	matter).	See	more	here.

o				Even	if	you	don’t	need	a	username	and/or	your	server	accepts	all	calls	without
authentication,	you	must	set	some	username	to	some	value:	the	“anonymous”
username	might	be	used	in	this	case

o				If	you	set	the	username	setting	to	“Anonymous”	then	the	username	input	box	will
be	hidden	on	the	“softphone”	skin	settings	and	login	screens

o				If	you	wish	to	set	a	separate	caller-id	you	can	use	this	parameter	to	specify	it	and
then	use	the	”sipusername”	parameter	to	specify	the	username	used	for
authentication	as	specified	in	SIP	standards.		However	please	note	that	most	SIP
server	can	treat	also	the	below	mentioned	“displayname”	parameter	as	the	caller-
id	so	the	usage	of	separate	username/sipusername	is	usually	not	necessary	and
confusing.	See	more	details	here.

password

(string)
SIP	authentication	password.
Default	value	is	empty.
	
Note:
o				Make	sure	to	never	hardcode	the	password	in	html	or	set	it	via	insecure	http.	See
more	details	here	about	security.

o				You	can	use	the	webphone	also	without	password	(if	not	using	via	server	or	your
server	doesn’t	authenticate	the	users).	In	this	case	you	can	set	the	password	to
any	value	since	it	is	supposed	that	it	will	not	be	required	for	calls	or	registrations

o				If	your	IP-PBX	accept	blind	registrations	and/or	calls	then	the	value	of	the	password
doesn’t	matter	(it	will	not	be	used	anyway)

o				If	you	set	the	password	setting	to	“nopassword”	then	the	password	input	box	will
be	hidden	on	the	“softphone”	skin	settings	and	login	screens

o				If	your	IP-PBX	doesn’t	require	registrations	or	you	are	not	using	any	server	then
you	should	set	the	“register”	setting	to	0

displayname
(string)
Optional	SIP	display	name.
Specify	default	display	name	used	in	“from”	or	“contact”	SIP
headers.
Default	value	is	empty	(the	“username”	field	will	be	displayed
for	the	peers).
See	more	details	here.

realm
(string)
Optional	parameter	to	set	the	SIP	realm	if	not	the	same	with	the
serveraddress	or	domain.
Rarely	required.	(Only	if	your	VoIP	server	has	different	realm
setting	as	its	domain	and	it	strictly	enforces	that	realm)
Default	value	is	empty.	(By	default	the	serveraddress	will	be
used	without	the	port	number)

proxyaddress
(string)
Outbound	SIP	proxy	address	(Examples:	mydomain.com,
proxy.mydomain.com:5065,	10.20.30.40:5065)

Leave	it	empty	if	you	don’t	have	a	stateless	proxy.	(Use	only	the
serveraddress	parameter)
Default	value	is	empty.

register
(number)
With	this	parameter	you	can	set	whether	the	softphone	should
register	(connect)	to	the	sip	server.
0:	no	(the	webphone	will	not	send	REGISTER	requests)
1:	auto	guess	(yes	if	username/password	are	preset,	otherwise
no)
2:	yes	(and	must	be	registered	before	to	make	calls)
Default	value	is	1.

registerinterval
(number)
Registration	interval	in	seconds	(used	by	the	re-registration
expires	timer).
Default	value	is	120	or	300	depending	on	the	circumstances.
	
This	is	important	for	SIP	servers	to	find	out	unexpected
termination	if	the	webphone	application	or	webpage	such	as
killing	the	browser,	power	loss	or	others	(so	the	server	will	know
that	the	client	is	no	longer	alive	if	this	time	is	expired,	but	no
new	re-registration	were	received	from	the	client).
	
Note:	we	don’t	recommend	to	set	the	re-register	interval	below
30	seconds	(it	just	causes	unnecessary	server	load;	below	30
seconds	most	of	the	SIP	servers	will	not	decide	anyway;	some
servers	doesn’t	accept	such	short	re-registration	periods).	Also
you	should	not	set	it	longer	then	3600	(one	hour).

voicemailnum
(string)
Specify	the	voicemail	number	(which	the	user	can	call	to	hear
its	own	voicemails)	if	any.

Most	PBX	servers	will	automatically	send	the	voicemail	access
number	so	usually	this	is	detected	automatically.
Default	value	is	empty	(auto-detect).

callto
(string)
The	webphone	can	initiate	call	on	startup	if	this	is	set.	It	can	be
used	to	implement	click	to	call	or	similar	functionality.
Can	be	any	phone	number,	username	or	SIP	URI	acceptable	by
your	VoIP	server.
Default	value	is	empty.

autoaction
(number)
Useful	for	click-to-call	to	specify	what	to	do	if	you	pass	the
“callto”	parameter

0:	nothing	(do	nothing,	just	preset	the	destination	number;
the	user	will	have	to	initiate	the	call/chat)

1:	call	(default.	Will	auto	start	the	call	to	“callto”)
2:	chat	(will	show	the	chat	user	interface	presenting	a	chat
session	with	“callto”)
3:	video	call	(will	auto	start	a	vide	call)

	
Note:	the	other	SIP	related	settings	can	be	found	in	the	“Engine	related	settings”
below	(such	as	dtmfmode	or	codec).
	

Engine	related	settings
Library	and	engine	related	settings:

engine	priority
By	default	the	webphone	will	choose	the	“best”	suitable	engines
automatically	based	on	OS/browser/server	support.	This
algorithm	is	optimized	for	all	OS	and	all	browsers	so	you	can	be
sure	that	your	users	will	have	the	best	experience	with	default
settings,	however,	if	you	wish,	you	can	influence	this	engine

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+engine+support+grid

selection	algorithm	by	setting	one	or	more	of	the	following
parameters:

·									enginepriority_java
·									enginepriority_webrtc
·									enginepriority_ns
·									enginepriority_flash
·									enginepriority_app
·									enginepriority_p2p
·									enginepriority_accessnum
·									enginepriority_nativedial

Possible	values:
																0:	Disabled	(never	use	this	engine)
																1:	Lower	(decrease	the	engine	priority)
																2:	Normal	(default)
																3:	Higher	(will	boost	engine	priority)
																4:	Highest	(will	use	this	engine	whenever	possible)
																5:	Force	(only	this	engine	will	be	used)
For	example	if	you	wish	to	prioritize	the	NS	engine,	just	set:
enginepriority_ns=3
	
The	engines	also	have	a	built-in	default	priority	number	assigned	which	can	range
from	0	to	100.	You	can	change	also	these	values	with	the
enginedefpriority_ENGINENAME	settings.
Default	values:
																enginedefpriority_java:	32

enginedefpriority_webrtc:	20
enginedefpriority_flash:	13
enginedefpriority_ns:	30
enginedefpriority_app:	10
enginedefpriority_p2p:	5
enginedefpriority_callback:	5
enginedefpriority_nativedial:	3

Even	if	you	have	a	favorite	engine,	you	should	not	disable	the	others.	Just	set	your
favorite	engine	priority	to	3	or	4.	This	way	even	endusers	which	doesn’t	have	a
chance	to	run	your	favorite	engine	might	be	able	to	make	calls	with	other	engines.

webrtcserveraddress
(string)
Optional	setting	to	indicate	the	domain	name	or	IP	address	of
your	websocket	service	used	for	WebRTC	if	any	(your	server
address	and	websocket	listen	port).

Examples:
ws://mydomain.com
ws://10.20.30.40:5065
wss://asterisk.mydomain.com:8088/ws
wss://sip.mydomain.com:8080
	

Default	value	is	empty	(which	means	auto	service	discovery	and
if	no	webrtc	service	found	then	the	mizu	webrtc	service	can	be
used	if	accessible).
Note:	latest	Chrome	and	Opera	require	secure	websocket	(wss).
You	will	need	to	install	an	SSL	certificate	for	your	WebRTC	server
for	this	and	set	this	parameter	with	the	domain	name	(not	IP
address).	This	is	needed	only	if	your	VoIP	server	is	WebRTC
capable	or	you	have	your	own	WebRTC	to	SIP	gateway.
Otherwise	no	changes	are	required.
More	details	about	webrtc	can	be	found	in	the	FAQ.
	

rtmpserveraddress
(string)
Optional	setting	to	indicate	the	address	(domain	name	or	IP
address	+	port	number)	of	your	flash	service	if	any	(flash	media
+	RTMP).	If	not	set,	then	the	mizu	flash	to	sip	service	might	be
used	(rarely	used	in	normal	circumstances).	Format:
yourdomain.com:rtmpport
Example:	10.20.30.40:5678
Default	value	is	empty.
	

stunserveraddress
(string)
STUN	server	address	in	address:port	format	(RFC	5389)
You	can	set	to	“null”	to	completely	disable	STUN.
Examples:

11.22.33.44:3478
mystunserver.com:3478

https://tools.ietf.org/html/rfc5389

null
By	default	(if	you	leave	this	setting	unchanged)	the	webphone
will	use	the	Mizutech	STUN	servers	(unlimited	free	service	for	all
webphone	customers).	You	can	change	this	to	your	own	STUN
server	or	use	any	public	server	if	you	wish.
Note:	if	you	set	an	incorrect	STUN	server,	then	the	symptoms
are	extra	delays	at	call	setup	(up	to	“icetimeout”).
	

turnserveraddress
(string)
TURN	server	address	in	address:port	format	(RFC	5766)
You	can	set	to	“null”	to	completely	disable	TURN.
Examples:

11.22.33.44:80
mystunserver.com:80
null

	
TURN	is	required	only	if	the	webphone	cannot	send	the	media
directly	to	the	peer	(which	is	usually	your	VoIP	server)	and	your
server	doesn’t	support	TCP	candidates.	For	example	if	all	UDP	is
blocked	or	only	TCP	80	is	allowed	or	you	need	peer	to	peer
media	via	TURN	relay
By	default		(if	you	leave	this	setting	unchanged)	the	webphone
can	use	the	Mizutech	TURN	servers.	If	you	wish,	you	can	deploy
your	own	TURN	server	using	the	popular	open	source	coturn
server.	The	MizuTech	WebRTC	to	SIP	gateway	also	has	its	own
built-in	TURN	server.
	

turnparameters
(string)
Any	TURN	URI	parameter.
Example:	transport=tcp
	

http://olegh.ftp.sh/public-stun.txt
https://tools.ietf.org/html/rfc5766
https://github.com/coturn/coturn
https://www.mizu-voip.com/Software/WebRTCtoSIP.aspx

turnusername
(string)
Username	for	turn	authentication.

turnpassword
(string)
Password	for	turn	authentication.
	

icetimeout
(number)
Timeout	for	ICE	address	gathering	(STUN/TURN/others)	in
milliseconds.
Default	is	3000	(3	seconds).
You	might	increase	in	special	circumstances	if	you	are	using
some	slow	STUN/TURN	server	or	decrease	if	peer	address	is
public	(like	if	your	SIP	or	WebRTC	server	is	on	public	IP	always
routing	the	media,	so	calls	will	work	also	without	STUN).

autodetectwebrtc
(number)
Try	to	auto-detect	webrtc	address	if	not	set	(if	the	active	SIP
server	has	built-in	WebRTC	capabilities)
0:	no
1:	yes
Default	is	1.

offersoftphone
(boolean)
Offer	native	softphone	to	install	if	no	suitable	engine	found.
This	is	useful	for	browsers	which	doesn’t	have	any	built	on
capability	for	VoIP	nor	it	allows	external	plugins	such	as
iOS/Safari.
Download	links	can	be	configured	with	"android_nativedialerurl"
and	"ios_nativedialerurl"	listed	below,	otherwise	the	default	will

be	used	(auto	provisioned	apps	from	Mizutech	with	your
branding,	customization	and	settings	as	you	define	it	for	the
webphone).
Default	is	true.
	

android_nativedialerurl
(string)
Android	native	softphone	download	URL	if	any.	(Optional	setting
to	allow	alternative	softphone	offer	on	Google	Play).
Note:	Android	browsers	has	support	also	for	WebRTC	so	this
might	be	selected	only	with	old	phones	or	if	you	disable
WebRTC.
Default	is	empty	(which	means	the	default	app).

ios_nativedialerurl
(string)
iOS	native	softphone	download	URL	if	any.	(Optional	setting	to
allow	alternative	softphone	offer	on	Apple	App	Store).
The	safari	browser	under	iOS	doesn’t	offer	any	plugin	for	VoIP	so
the	webphone	can	use	its	native	softphone	(will	be	auto
provisioned	from	your	webphone	settings).
Default	is	empty	(which	means	the	default	app).

accessnumber
(string)
Set	this	if	your	IP-PBX	has	an	access	number	where	users	can
call	into	from	PSTN	and	it	can	forward	their	call	on	VoIP	(IVR
asking	for	the	target	number).
This	can	be	used	when	no	other	engines	are	working	(no
suitable	environment,	no	internet	connection).
Default	is	empty.
	

callbacknumber
(string)

Set	this	if	your	server	has	a	callback	access	number	where	users
can	ring	into	and	will	receive	a	call	from	your	server	(possibly
with	an	IVR	which	might	offer	the	possibility	to	specify	the
destination	number	via	DTMF).
This	can	be	used	when	no	other	engines	are	working	(no
suitable	environment,	no	internet	connection)	and	it	is	very
useful	in	situation	where	call	from	the	server	is	cheaper	than
user	call	to	server.
Default	is	empty.

useragent
(string)
This	will	overwrite	the	default	User-Agent	setting.
Do	not	set	this	when	used	with	mizu	VoIP	servers	because	the
server	detects	extra	capabilities	by	reading	this	header.
Default	is	empty.

customsipheader
(string)
Set	a	custom	sip	header	(a	line	in	the	SIP	signaling)	that	will	be
sent	with	all	messages.	Can	be	used	for	various	integration
purposes	and	usually	has	a	key:val	format.	For	example:
myheader:myvalue.
Custom	SIP	headers	should	begin	with	“X-“	to	be	able	to	bypass
servers,	gateways	and	proxies	(For	example:	X-MyHeader:	47).
You	can	add	more	than	one	header,	separated	by	semicolon	(For
example:	customsipheader:	'x-key1:	val1;x-key2:	val2',).
Default	is	empty.

checkmicrophone
(number)
Specify	whether	calls	should	fail	or	succeed	also	without	a
microphone	device.
0:	no	(calls	with	be	allowed	even	if	client	doesn’t	have	any
microphone	audio	device)
1:	with	warning	(call	will	be	allowed	but	a	warning	message	will

be	displayed	for	the	user)
2:	yes	(calls	will	fail	if	user	doesn’t	have	a	microphone	device)
Default	is	1.

transport
(number)
Transport	protocol	for	native	SIP.
0:	UDP		(User	Datagram	Protocol.	The	most	commonly	used
transport	for	SIP)
1:	TCP	(signaling	via	TCP.	RTP	will	remain	on	UDP)
2:	TLS	(encrypted	signaling)
3:	HTTP	tunneling	(both	signaling	and	media.	Supported	only	by
mizu	server	or	mizu	tunnel)
4:	HTTP	proxy	connect	(requires	tunnel	server)
5:	Auto	(automatic	failover	from	UDP	to	HTTP	if	needed)
Default	is	0.
Note:	this	will	not	affect	WebRTC	since	webrtc	transport	is	controlled	by	the	browser:
http/https,	websocket/secure	websocket	(ws/wss)	and	DTLS/SRTP	for	the	media.

localip
(String)
Specify	local	IP	address	to	be	used.
This	should	be	used	only	on	devices	with	multiple	ethernet
interface	to	force	the	specified	IP.
Default	is	empty	(autodetect)
Note:	This	setting	is	not	applicable	for	WebRTC	(In	case	of	WebRTC	this	is	handled
entirely	by	the	browser	internal	WebRTC	stack)

signalingport
(number)
Specify	local	SIP	signaling	port	to	use.
Default	is	0	(a	stable	port	which	is	selected	randomly	at	the	first
usage)
Note:	This	is	not	the	port	of	your	server	where	the	messages	should	be	sent.	This	is
the	local	port	of	the	signaling	socket.
Note:	This	setting	is	not	applicable	for	WebRTC	(In	case	of	WebRTC	this	is	handled
entirely	by	the	browser	internal	WebRTC	stack)

rtpport
(number)
Specify	local	RTP	port	base.
Default	is	0	(which	means	signalingport	+	2)
Note:	If	not	specified,	then	VoIP	engine	will	choose	signalingport
+	2	which	is	then	remembered	at	the	first	successful	call	and
reused	next	time	(stable	rtp	port).	If	there	are	multiple
simultaneous	calls	then	it	will	choose	the	next	even	number.
Note:	This	setting	is	not	applicable	for	WebRTC	(In	case	of	WebRTC	this	is	handled
entirely	by	the	browser	internal	WebRTC	stack)
	

sendrtponmuted
(boolean)
Send	rtp	even	if	muted	(zeroed	packets)
Set	to	true	only	if	your	server	is	malfunctioning	when	no	RTP	is
received.
Default	value	is	false.

mediaencryption
(number)
Media	encryption	method
0:	not	encrypted	(default)
1:	auto	(will	encrypt	if	initiated	by	other	party)
2:	SRTP
Default	is	0.
Note:	this	will	not	affect	WebRTC	since	WebRTC	always	uses	DTLS/SRTP	for	the
media.

dtmfmode
(number)
DTMF	send	method

·									0:	disabled
·									1:	sip	INFO	method
·									2:	auto	detect	(RFC2833	in	the	RTP	if	RTP	stream	is
working	and	peer	announced	telephone-event	payload),

otherwise	it	will	send	(also)	SIP	INFO.
·									3:	both	INFO	and	RFC2833
·									4:	RFC2833	(will	not	send	SIP	INFO	even	if	there	is	no	RTP
stream	negotiated)

Default	is	2.
	
Note:
Received	DTMF	are	recognized	by	default	in	both	INFO	or
RFC2833	formats	(No	In-Band	DTMF	processing)
You	can	also	use	the	“inbounddtmf”	and	“outbounddtmf”	to
suggest	server	side	dtmf	types.	These	can	be	set	only	to	1	or	2.
	

playdtmfsound
(number)
Specify	whether	the	webphone	should	generate	local	DTMF	tone
when	DTMF	is	sent.
0=no
1=if	one	digit
2=always	(also	when	multiple	digits	are	sent	at	once)
Default	is	1.

earlymedia
(number)
Start	to	send	media	when	session	progress	is	received.
0:	no
1:	reserved
2:	auto	(will	early	open	audio	if	wideband	is	enabled	to	check	if
supported)
3:	just	early	open	the	audio
4:	null	packets	only	when	sdp	received	(NS	only)
5:	yes	when	sdp	received
6:	always	forced	yes
Default	is	2.

prefcodec

(string)
Set	your	preferred	audio	codec.	Will	accept	one	of	the
followings:	pcmu,	pcma,	g.711	(for	both	PCMU	and	PCMA),
g.719,	gsm,	ilbc,	speex,	speexwb,	speexuwb,	opus,	opuswb,
opusuwb,	opusswb
Default	is	empty	which	means	the	built-in	optimal	prioritization.
By	default	the	engine	will	present	the	codec	list	optimized	regarding	the
circumstances	(the	combination	of	the	followings):

·									available	client	codec	set	(not	all	engines	supports	all	codecs)
·									server	codec	list	(depending	on	your	server,	peer	device	or	carrier)
·									internal/external	call:	for	IP	to	IP	calls	will	prioritize	wideband	codecs	if
possible,	while	for	outbound	calls	usually	G.729	will	be	selected	if	available

·									network	quality	(bandwidth,	delay,	packet-loss,	jitter):	for	example	iLBC	is
more	tolerant	to	network	problems	if	supported

·									device	CPU:	some	old	mobile	devices	might	not	be	able	to	handle	high-
complexity	codec’s	such	as	opus	or	G.729.		G711	and	GSM	has	low
computational	costs

You	can	also	fine-tune	the	codec	settings	with	the	use_xxx	settings	where	xxx	is	the
codec	name	as	described	in	JVoIP	documentation.
	

codec
(string)
List	of	allowed	audio	codec’s	separated	by	comma.
By	default	the	webphone	will	automatically	choose	the	best
codec	depending	on	available	codec’s,	circumstances
(network/device)	and	peer	capabilities.
Set	this	parameter	only	if	you	have	some	special	requirements
such	as	forcing	a	specific	codec,	regardless	of	the
circumstances.
Example:	Opus,G.729,PCMU	(This	will	disable	Speex,	GSM,	iLBC,
GSM	and	PCMA).
Default:	empty	(which	means	auto	detection	and	negotiation)
Recommended	value:	leave	it	empty
	
Under	normal	circumstances,	the	following	is	the	built-in	codec
priority:
								I.												Wideband	Speex	and	Opus	(These	are	set	with	top

priority	as	they	have	the	best	quality.	Likely	used	for	VoIP	to
VoIP	calls	if	the	peer	also	has	support	for	wideband)

http://www.mizu-voip.com/Support/Blog/tabid/100/EntryID/7/Default.aspx
https://www.mizu-voip.com/Portals/0/Files/JVoIP.pdf

						II.												G.729	(Usually	the	preferred	codec	for	VoIP	trunks	used
for	mobile/landline	calls	because	it’s	excellent
compression/quality	ratio	for	narrowband)

				III.												iLBC,	GSM	(If	G.729	is	not	supported	then	these	are	good
alternatives.	iLBC	has	better	characteristics	and	GSM	is
better	supported	by	legacy	hardware)

				IV.												G.711:	PCMU	and	PCMA	(Requires	more	bandwidth,	but
has	the	best	narrowband	quality.	Preferred	from	WebRTC	if
Opus	is	not	supported	as	these	are	present	in	almost	any
WebRTC	and	SIP	endpoints	and	servers)

vcodec
(string)
List	of	allowed	video	codec’s	separated	by	comma.
You	might	use	this	parameter	to	exclude	some	codec	from	the
offer	list.
For	example	if	you	don’t	wish	to	use	VP8,	then	set	this	to:
	“H264,	H263”
Default:	empty	(which	means	auto	detection	and	negotiation)
	
Note:	WebRTC	has	support	only	for	H.264	and	VP8	from	common
browsers	so	you	should	not	disable	these	codec’s.

video
(number)
Enable/disable	video.
																-1:	auto	(default)

0:	disable
1:	enable
2:	force	always

	
Note:	if	you	are	using	the	webphone	with	a	custom	skin,	the
video	will	be	displayed	in	a	div	with	id	set	to	“video_container”,
so	your	html	must	have		this	element:		<div
id="video_container"></div>

video_bandwidth
(number)
Max	bandwidth	for	video	in	kbits.
It	will	be	sent	also	with	SDP	“b:AS”	attribute.
Default	is	0	which	means	auto	negotiated	via	RTCP	and
congestion	control.
	

video	size	parameters
(number)
You	can	suggest	the	size	of	the	video	(in	pixels)	with	the
following	parameters:

·									video_width
·									video_height
·									video_min_width
·									video_min_height
·									video_max_width
·									video_max_height

	

codecframecount
(number)
Number	of	payloads	in	one	UDP	packet.
By	default	it	is	set	to	0	which	means	2	frames	for	G729	and	1
frame	for	all	other	codec.

aec
(number)
Enable/disable	acoustic	echo	cancellation
0=no
1=yes	except	if	headset	is	guessed
2=yes	if	supported
3=forced	yes	even	if	not	supported	(might	result	in	unexpected
errors)
Default	is	1.

agc
(number)
Automatic	gain	control.
0=Disabled
1=For	recording	only
2=Both	for	playback	and	recording
3=Guess
Default	value	is	3

jittersize
(number)
Although	the	jitter	size	is	calculated	dynamically,	you	can
modify	its	behavior	with	this	setting.
0=no	jitter,1=extra	small,2=small,3=normal,4=big,5=extra
big,6=max
Default	is	3

enablepresence2
(number)
Enable/disable	presence.
Possible	values:
0:	disable
1:	auto	(if	presence	capabilities	detected)
2:	always	enable	/	force

autostart
(boolean)
Specify	whether	the	webphone	stack	should	be	started
automatically	on	page	load.
If	set	to	false	then	the	start()	method	needs	to	be	called
manually	in	order	for	the	webphone	to	start.	Also	the	webphone
will	be	started	automatically	on	some	other	method	calls	such
as	register()	or	call().
Default	is	true.
Note:	you	can	set	this	to	false	to	prevent	the	auto	initialization

of	the	webphone,	so	you	might	delay	this	until	actually	the	user
wish	to	interact	with	your	phone	UI	(such	as	pushing	your	click
to	call	button)

loglevel
(number)
Tracing	level.	Values	from	1	to	5.
Log	level	5	means	a	full	log	including	SIP	signaling.	Higher	log
levels	should	be	avoided,	because	they	can	slow	down	the
softphone.
Loglevel	above	5	is	meant	only	for	Mizutech	developers	and
might	slow	down	the	webphone.
Do	not	set	to	0	because	that	will	disable	also	the	important
notifications	presented	for	the	users.
More	details	about	logs	can	be	found	here.

logtoconsole
(boolean)
Specify	whether	to	send	logs	to	console.
true:	will	output	all	logs	to	console	(default)
false:	will	output	only	level	1	(important	events	also	displayed
for	the	user)
The	amount	of	logs	depends	on	the	“loglevel”	parameter.
Default	is:	true

NS	and	Java	extra	settings
With	the	NS	and	Java	engines	you	can	also	use	any	parameters
supported	by	the	Mizu	JVoIP	SDK	as	listed	in	the	JVoIP
documentation.
(Unrecognized	parameters	will	be	skipped	if	the	WebRTC	engine
is	used)
	

Call	divert	and	other	settings
These	parameters	are	used	for	call	auto-answer,	forward,
transfer,	number	rewrite	and	similar	tasks:

https://www.mizu-voip.com/Portals/0/Files/JVoIP.pdf

	

normalizenumber
(number)
Normalize	called	phone	numbers.
If	the	dialed	number	looks	like	a	phone	number	(at	least	5
number	digits	and	no	a-z,	A-Z	or	@	characters	and	length
between	5	and	20)	then	will	drop	all	special	characters	leaving
only	valid	digits	(numbers,	*,	#	and	+	at	the	beginning).
Possible	values:
0:	no,	don’t	normalize
1:	yes,	normalize	(default)
	

techprefix
(string)
Add	any	prefix	for	the	called	numbers.
Default	is	empty.

numpxrewrite
In	case	if	you	need	to	rewrite	numbers	after	your	dial	plan	on
the	client	side,	you	can	use	the	numpxrewrite	parameter
(although	these	kind	of	number	rewrite	are	usually	done	after
server	side	dial	plan):
You	can	set	multiple	rules	separated	by	semicolon.
Each	rule	has	4	parameters,	separated	by	comma:	prefix	to
rewrite,	rewrite	to,	min	length,	max	length
For	example:

‘74,004074,8,10;+,001,7,14;',
This	will	rewrite	the	74	prefix	in	all	numbers	to	004074	if

the	number	length	is	between	8	and	10.	
Also	it	will	rewrite	the	+	prefix	in	all	numbers	to	001	if	the

number	length	is	between	7	and	14.

blacklist
(string)

Block	incoming	communication	(call,	chat	and	others)	from
these	users.	(username/numbers/extensions	separated	by
comma).
Default	value	is	empty.

callforwardonbusy
(string)
Specify	a	number	where	incoming	calls	should	be	forwarded
when	the	user	is	already	in	a	call.	(Otherwise	the	new	call	alert
will	be	displayed	for	the	user	or	a	message	will	be	sent	on	the	JS
API)
Default	is	empty.

callforwardonnoanswer
(string)
Forward	incoming	calls	to	this	number	if	not	accepted	or
rejected	within	15	seconds.
Default	is	empty.

callforwardalways
(string)
Specify	a	number	where	ALL	incoming	calls	should	be
forwarded.
Default	is	empty.

calltransferalways
(string)
Specify	a	number	where	ALL	incoming	calls	should	be
transferred	to.
This	might	be	used	if	your	server	doesn’t	support	call	forward
(302	answers)	otherwise	better	to	set	this	on	server	side
because	the	call	will	not	reach	the	webphone	when	it	is
offline/closed,	so	no	chance	for	it	to	forward	the	call.
Default	is	empty.
	

autoignore
(number)
Set	to	ignore	all	incoming	calls.
0:	don’t	ignore
1:	silently	ignore
2:	reject
Default	value	is	0.
	

autoaccept
(boolean)
Set	to	true	to	automatically	accept	all	incoming	calls	(auto
answer).
Default	value	is	false.

acceptcall_onsharedevice
(boolean)
Specify	whether	to	auto	accept	incoming	calls	when	the	user
clicks	to	enable	device	sharing	for	WebRTC	(the	audio	device
permission	browser	popup)
-true:	accept	webrtc	call	on	browser	share	device	click	(default)
-false:	do	nothing	(user	will	have	to	click	the	“Accept”	button	to
accept	the	incoming	call	or	you	must	call	the	accept()	API)

beeponconnect
(number)
Will	play	a	short	sound	when	calls	are	connected
0:	Disabled
1:	For	auto	accepted	incoming	calls
2:	For	incoming	calls
3:	For	outgoing	calls
4:	For	all	calls
Default	value	is	0
	

redialonfail
(number)
Retry	the	call	on	failure	or	no	response.
0:	no
1:	yes
Default	value	is	1.

rejectonbusy
(boolean)
Set	to	true	to	automatically	reject	(disconnect)	incoming	call	if	a
call	is	already	in	progress.
Default	value	is	false.
	

disablesamecall
(number)
Specify	whether	to	enable	(possible	accidental)	outgoing	call	to
a	number	where	there	is	already	a	call	in	progress.
This	might	happen	as	a	result	of	API	misuse	or	by	user	double-
click	on	the	call	button.
Set	to	1	to	reject	such	kind	of	second	call.
Set	to	0	to	disable	this	verification	and	enable	all	calls.
Default	is	1.

allowcallredirect
(number)
Set	to	1	to	auto-redial	on	301/302	call	forward.
Set	to	0	to	disable	auto	call	forward.
Default	value	is	1.

muteholdalllines
(number)
Auto	Mute/Hold	all	call	legs	on	conference	calls.
0=no
1=yes

Default	is	0.

automute
(number)
Specify	if	other	lines	will	be	muted	on	new	call
0=no	(default)
1=on	incoming	call
2=on	outgoing	call
3=on	incoming	and	outgoing	calls
4=on	other	line	button	click
Default	is	0
	

autohold
(number)
Specify	if	other	lines	will	be	muted	on	new	call
0=no	(default)
1=on	incoming	call
2=on	outgoing	call
3=on	incoming	and	outgoing	calls
4=on	other	line	button	click
Default	is	0
	

transfertype
(number)
Specify	transfer	mode	for	native	SIP.
-1=default	transfer	type	(same	as	6)
0=call	transfer	is	disabled
1=transfer	immediately	and	disconnect	with	the	A	user	when
the	Transf	button	is	pressed	and	the	number	entered
(unattended/blind	transfer)
2=transfer	the	call	only	when	the	second	party	is	disconnected
(attended	transfer)
3=transfer	the	call	when	the	VoIP	Applet	is	disconnected	from
the	second	party	(attended	transfer)

4=transfer	the	call	when	any	party	is	disconnected	except	when
the	original	caller	was	initiated	the	disconnect	(attended
transfer)
5=transfer	the	call	when	the	VoIP	Applet	is	disconnected	from
the	second	party.	Put	the	caller	on	hold	during	the	call	transfer
(standard	attended	transfer)
6=transfer	the	call	immediately	with	hold	and	watch	for
notifications	(unattended	transfer)
	
Default	is	-1	(which	is	the	same	as	6)
	
If	you	have	any	incompatibility	issue,	then	set	to	1	(unattended	is	the	simplest	way	to
transfer	a	call	and	all	sip	server	and	device	should	support	it	correctly)
Note:	only	unattended/blind	transfer	is	support	between	SIP	and	WebRTC	(if	one
endpoint	is	using	native	SIP	while	the	other	is	on	WebRTC)

transfwithreplace
(number)
Specify	if	replace	should	be	used	with	transfer	so	the	old	call
(dialog)	is	not	disconnected	but	just	replaced.
This	way	the	A	party	is	never	disconnected,	just	the	called	party
is	changed.	The	A	party	must	be	able	to	handle	the	replace
header	for	this.
-1=auto
0=no	(will	create	a	separate	call)
1=yes		(smooth	transfer,	but	not	supported	by	some	servers)
Default	is	-1
	

changesptoring
(number)
If	to	treat	session	progress	(183)	responses	as	ringing	(180).
This	is	useful	because	some	servers	never	sends	the	ringing
message,	only	a	session	progress	and	might	not	start	to	send	in-
band	ringing	(or	some	announcement).	In	this	circumstances
the	webphone	can	generate	local	ringback.
The	following	values	are	defined:

0:	do	nothing	(no	ringback	on	session	progress	message)
																Will	not	call	startRingbackTone()	on	183	(only	for	180)
1:	change	status	to	ring
2:	start	local	ring	if	needed	and	be	ready	to	accept	media
(which	is	usually	a	ringtone	or	announcement	and	will	stop	the
locally	generated	ringback	once	media	received)
																Will	call	startRingbackTone()	on	180	and	183	but	stop
on	early	media	receive.
3:	start	media	receive	and	playback	(and	media	recording	if	the
“earlymedia”	applet	parameter	is	set)
4:	change	status	to	ringing	and	start	media	receive	and
playback	(and	media	recording	if	the	“earlymedia”	applet
parameter	is	set	to	true)
5:	play	early	ringback	and	don’t	stop	even	if	incoming	early
media	starts
																Will	call	startRingbackTone()	on	180	and	183	and	do
NOT	stop	on	early	media	receive.
Default	value	is	2.
	
*Note:	on	ringing	status	the	web	phone	is	able	to	generate	local	ringback	tone.
However	with	the	default	settings	this	locally	generated	ringtone	playback	is	stopped
immediately	when	media	is	started	to	be	received	from	the	server	(allowing	the	user
to	hear	the	server	ringback	tone	or	announcements)

ringtimeout
(number)
Maximum	ring	time	allowed	in	millisecond.
Default	is	90000	(90	second)
	
You	can	also	set	separate	ring	timeout	for	incoming	and
outgoing	calls	with	the	“ringtimeoutin”	and	“ringtimeoutout”
settings.

calltimeout
(number)
Maximum	speech	time	allowed	in	millisecond.
Default	is	10800000	(3	hours)

mediatimeout
(number)
RTP	timeout	in	seconds	to	protect	again	dead	sessions.
Calls	will	be	disconnected	if	no	media	packet	is	sent	and
received	for	this	interval.
You	might	increase	the	value	if	you	expect	long	call	hold	or	one
way	audio	periods.
Set	to	0	to	disable	call	cut	off	on	no	media.
Default	value	is	300	(5	minute)
	

bargeinheader
(string)
You	can	barge-in	or	spy	on	the	calls	by	sending	a	specific	SIP
header	specified	by	the	“bargeinheader”	parameter	available
for	NS	and	Java	engines.
For	example	if	you	specify	the	value	as	“X-barge:	yes”,	then
when	your	server	sends	this	in	the	INVITE,	the	call	will	be	auto-
accepted	and	hidden	joining	a	conference	with	all	calls	made	by
the	user/agent.
Default	is	empty	(disabled).

voicerecupload
(string)
Voice	record	upload	URL.
With	this	setting	you	can	setup	VoIP	call	recording	(voice
recording).
If	set	then	calls	will	be	recorded	and	uploaded	to	the	specified
ftp	or	http	address	in	pcm/wave,	gsm,	mp3	or	ogg	format.
The	files	can	be	uploaded	to	your	FTP	server	(any	FTP	server
with	specified	user	login	credentials)	or	HTTP	server	(in	this	case
you	need	a	server	side	script	to	save	the	uploaded	data	to	file
using	http	PUT	or	multipart/form-data	POST)
Default	value	is	empty	(no	voice	call	recording).
	

https://filezilla-project.org/

Example:
ftp://user01:pass1234@ftp.foo.com/voice_DATETIME_CALLER_CALLED
http://www.foo.com/myfilehandler.php/?
filename=callrecord_CALLID
	
You	can	also	suggest	a	particular	file	format	by	appending	its
extension	to	the	file	name	(for	example	.wav	or	.mp3).
For	example:
ftp://user01:pass1234@ftp.foo.com/voice_DATETIME_CALLER_CALLED.wav
	
You	can	use	the	following	keywords	in	the	file	name	as	these	will
be	replaced	automatically	at	runtime	to	their	respective	values:

·									DATETIME:	will	be	replaced	to	current	date-time
·									DATE:	will	be	replaced	to	current	date
(year/month/day)

·									TIME:	will	be	replaced	to	current	time	(hour/min/sec)
·									CALLID:	will	be	replaced	to	sip	call-id
·									USER:	will	be	replaced	to	local	user	name
·									CALLER:	will	be	replaced	to	caller	party	name	(caller
id)

·									CALLED:	will	be	replaced	to	callee	party	name
·									SERVER:	the	domain	or	IP	of	the	SIP	server

	
If	you	set	a	HTTP	URI,	then	the	following	headers	will	be	also	set
in	the	HTTP	PUT	or	POST:	X-type,	X-filename,	X-user,	X-caller,	X-
called,	X-callid	and	X-server.
	
Note:
1.							You	can	also	use	the	voicerecord	API	to	turn	on/off	the
voice	recording	at	runtime	(if	not	all	calls	have	to	be
recorded)

2.							Voice	call	recording	usually	can	be	performed	also	on	the
server	side.	Check	your	PBX/softswitch	documentation	for
this.

	

User	interface	related	settings

Most	of	these	apply	only	to	the	Softphone	user	interface	which
is	shipped	with	the	webphone	to	further	customize	the	web
softphone	user	interface	and	behavior	(Softphone.html)

brandname
(string)
Brand	name	of	the	softphone	to	be	displayed	as	the	title	and	at
various	other	places	such	as	SIP	headers.
Default	is	empty.

companyname
(string)
Your	company	name	to	be	displayed	in	the	about	box	and
various	other	places.
Default	is	empty.

logo
(string)
Displayed	on	login	page.
Can	be	text	or	an	image	name,	ex:	"logo.png"	(image	must	be
stored	in	images/folder)
Default	is	empty.

colortheme
(number)
You	can	easily	change	the	skin	of	the	supplied	user	interfaces
with	this	setting	(softphone,	click	to	call).
Possible	values:

1.							Default
2.							Light	Blue
3.							Light	Green
4.							Light	Orange
5.							Light	Purple
6.							Dark	Red
7.							Yellow
8.							Blue
9.							Purple
10.				Turquoise

11.				Light	Skin
12.				Green	Orange

Default	is	0.
More	details	about	design	changes.

language
Set	the	language	for	the	user	interface.
Two	character	language	code	(for	example	en	for	English	or	it
for	Italian).
More	details	about	localization	can	be	found	in	the	FAQ.

featureset
(number)
User	interface	complexity	level.

0=minimal
5=reduced
10=full	(default)
15=more	(for	tech	user)

You	might	set	to	5	for	novice	users	or	if	only	basic	call	features
have	to	be	used.
Default	is	10.

showserverinput
(number)
This	can	be	used	to	hide	the	server	address	setting	from	the
user	if	you	already	preconfigured	the	server	address	in	the
webphone_api.js	(“serveraddress”	config	option),	so	the
enduser	have	to	type	only	their	username/password	to	use	the
softphone.
Possible	values:
																0:	no	(will	hide	the	server	input	setting	for	the
endusers)
																1:	auto	(default)
																2:	yes	(will	shot	the	server	input	setting	for	the
endusers)c
	

useloginpage
(number)
Whether	to	use	a	simplified	login	page	with	username/password
in	the	middle	(instead	of	list	style	settings;	old	haveloginpage).
Possible	values:
																-1:	auto	(will	auto	set	to	1	if	featureset	is	Minimal,
otherwise	0)
																0:	no
																1:	only	at	first	login
																2:	always

chatsms
(number)
0:	Auto	guess	or	Ask
1:	SMS	only
2:	Chat	only
Default	is	0.

showincomingchatas
(number)
Define	how	to	handle	incoming	chat	messages.
0:	open/show	chat	window	if	not	in	call
1:	just	set	a	notification
Default	is	0.

conferencerooms
(number)
Enable/disable	conference	room	feature.
0:	disabled
1:	enabled	(if	supported	by	the	server)
Default	is	1.

callparknumber
(string)
Can	be	used	to	add	call	park	and	call	pickup	(will	be	sent	as

DTMF	for	call	park	and	user	need	to	call	to	pickup	number	to
later	reload	the	call	from	the	same	or	other	device).
If	set,	then	it	will	be	displayed	on	the	call	page	as	an	extra
option.

hasringcounter
(boolean)
Enable/disable	the	time	counter	during	ring-time.

hasfiletransfer
(boolean)
Set	to	true	to	enable	file	transfer.

filetransferurl
(string)
HTTP	URI	used	for	file	transfer.	By	default	Mizutech	service	is
used	which	is	provided	for	free	with	the	web	softphone.

displaynotification
(number)
Show	notifications	in	phone	notification	bar	(usually	on	the	top
corner	of	your	phone).
0:Never
1:On	event
2:Always
Default	is	1.

displayvolumecontrols
(boolean)
Always	display	volume	controls	when	in	call.
Default	is	false.

displayaudiodevice
(boolean)
Always	display	audio	device	when	in	call.

Default	is	false.

displaypeerdetails
(string)
Specify	where	to	display	the	information	returned	by
scurl_displaypeerdetails.
It	can	be	used	display	details	about	the	peers	from	your	CRM
such	as	full	name,	address	or	other	details.
(Useful	in	call-centers	and	for	similar	usage)
Possible	values:
0:	show	on	call	page	(instead	of	contact	picture)
1:	on	new	page
div	id:	display	on	the	specified	DIV	element

savetocontacts
(number)
Whether	to	(automatically)	add	new	unknown	called	numbers	to
your	contact	list.
0:No
1:Ask
2:Yes	(will	not	ask	for	a	contact	name)
Default	is	1.

hasincomingcallpopup
(boolean)
Whether	to	display	a	popup	about	incoming	calls	in	certain
engines.
Set	to	false	to	disable	(in	this	case	make	sure	that	you	handle
the	incoming	call	alert	from	your	HTML/JS	if	required).
Default	is	true.

header
(string)
Header	text	displayed	for	users	on	top	of	softphone	windows.
Default	is	empty.

footer
(string)
Footer	text	displayed	for	users	on	the	bottom	of	softphone
windows.
Default	is	empty.

version
(string)
Version	number	displayed	for	users.
Default	is	empty	(will	load	the	built-in	version	number)

messagepopup
(string)
Display	custom	popup	for	user	once.
Default	is	empty.

showsynccontactsmenu
(number)
This	is	to	allow	contact	synchronization	between	mobile	and
desktop.
-1=don't	show
0=show	Sync	option	in	menu	and	Contacts	page	(if	no	contacts
available)
1=show	in	menu	only
Default	is	1

defcontacts
(string)
Set	one	or	more	contacts	to	be	displayed	by	default	in	the
contact	list.
Name	and	number	separated	by	comma	and	contacts	separated
by	semicolon:
Example:	defcontacts:	'John	Doe,12121;Jill	Doe,231231'

disableoptions

(string)
List	of	settings	options	and	features	to	be	disabled	or	hidden.
To	disable	entire	features,	use	the	upper	case	keywords	such	as
CHAT,VIDEO,VOICEMAIL,CONFERENCE.
To	disable	settings,	use	the	setting	label	or	name	such	as	Audio
device,	Call	forward.
Example:	disabledsett:	'theme,email,Call
forward,callforwardonbusy,callforwardonnoanswer,callforwardalways,VIDEO'

hidesettings
(string)
List	of	settings	options	to	be	disabled	or	hidden	when	using	the
softphone	skin.
Example:	hidesettings:
'theme,email,callforwardonbusy,callforwardonnoanswer,callforwardalways,autoaccept,autoanswer_forward,forward,autoignore'

extraoption
(string)
Custom	parameters	can	be	set	in	a	key-value	pair	list,	separated
by	semicolon	Ex:	displayname=John;
Default	is	empty.

logsendto
(number)
Specify	allowed	actions	on	the	logs	page.
0:	no	options	(users	will	still	be	able	to	copy-paste	the	logs)
1:	upload	(default)
2:	email	launch	(the	email	address	set	by	the	“supportmail”
parameter	or	support@mizu-voip.com	if	not	set)

links
(strings)
The	webphone	GUI	can	load	additional	information	from	your
web	server	application	or	display	some	content	from	your
website	internally	in	a	WebView	or	frame.	You	can	integrate	the

mailto:support@mizu-voip.com

included	softphone	user	interface	with	your	website	and/or	VoIP
server	HTTP	API	(if	any)	by	using	the	following	parameters:

·									advertisement:	Advertisement	URL,	displayed	on	bottom
of	the	softphone	windows.

·									supportmail:	Company	support	email	address.
·									supporturl:	Company	support	URL.
·									newuser:	New	user	registration	http	request	OR	link	(if
API	then	suffix	with	star	*)

·									forgotpasswordurl:	Will	be	displayed	on	login	page	if
set.

·									homepage:	Company	home	page	link.
·									accounturi:	Company	user	account	page	link.
·									recharge:	Recharge	http	request	(pin	code	must	be	sent)
or	link.

·									p2p:	Phone	to	phone	http	request	or	link.
·									callback:	Callback	http	request	or	link		(For	example:
http://yourdomain.com/callback?user=USERNAME)

·									sms:	SMS	http	request.
·									creditrequest:	Balance	http	request,	result	displayed	to
user.

·									ratingrequest:	Rating	http	request,	result	displayed	for
user	on	call	page.

·									helpurl:	Company	help	link.
·									licenseurl:	License	agreement	link.
·									extramenuurl:	Link	specifying	custom	menu	entry.	Will
be	added	to	main	page	(dialpad)	menu.

·									extramenutxt:	Title	of	custom	menu	entry.	Will	be	added
to	main	page	(dialpad)	menu.

Parameters	can	be	treated	as	API	requests	(specially
interpreted)	or	links	(to	be	opened	in	built-in	webview).	For	http
API	request	the	value	must	begin	with	asterisk	character:
"*http://domain.com/...."	For	example	if	the	"newuser"	is	a	link,
then	it	will	be	opened	in	a	browser	page;	if	it's	an	API	http
request	(begins	with	*),	then	a	form	will	be	opened	in	the
softphone	with	fields	to	be	completed.

o			The	followings	are	always	treated	as	API	request:
creditrequest,	ratingrequest

o			The	followings	can	be	links	OR	API	http	requests:	newuser,
recharge,	p2p,	callback,	sms

o			The	rest	will	be	treated	always	as	links	(opened	in	built-in
webview	or	separate	browser	tab)

	
You	can	also	use	keywords	in	these	settings	strings	which	will	be
replaced	automatically	by	the	web	softphone.	The	following
keywords	are	recognized:

o			DEVICEID:	unique	identifier	for	the	client	device	or
browser

o			SESSIONID:	session	identifier
o			USERNAME:	sip	account	username.	preconfigured	or
entered	by	the	user

o			PASSWORD:	sip	account	password
o			CALLEDNUMBER:	dialed	number
o			PEERNUM:	other	party	phone	number	or	SIP	uri
o			PEERDETAILS:	other	party	display	name	and	other
available	details

o			DIRECTION:	1=outgoing	call,	2=incoming	call
o			CALLBACKNR,PHONE1,	PHONE2:	reserved
o			PINCODE:	reserved.	will	be	used	in	some	kind	of
requests	such	as	recharge

o			TEXT:	such	as	chat	message
o			STATUS:	status	messages:	onLoad,	onStart,	callSetup,
callRinging,	callConnected,	callDisconnected,	inChat,
outChat

o			MD5SIMPLE:	md5	(pUser	+	":"	+	pPassword)
o			MD5NORMAL:	md5	(pUser	+	":"	+
pPassword+":"+randomSalt)

o			MD5SALT:	random	salt
	
Example	credit	http	request:	https://domain.com/balance/?
user=	USERNAME
(Where	“USERNAME”	will	be	dynamically	replaced	with	the
currently	logged	in	username)
	

https://domain.com/balance/?user=%20USERNAME

Parameter	security
Parameters	are	safe	by	default	since	they	are	used	only	in	the
user	http	session.		This	means	that	the	enduser	can	discover	its
own	settings	including	the	password,	but	other	users	–including
users	for	the	same	browser	or	middle-men	such	as	the	ISP-	will
not	be	able	to	see	the	sensitive	parameters	if	you	are	using
secure	http	(HTTPS).
	
The	only	sensitive	parameter	is	the	SIP	account	“password”!	
(This	is	sent	only	as	digest	hash	in	signaling,	but	make	sure	to
never	display	or	log	from	your	code)
	
Make	sure	to	never	hardcode	it	into	your	website	(It	should	not
found	if	you	check	the	source	of	your	webpage	in	the	browser.
The	only	exception	would	be	if	you	offer	some	free	to	call
service	which	is	not	routed	to	outside	paid	trunks/carriers).	If
the	password	has	to	be	preconfigured	then	load	it	via	an	ajax
call	or	similar	method;	just	make	sure	to	use	HTTPS	in	this	case
because	otherwise	all	the	communication	is	in	clear	text
between	the	browser	and	your	server	if	the	page	is	running	on
unsecure	HTTP.	Otherwise	just	let	the	endusers	to	enter	their
password	on	a	login/settings	form	and	pass	it	to	the	webphone
with	the	setsipheader()	API	call.
	
There	is	no	much	reason	to	try	to	obfuscate	or	hide	other
parameters.
For	example	the	“serveraddress”	can	be	discovered	anyway	by
analyzing	the	low	level	network	traffic	and	this	is	perfectly
normal.	Most	of	the	other	parameters	are	completely	irrelevant.
Some	sensitive	information’s	are	also	managed	by	the
webphone	(such	as	the	user	contact	list)	however	these	are
stored	only	locally	in	the	browser	secure	web	storage	or	secure
cookie	by	default	(on	HTTPS)	and	further	encrypted	or
obfuscated	by	the	webphone.
	
The	following	methods	can	be	used	to	further	secure	the

webphone	usage:
-set	the	loglevel	to	1	(with	loglevel	5	the	password	might	be
written	in	the	logs)
-don’t	hardcode	the	password	if	possible	(let	the	users	to	enter
it)	or	if	you	must	hardcode	it	then	use	encryption	and/or
obfuscation
-restrict	the	account	on	the	VoIP	server	(for	example	if	the
webphone	is	used	as	a	support	access,	then	allow	to	call	only
your	support	numbers)
-instead	of	password,	use	the	MD5	and	the	realm	parameters	if
possible	(and	this	can	also	passed	in	encrypted	format	to	be
more	secure)
-instead	of	preconfigured	parameters	you	can	use	the	javascript
VoIP	api	(setparameter)
-use	https	(secure	http	/	TLS)
-for	parameter	encoding	(encryption/obfuscation)	you	can	use
XOR	+	base64	with	your	built-in	key	(ask	from	Mizutech),
prefixed	with	the	“encrypted__3__”	string		(you	can	verify	your
encryption	with	this	tool	using	selecting	XOR	Base64	Encrypt)
-secure	your	VoIP	server	(account	limits,	rate-limits,	balance
limits,	fraud	detection)	and	follow	the	VoIP	security	best
practices.	For	example	here	you	can	find	some	details	about
mizu	VoIP	server	security.
	

https://www.mizu-voip.com/Portals/0/Files/WebPhoneParameterEncoding.pdf
http://www.angelwatt.com/coding/character_translator.php
https://www.mizu-voip.com/Portals/0/Files/VoIP_Server_Security.pdf

JavaScript	API

About
You	can	use	the	webphone	javascript	library	in	multiple	ways	for
many	purposes:

·									create	your	own	web	dialer
·									add	click	to	call	functionality	to	your	webpage
·									add	VoIP	capability	to	your	existing	web	project	or	website
·									integrate	with	any	CRM,	callcenter	client	or	other	projects
·									modify	one	of	the	existing	projects	to	achieve	your	goal
(see	the	included	softphone	and	click	to	call	examples)	or
create	yours	from	scratch

·									and	many	others
	
The	public	JavaScript	API	can	be	found	in	"webphone_api.js"	file,
under	global	javascript	namespace	"webphone_api".
To	be	able	to	use	the	webphone	as	a	javascript	VoIP	library,	just
copy	the	webphone	folder	to	your	web	project	and	add	the
webphone_api.js	to	your	page.
	

Basic	example
	
<head>
																<!--	Include	the	webphone_api.js	to	your	webpage	-->

<script	src="webphone_api.js"></script>
</head>
<body>
<script>
																//Wait	until	the	webphone	is	loaded,	before	calling	any	API	functions

webphone_api.onLoaded(function	()	{
	
																																//Set	parameters	(Replace	upper	case	worlds	with	your	settings)
																																webphone_api.setparameter('serveraddress',	SERVERADDRESS);
																																webphone_api.setparameter('username',	USERNAME);
																																webphone_api.setparameter('password',	PASSWORD);
																																webphone_api.setparameter(‘other’,	MYCUSTOMSETTING);
																																//See	the	“Parameters”	section	below	for	more	options
	
																																//Start	the	webphone	(optional	but	recommended)
																																webphone_api.start();
	
																																//Make	a	call	(Usually	initiated	by	user	action,	such	as	click	on	a
click	to	call	button.	Number	can	be	extension,	SIP	username,	SIP	URI	or
mobile/landline	phone)
																																webphone_api.call(NUMBER);
	
																																//Hang-up	(usually	called	from	“disconnect”	button	click)
																																webphone_api.hangup();
	
																																//Send	instant	message	(Number	can	be	extension,	SIP	username.
Usually	called	from	a	“send	chat”	button)
																																webphone_api.sendchat(NUMBER,	MESSAGETEXT);

});
//You	should	also	handle	events	from	the	webphone	and	change	your	GUI

accordingly	(onXXX	callbacks)
</script>
</body>
	
See	the	webphone	package	for	more	examples.	You	should
check	especially	the	tech	demo	(techdemo_example.html	/
techdemo_example.js).
	
Note:	If	you	don’t	have	JavaScript/web	development	experience,	you	can	still	fully
control	and	customize	the	webphone:

·									by	its	numerous	configuration	options	which	can	be	passed	also	as	URL

https://www.mizu-voip.com/Portals/0/Files/webphone.zip

parameters
·									from	server	side	as	described	here
·									we	can	also	send	ready	to	use	fully	customized	web	softphone	with
preconfigured	settings,	branding	and	integration	with	your	web	and	VoIP	server

	
More	details	can	be	found	here.

Functions
Use	the	following	API	calls	to	control	the	webphone:
	

setparameter	(param,	value)
Any	additional	parameters	must	be	set	before	start/register/call
is	called.
	

getparameter	(param)
Return	type:	string
Will	return	value	of	a	parameter	if	exists,	otherwise	will	return
empty	string.
	

start()
Optionally	you	can	"start"	the	phone,	before	making	any	other
action.
In	some	circumstances	the	initialization	procedure	might	take	a
few	seconds	(depending	on	usable	engines)	so	you	can	prepare
the	webphone	with	this	method	to	avoid	any	delay	when	the
user	really	needs	to	use	by	pressing	the	call	button	for	example.
Set	the	“autostart”	parameter	to	“false”	if	you	wish	to	use	this
function.	Otherwise	the	webphone	will	start	automatically	on
your	page	load.
If	the	serveraddress/username/password	is	already	set	and	auto
register	is	not	disabled	(not	0),	then	the	webphone	will	also
register	(connect)	to	the	SIP	server	upon	start.
If	start()	is	not	called,	then	the	webphone	will	initialize	itself	the
first	time	when	you	call	some	other	function	such	as	register()
or	call().
The	webphone	parameter	should	be	set	before	you	call	this
method	(preset	in	the	js	file	or	by	using	the	setparameter()
function).	See	the	“Parameters”	section	for	details.
	

register	()
Optionally	you	can	"register"	if	your	SIP	server	has	also	registrar
roles	(most	of	them	have	this).	This	will	"connect"	to	the	SIP
server	by	sending	a	REGISTER	request	and	will	authenticate	if
requested	by	the	server	(by	sending	a	second	REGISTER	with
the	digest	authorization	details).
	
Note:
o			If	the	serveraddress/username/password	is	already	set	and
auto	register	is	not	disabled	(not	0),	then	the	webphone	will
register	(connect)	to	the	SIP	server	upon	start,	so	no	need	to
use	this	function	in	these	circumstances.

o			There	is	no	need	to	call	the	register()	multiple	times	as	the
webphone	will	automatically	manage	the	re-registrations
(based	on	the	registerinterval	parameter)

	

unregister	()
Un-register	from	your	SIP	server	(will	send	a	REGISTER	with
Expire	header	set	to	0,	which	means	de-registration).
Unregister	is	called	also	automatically	at	browser	close	so
usually	there	is	no	need	to	call	this	explicitly.
	

call	(number)
Initiate	call	to	a	number,	sip	username	or	SIP	URI.
Perhaps	this	is	the	most	important	function	in	the	whole
webphone	API.
It	will	automatically	handle	all	the	details	required	for	call	setup
(network	discover,	ICE/STUN/TURN	when	needed,	audio	device
open	and	call	setup	signaling).
	

videocall	(number)
Initiate	a	video	call	to	a	number,	sip	username	or	SIP	URI.
(Will	failback	to	a	simple	voice	call	if	video	is	not	supported	by

peer,	by	the	server	or	gateway.	It	should	always	work	between
WebRTC	endpoints	if	peers	has	a	camera	device)
	

hangup	()
Disconnect	current	call.
	
Notes	about	line-management	(in	case	if	you	are	implementing	a	multi-line	user
interface,	otherwise	you	don’t	need	to	deal	with	line	numbers):
o				If	the	line	is	set	to	-2	it	will	disconnect	all	active	calls.
o				If	line	is	set	to	-1,	then	it	will	disconnect	the	call	on	the	current	line	(default
behavior).

o				Otherwise	it	will	disconnect	the	call	on	the	specified	line.
	

accept	()
Connect	incoming	call.
	

reject	()
Disconnect	incoming	call.
(You	can	also	use	the	hangup()	function	for	this)
	

ignore	()
Silently	ignore	incoming	call.
	

forward	(number)
Forward	incoming	call	to	the	specified	number	(phone	number,
username	or	extension)
	

mute	(state,	direction)
Mute	current	call.
Pass	true	for	the	state	to	mute	or	false	to	un-mute.
The	direction	can	have	the	following	values:

0:		mute	in	and	out
																1:		mute	out	(speakers)
																2:		mute	in	(microphone)													
	

hold	(state)
Hold	current	call.	This	will	issue	an	UPDATE	or	a	reinvite	with	the
hold	state	flag	in	the	SDP	(sendrecv,	sendonly,	recvonly	and
inactive).
Set	state	to	true	to	put	the	call	on	hold	or	false	to	un-hold.
	

transfer	(number)
Transfer	current	call	to	number	which	is	usually	a	phone	number
or	a	SIP	username.	(Will	use	the	REFER	method	after	SIP
standards).
If	the	number	parameter	is	empty	and	there	are	2	calls	in
progress,	then	it	will	transfer	line	A	to	line	B.
You	can	set	the	mode	of	the	transfer	with	the	“transfertype”
parameter.
	

conference	(number,	add)
Add/remove	people	to	conference.
Parameters:
-number:	the	peer	username/number	or	line	number
-add:	true	if	to	add,	false	to	remove
															
If	number	is	empty	than	will	mix	the	currently	running	calls
(interconnect	existing	calls	if	there	is	more	than	one	call	in
progress).
If	number	is	a	number	between	1	and	9	then	it	will	mean	the
line	number.
Otherwise	it	will	call	the	new	number	(usually	a	phone	number
or	a	SIP	user	name)	and	once	connected	will	join	with	the
current	session.

	
Example:
																call(‘999’);	//normal	call	to	999

conference(‘1234’);		//will	call	1234	and	add	to	conference
(conference	between	local	user	+	999	+	1234)
conference(‘2’,false);		//remove	line	2	from	conference
conference(‘’);		//add	all	current	calls	to	conference
conference(‘’,false);		//destroy	conference	(but	keep	the
calls	on	individual	lines)
setline(3);	//select	the	third	line
hangup();	//will	disconnect	the	third	line
setline(-2);	//select	all	lines
hangup();	//will	disconnect	all	lines

	
Note:
-if	number	is	empty	and	there	are	less	than	2	active	calls,	then	the	conference
function	can’t	be	used	(you	can’t	put	one	single	active	call	into	a	conference)
-you	can	also	use	the	webphone	with	your	server	conference	rooms/conference
bridge.	In	this	way,	there	is	no	need	to	call	this	function	(just	make	a	normal	call	to
your	server	conference	bridge/room	access	number)
	

dtmf	(msg)
Send	DTMF	message	by	SIP	INFO	or	RFC2833	method
(depending	on	the	"dtmfmode"	parameter).
Please	note	that	the	msg	parameter	is	a	string.	This	means	that
multiple	dtmf	characters	can	be	passed	at	once	and	the
webphone	will	streamline	them	properly.
The	dtmf	messages	are	sent	with	the	protocol	specified	with	the
“dtmfmode”	parameter.
Use	the	space	character	to	insert	delays	between	the	digits.
Example:												
API_Dtmf(-2,"1");
API_Dtmf(-2,"	12	345	#");
	

sendchat	(number,	msg)
Send	a	chat	message.	(SIP	MESSAGE	method	as	specified	in	RFC

https://www.ietf.org/rfc/rfc3428.txt

3428)
Number	can	be	a	phone	number	or	SIP	username/extension
number	(or	whatever	is	accepted	by	your	server).
The	message	can	be	clear	ASCI	or	UTF-8	text	or	html	encoded.
	

sendsms	(number,	msg,	from)
Send	a	SMS	message	if	your	provider/server	has	support	for
SMS.
The	number	parameter	can	be	any	mobile	number.
The	msg	is	the	SMS	text.
The	from	is	the	local	user	phone	number	and	it	is	optional.
SMS	can	be	handled	on	your	server	by:
-converting	normal	chat	message	to	SMS	automatically	if	the
destination	is	a	mobile	number
-or	via	an	HTTP	API	(you	can	specify	this	to	the	webphone	as	the
“sms”	parameter)
	

voicerecord	(start,	url)
Start/stop	voice	recording.
Set	the	start	parameter	to	true	for	start	or	false	to	stop.
The	url	is	the	address	where	the	recorded	voice	file	will	be
uploaded	as	described	by	the	voicerecupload	setting.
	
Note:	you	can	also	just	set	the	“voicerecupload”	parameter	to
have	all		calls	recorded.
	

audiodevice()
Open	audio	device	selector	dialog	(built-in	user	interface).
	

getaudiodevicelist(dev,	callback)
Call	this	function	and	pass	a	callback,	to	receive	a	list	of	all
available	audio	devices.

For	the	dev	parameter	pass	0	for	recording	device	names	list	or
1	for	the	playback	or	ringer	devices.
The	callback	will	be	called	with	a	string	parameter	which	will
contain	the	audio	device	names	in	separate	lines	(separated	by
CRLF).
	
Note:	with	the	Java	or	NS	engine	it	might	be	possible	that	you	receive	only	the	first	31
characters	from	the	device	name.	This	is	a	limitation	coming	from	the	OS	audio	API
but	it	should	not	cause	any	problem,	as	you	can	pass	it	as-is	for	the	other	audio
device	related	functions	and	it	will	be	accepted	and	recognized	as-is.
	

getaudiodevice(dev,	callback)
Call	this	function	and	pass	a	callback,	to	receive	the	currently
set	audio	device.
For	the	“dev”	parameter	one	of	the	followings	are	expected:

0:	for	recording	device
1:	for	the	playback	device
2:	for	ringer	device

The	callback	will	be	called	with	a	string	parameter	which	will
contain	the	currently	selected	audio	device.
Note:	WebRTC	doesn’t	support	a	separate	ringer	device	at	this
moment	(This	is	a	browser	limitation)
	

setaudiodevice(dev,	devicename,
immediate)

Select	an	audio	device.	The	devicename	should	be	a	valid	audio
device	name	(you	can	list	them	with	the	getaudiodevicelist()
call)
For	the	“dev”	parameter	pass:

0:	for	recording	device
1:	for	the	playback	device
2:	for	ringer	device	(Will	be	skipped	if	the	engine	is	WebRTC

and	will	use	the	playback	device	also	for	ring)
The	"immediate"	parameter	can	have	the	following	values:

0:	default

1:	next	call	only
2:	immediately	for	active	calls

getvolume(dev,	callback)
Call	this	function,	passing	a	callback	and	will	return	the	volume
(percent)	for	the	selected	device.
The	dev	parameter	can	have	the	following	values:

		0	for	the	recording	(microphone)	audio	device
		1	for	the	playback	(speaker)	audio	device
		2	for	the	ringback	(speaker)	audio	device

The	callback	will	be	called	with	the	volume	parameter	which	will
be	0	(muted),	50	(default	volume)	or	other	positive	number.
	
Note:	the	reason	why	this	needs	a	callback	(and	doesn’t	just	returns	the	volume	as
the	function	return	value	is	because	for	some	engines	the	volume	will	be	requested	in
an	asynchronous	way	so	it	might	take	some	time	to	complete).
	

setvolume(dev,	volume)
Set	volume	(percent	for	the	selected	device.	Default	value	is
50%	->	means	no	change
The	dev	parameter	can	have	the	following	values:

0	for	the	recording	(microphone)	audio	device
1	for	the	playback	(speaker)	audio	device
2	for	the	ringback	(speaker)	audio	device

	

setsipheader(header)
Set	a	custom	sip	header	(a	line	in	the	SIP	signaling)	that	will	be
sent	with	all	messages.
Can	be	used	for	various	integration	purposes	(for	example	for
sending	the	http	session	id	or	any	custom	data).
For	example:	setsipheader(‘X-MyExtra:	whatever’);
You	can	also	set	this	with	the	customsipheader	parameter.
	
Note:
·									It	is	recommended	to	prefix	customer	headers	with	X-	so	it	will	bypass	SIP
proxies.

·									Multiple	lines	can	be	separated	by	semicolon	;	Example:	setsipheader(‘X-
MyExtra1:	aaa;	X-MyExtra2:	bbb’);

·									Multiple	lines	can	be	also	set	by	calling	this	function	multiple	times	with	different
keys.

·									There	are	two	kinds	of	headers	that	you	can	set:
o				per	line:	if	the	current	line	is	set	and	there	is	an	active	call	on	that	line
o				global	(set	for	all	lines	including	the	registrar	endpoint):	if	the	line	is	-2	or
there	is	no	current	call	on	the	selected	line	(for	example	if	you	set	it	at
startup,	before	any	calls	or	with	line	set	to	-2)

·									You	can	remove	all	the	previously	passed	headers	(per	line	or	global)	by	calling
this	function	with	an	empty	string.	Example:	setsipheader(‘’);

·									You	can	remove	a	previously	set	header	by	calling	this	function	with	an	empty
key	for	that	header.	Example:	setsipheader(‘X-MyExtra:’);

	

getsipheader(header,	callback)
Call	this	function	passing	a	callback.
The	passed	callback	function	will	be	called	with	one	parameter,
which	will	be	the	string	value	of	the	requested	sip	header	from
the	received	SIP	messages	(received	from	your	server	of	from
the	other	peer).	If	no	such	header	is	found	or	some	other	error
occurs,	then	the	returned	string	begins	with	“ERROR”	(for
example:	“ERROR:	no	such	header”)	so	you	might	ignore	these.
	
Note:
-The	reason	why	this	needs	a	callback	(and	doesn’t	just	returns	the	last	seen	header
values	is	because	for	some	engines	the	signaling	messages	have	to	be	requested	in
an	asynchronous	way	so	it	might	take	a	little	time	–usually	only	a	few	milliseconds-	to
complete	the	request).
-The	getsipheader()	will	send	you	the	headers	from	the	incoming	SIP	messages	(not
the	headers	previously	set	by	the	setsipheader()	function	call)
	

getsipmessage(dir,	type,	callback)
Will	return	the	last	SIP	signaling	message	as	specified	by	the
current	line	and	the	dir/type	parameters.
Call	this	function	passing	a	callback.
The	passed	callback	function	will	be	called	with	one	parameter,
which	will	be	the	string	value	of	the	requested	sip	message	as
raw	text.
If	no	such	message	is	found	or	some	other	error	occurs,	then
the	returned	string	begins	with	“ERROR”	(for	example:	“ERROR:

SIP	message	not	found”)	so	you	might	ignore	these.
The	following	parameters	are	defined:
dir:
																0:	in	(incoming/received	message)
																1:	out	(outgoing/sent	message)
type:
																0:	any
																1:	SIP	request	(such	as	INVITE,	REGISTER,	BYE)
																2:	SIP	answer	(such	as	200	OK,	401	Unauthorized	and
other	response	codes)
																3:	INVITE	(the	last	INVITE	received	or	sent)
																4:	the	last	200	OK	(call	connect,	ok	for	register	or
other)
callback:
																The	callback	function
	
You	can	use	this	function	if	you	have	good	SIP	knowledge	and
wish	to	parse	the	SIP	messages	yourself	from	JavaScript	for
some	reason	(for	example	to	extract	some	part	of	it	to	be
processed	for	other	purposes).
Example	to	return	the	last	received	INVITE	message	about	an
incoming	call:	getsipmessage(0,3,mysipmsgrecvcallback)
	
Note:	just	as	other	functions,	this	will	take	in	consideration	the	active	line	(set	by
setline()	or	auto	set	on	in/out	call	setup).	You	can	set	the	active	line	to	“all”	[with
setline(-2)]		to	get	the	last	message	regardless	of	the	line.
	

getlastcalldetails	(callback)
Call	this	function	passing	a	callback	with	a	string	parameter
where	you	will	receive	additional	information	about	the
previously	disconnected	calls.
	

setline	(line)
This	function	can	be	used	for	explicit	line/channel	management
and	it	will	set	the	current	active	channel.

For	the	line	parameter	you	can	pass	one	of	the	followings:
																-line	number:	-2	(all),	-1	(current/best),	0	(invalid),	1
(first	channel),	2	(second	channel)	….	100
																-sip	call	id	(so	the	active	line	will	be	set	to	the	line
number	of	the	endpoint	with	this	sip	call	id)
																-peer	username	(so	the	active	line	will	be	set	to	the
line	number	of	the	endpoint	where	the	peer	is	this	user)
Use	this	function	only	if	you	present	line	selection	for	the	users.
Otherwise	you	don’t	have	to	take	care	about	the	lines	as	it	is
managed	automatically	(with	each	call	on	the	first	“free”	line)
Note:	You	can	set	the	line	to	-2	and	-1	only	for	a	short	period.
After	some	time	the	getline()	will	report	the	real	active	line	or
“best”	line.
More	details	about	multi-line	can	be	found	in	the	FAQ.
	

getline	()
Return	type:	number
Will	return	the	current	active	line	number.	This	should	be	the
line	which	you	have	set	previously	except	after	incoming	and
outgoing	calls	(the	webphone	will	automatically	switch	the
active	line	to	a	new	free	line	for	these	if	the	current	active	line	is
already	occupied	by	a	call).
More	details	about	multi-line	can	be	found	in	the	FAQ.
	

isregistered	()
Return	type:	boolean
Return	true	if	the	webphone	is	registered	("connected")	to	the
SIP	server.
Note:	you	can	track	the	phone	state	machine	also	with	the
events	callbacks	or	check	this	FAQ.
	

isincall	()
Return	type:	boolean

Return	true	if	the	webphone	is	in	call,	otherwise	false.
Note:	you	can	track	the	phone	state	machine	also	with	the
events	callbacks.
	

ismuted	()
Return	type:	boolean
Return	true	if	the	call	is	muted,	otherwise	will	return	false.
	

isonhold	()
Return	type:	boolean
Return	true	if	the	call	is	on	hold,	otherwise	will	return	false.
	

isencrypted	()
Check	if	communication	channel	is	encrypted:	-1=unknown,
0=no,	1=partially,	2=yes,	3=always
	

checkpresence	(userlist)
Will	receive	presence	information	as	events:	PRESENCE,
status,username,displayname,email	(displayname	and	email
can	be	empty)
Userlist:	list	of	sip	account	username	separated	by	comma.
	

setpresencestatus	(status)
Function	call	to	change	the	user	online	status	with	one	of	the
followings	strings:	Online,	Away,	DND,	Invisible,	Offline	(case
sensitive)
	

getenginename	()
Returns	the	currently	used	engine	name	as	string:	"java",
"webrtc",	"ns",	"app",	"flash",	"p2p",	"nativedial".

Can	return	empty	string	if	engine	selection	is	in	progress.
Might	be	used	to	detect	the	capabilities	at	runtime	(for	example
whether	you	can	use	the	below	jvoip	function	or	not)
	

delsettings	(level)
Delete	stored	data	(from	cookie,	config	file	and	local-storage).
For	the	level	parameters	the	following	are	defined:
1:	just	settings	file
2:	delete	everything:	settings,	contacts,	call	history,	messages
You	should	call	this	on	logout	(not	at	start)	if	for	some	reason
you	wish	to	delete	the	stored	phone	settings.
	

jvoip(name,	jargs)
If	engine	is	Java	or	the	NS	Service	plugin,	then	you	can	access
the	full	java	API	as	described	in	the	JVoIP	SDK	documentation.
Parameters:
Name:	name	of	the	function
Jargs:	array	of	arguments	passed	to	the	called	function.	Must	be
an	array,	if	API	function	has	parameters.	If	API	function	has	no
parameters,	then	it	can	be	an	empty	array,	null,	or	omitted
altogether.
For	example	the	API	function:	API_Call(number)	can	be	called
like	this:	webphone_api.jvoip('API_Call',		[number]);
	

getlogs	()
Returns	a	string	containing	all	the	accumulated	logs	by	the
webphone	(the	logs	are	limited	on	size,	so	old	logs	will	be	lost
after	long	run).
More	details	about	logs	can	be	found	here.
	

getstatus	()
Returns	the	webphone	global	status.	The	possible	returned	texts

http://www.mizu-voip.com/Software/JVoIP_Doc.pdf

are	the	same	like	for	getEvenetsnotifications.
You	might	use	the	events	described	below	instead	of	polling	this
function.
	

Events
The	following	callback	functions	can	be	used	to	receive	event
from	the	webphone	such	as	the	phone	state	machine	status
(registered/call	init/call	connected/disconnected)	and	other
important	events	and	notifications:
	

onLoaded	(callback)
The	passed	callback	function	will	be	called	when	the	webphone
was	loaded.
You	can	start	working	with	the	webphone	library	from	here.
	

onStart	(callback)
The	passed	callback	function	will	be	called	when	the	VoIP	engine
was	started.
Webphone	is	ready	to	make	call	here.
Note:	you	can	already	initiate	calls	on	the	onLoaded	callback	as
those	will	be	queued	and	executed	after	onStart.
	

onRegistered	(callback)
The	passed	callback	function	will	be	called	on	registered
(connected)	to	VoIP	server	(if	the	webphone	has	to	register).
	

onUnRegistered	(callback)
The	passed	callback	function	will	be	called	on	unregistered
(disconnected)	from	VoIP	server.
Note:	If	user	closes	the	webpage,	then	you	might	not	have
enough	time	to	catch	this	event.
	

onCallStateChange	(callback)
The	passed	callback	function	will	be	called	on	every	call	state

change.
Parameters:

·									status:	can	have	following	values:	callSetup,	callRinging,
callConnected,	callDisconnected

·									direction:	1	(outgoing),	2	(incoming)
·									peername:	is	the	other	party	username	(or	phone	number
or	extension)

·									peerdisplayname:	is	the	other	party	display	name	if	any
	
A	simple	usage	example	can	be	found	here.
	

onChat	(callback)
The	passed	callback	function	will	be	called	when	chat	message
is	received.
Parameters:

·									from:	username,	phone	number	or	SIP	URI	of	the	sender
·									msg:	the	content	of	the	text	message
	

onCdr	(callback)
The	passed	callback	function	will	be	called	at	each	call
disconnect.	You	will	receive	a	CDR	(call	detail	record).
Parameters:

·									caller:	the	caller	party	username	(or	number	or	sip	uri)
·									called:	called	party	username	(or	number	or	sip	uri)
·									connect	time:	milliseconds	elapsed	between	call	initiation
and	call	connect	(includes	the	call	setup	time	+	the	ring
time)

·									duration:	milliseconds	elapsed	between	call	connect	and
hangup	(0	for	not	connected	calls.	Divide	by	1000	to	obtain
seconds)

·									direction:	1	(outgoing	call),	2	(incoming	call)
·									peerdisplayname:	is	the	other	party	display	name	if	any
·									reason:	disconnect	reason	as	string

	
Note:	you	can	get	some	more	details	about	the	call	by	using	the	getlastcalldetails()

function.

onDisplay	(callback)
Here	you	can	receive	important	events	and	notifications	(as
strings)	that	should	be	displayed	to	the	user.
The	passed	callback	function	will	be	called	with	two	string
parameters:
-message:	a	text	message	intended	to	be	displayed	for	the	user
-title:	the	title	of	the	"popup/alert".	This	can	be	null/empty	for
some	messages
	
For	example:
o			"Invalid	phone	number	or	SIP	URI	or	username"	(displayed	if
user	is	trying	to	call	an	invalid	peer)

o			"Waiting	for	permission.	Please	push	the	Allow/Share	button	in
your	browser..."	(when	waiting	for	WebRTC	browser
permission)

o			“Check	your	microphone!	No	audio	record	detected.”	(which	is
displayed	after	6	seconds	in	calls	if	the	VAD	doesn’t	report
any	activity).

	
If	you	call	this	function,	then	the	webphone	will	not	display
these	messages	anymore	(You	can	silently	ignore	them,	handle
somehow	or	just	display	to	the	user).
If	you	don’t	setup	a	callback	for	this,	then	the	notifications	will
be	displayed	as	auto-hiding	popups.
	
Note:
-The	text	of	the	message	is	language	dependent,	meaning	if	the	language	of	the
webphone	is	changed,	the	message/title	language	is	also	changed.
-Engine	selection	related	popups	are	always	handled	by	the	webphone	(However
these	are	presented	only	when	really	necessary	and	can	be	suppressed	by	forcing	the
webphone	to	a	single	engine)
	

onLog	(callback)
The	passed	callback	function	will	receive	all	the	logs	in	real

time.	It	can	be	used	for	debugging	or	for	log	redirection	if	the
other	possibilities	don’t	fit	your	needs.
	

getEvents	(callback)
This	function	returns	ALL	events	from	the	webphone	including
sip	stack	state,	notifications,	events	and	logs.
This	is	a	low	level	function	and	you	should	prefer	the	onXXX
callback	instead	of	using	string	typed	notifications.
Call	this	function	once	and	pass	a	callback,	to	receive	important
events	(as	strings),	which	should	be	displayed	for	the	user
and/or	parsed	to	perform	other	actions	after	your	software
custom	logic.	For	the	included	softphone	and	click	to	call	these
are	already	handled,	so	no	need	to	change,	except	if	you	need
some	extra	custom	actions	or	functionality.
See	the	“Notifications”	section	below	for	the	details.
	
Example:
	
webphone_api.getEvents(function	(event)
{

//	For	example	the	following	status	means	that	there	is	an	incoming	call	ringing
from	2222	on	the	first	line:
//	STATUS,1,Ringing,2222,1111,2,Katie,[callid]
//	parameters	are	separated	by	comma(,)
//	the	sixth	parameter	(2)	means	it	is	for	incoming	call.	For	outgoing	call	this
parameter	is	1.
	
//	example	for	detecting	incoming	and	outgoing	calls:

	
varevtarray	=	event.split(',');
	
if	(evtarray[0]	===	'STATUS'	&&evtarray[2]	===	'Ringing')
{
								if	(evtarray[5]	===	'1')
								{
												//	means	it	is	an	outgoing	call
												//	...
								}
								else	if	(evtarray[5]	===	'2')
								{
												//	means	it	is	incoming	call
												//	...

								}
}

});
	
You	might	also	check	the	basic_example.html	included	in	the
package.
If	you	will	use	this	function,	then	most	probably	you	will	catch
everything	here	and	don’t	need	to	use	the	other	events
functions	described	below.
	
If	you	don’t	wish	to	deal	with	notification	strings	parsing,	then
you	can	use	the	functions	below	to	catch	the	important	events
from	the	webphone	in	which	you	are	interested	in.	Call	them
once,	passing	a	callback:
	

Notifications
“Notifications”	means	simple	string	messages	received	from	the
webphone	which	you	can	parse	with	the	getEvents(callback)	to
receive	notifications	and	events	from	the	sip	web	phone	about
its	state	machine,	calls	statutes	and	important	events.
Skip	this	section	if	you	are	not	using	the	getEvents()	function.
(You	can	use	the	functions	such	as
onRegistered/onCallStateChange/others	to	catch	the	important
events	in	which	you	are	interested	in	and	completely	skip	this
section	about	the	low-level	notification	strings	handling).
	
If	you	are	using	the	getEvents()	function	then	you	will	have	to
parse	the	received	notification	strings	from	your	java	script
code.	Each	notification	is	received	in	a	separate	line	(separated
by	CRLF).	Parameters	are	separated	by	comma	‘,’.	For	the
included	softphone	and	click	to	call	these	are	already	handled,
so	no	need	to	change,	except	if	you	need	some	extra	custom
actions	or	functionality.
	
The	following	messages	are	defined:
	

STATUS,line,statustext,peername,localname,endpointtype
Where	line	can	be	-1	for	general	status	or	a	positive	value	for
the	different	lines.
General	status	means	the	status	for	the	“best”	endpoint.
This	means	that	you	will	usually	see	the	same	status	twice	(or
more).	Once	for	general	phone	status	and	once	for	line	status.
For	example	you	can	receive	the	following	two	messages
consecutively:
															
STATUS,1,Connected,peername,localname,endpointtype,peerdisplayname,
[callid]
																STATUS,-1,Connected
You	might	decide	to	parse	only	general	status	messages	(where
the	line	is	-1).
The	following	statustext	values	are	defined	for	general
status	(line	set	to	-1):

o			Initializing
o			Ready
o			Register…
o			Registering…
o			Register	Failed
o			Registered
o			Accept
o			Starting	Call
o			Call
o			Call	Initiated
o			Calling…
o			Ringing…
o			Incoming…
o			In	Call	(xxx	sec)
o			Hangup
o			Call	Finished						
o			Chat

	
Note:	general	status	means	the	“best”	status	among	all	lines.
For	example	if	one	line	is	speaking,	then	the	general	status	will

be	“In	Call”.
	
The	following	statustext	values	are	defined	for	individual
lines		(line	set	to	a	positive	value	representing	the	channel
number	starting	with	1):

o			Unknown				(you	should	not	receive	this)
o			Init				(started)
o			Ready				(sip	stack	started)
o			Outband				(notify/options/etc.	you	should	skip
this)

o			Register			(from	register	endpoints)
o			Subscribe			(presence)
o			Chat			(IM)

o			CallSetup		(one	time	event:	call	begin)
o			Setup			(call	init)															
o			InProgress			(call	init)
o			Routed			(call	init)
o			Ringing				(SIP	180	received	or	similar)

o			CallConnect	(one	time	event:	call	was	just
connected)

o			InCall			(call	is	connected)
o			Muted			(connected	call	in	muted	status)
o			Hold				(connected	call	in	hold	status)
o			Speaking				(call	is	connected)
o			Midcall			(might	be	received	for	transfer,
conference,	etc.	you	should	treat	it	like	the
Speaking	status)

o			CallDisconnect		(one	time	event:	call	was
just	disconnected)

o			Finishing			(call	is	about	to	be	finished.	Disconnect
message	sent:	BYE,	CANCEL	or	400-600	code)

o			Finished			(call	is	finished.	ACK	or	200	OK	was
received	or	timeout)

o			Deletable			(endpoint	is	about	to	be	destroyed.	You
should	skip	this)

o			Error			(you	should	not	receive	this)
	

You	will	usually	have	to	display	the	call	status	for	the	user,	and
when	a	call	arrives	you	might	have	to	display	an	accept/reject
button.
For	simplified	call	management,	you	can	just	check	for	the	one-
time	events	(CallSetup,	CallConnect,	CallDisconnect)
															
Peername	is	the	other	party	username	(if	any)
Localname	is	the	local	user	name	(or	username).
Endpointtype	is	1	from	client	endpoints	and	2	from	server
endpoints.
Peerdisplayname	is	the	other	party	display	name	if	any
CallID:	SIP	session	id
	
For	example	the	following	status	means	that	there	is	an
incoming	call	ringing	from	2222	on	the	first	line:

STATUS,1,Ringing,2222,1111,2,Katie,[callid]
The	following	status	means	an	outgoing	call	in	progress	to	2222
on	the	second	line:

STATUS,2,Speaking,2222,1111,1,[callid]
To	display	the	“global”	phone	status,	you	will	have	to	do	the
followings:

1.							Parse	the	received	string	(parameters	separated	by
comma)

2.							If	the	first	parameter	is	“STATUS”	then	continue
3.							Check	the	second	parameter.	It	“-1”	continue	otherwise
nothing	to	do

4.							Display	the	third	parameter	(Set	the	caption	of	a
custom	html	control)

5.							Depending	on	the	status,	you	might	need	to	do	some
other	action.	For	example	display	your	“Hangup”	button
if	the	status	is	between	“Setup”	and	“Finishing”	or	popup
a	new	window	on	“Ringing”	status	if	the	endpointtype	is
“2”	(for	incoming	calls	only;	not	for	outgoing)

	
If	the	“jsscripstats”	is	on	(set	to	a	value	higher	than	0)	then	you
will	receive	extended	status	messages	containing	also	media
parameters	at	the	end	of	each	call:

STATUS,1,Connected,peername,localname,endpointtype,peerdisplayname,
[callid]
	

PRESENCE,peername,presence
This	notification	is	received	for	incoming	chat	messages.

Line:	used	phone	line
Peername:	username	of	the	peer
Presence:	presence	status	string;	one	of	the	followings:		
CallMe,Available,Pending,Other,CallForward,Speaking,Busy,Idle,DoNotDisturb,Unknown,Away,Offline,Exists,NotExists,Unknown

	

CHAT,line,peername,text
This	notification	is	received	for	incoming	chat	messages.

Line:	used	phone	line
Peername:	username	of	the	sender
Text:	the	chat	message	body

CHATCOMPOSING,line,peername,composing
This	notification	might	be	received	when	the	other	peer
start/stop	typing	(RFC	3994):

Line:	used	phone	line
Peername:	username	of	the	sender
Composing:	0=idle,	1=typing

	

CHATREPORT,line,peername,status,text
This	notification	is	received	for	the	last	outgoing	chat	message
to	report	success/fail:

Line:	used	phone	line
Peername:	username	of	the	sender
Status:	0=unknown,1=sending,2=successfully
sent,3=failed	to	send
Text:	failure	reason	(if	Status	is	3)
	

CDR,line,peername,caller,called,peeraddress,connecttime,duration,discparty
After	each	call,	you	will	receive	a	CDR	(call	detail	record)	with
the	following	parameters:

Line:	used	phone	line
Peername:	other	party	username,	phone	number	or	SIP	URI
Caller:	the	caller	party	name	(our	username	in	case	when
we	are	initiated	the	call,	otherwise	the	remote	username,
displayname,	phone	number	or	URI)
Called:	called	party	name	(our	username	in	case	when	we
are	receiving	the	call,	otherwise	the	remote	username,
phone	number	or	URI)
Peeraddress:	other	endpoint	address	(usually	the	VoIP
server	IP	or	domain	name)
Connecttime:	milliseconds	elapsed	between	call	initiation
and	call	connect
Duration:	milliseconds	elapsed	between	call	connect	and
hangup	(0	for	not	connected	calls.	Divide	by	1000	to	obtain
seconds.)
Discparty:	the	party	which	was	initiated	the	disconnect:
0=not	set,	1=local,	2=peer,	3=undefined
Disconnect	reason:	a	text	about	the	reason	of	the	call
disconnect	(SIP	disconnect	code,	CANCEL,	BYE	or	some
other	error	text)

START,what
This	message	is	sent	immediately	after	startup	(so	from	here
you	can	also	know	that	the	SIP	engine	was	started	successfully).
The	what	parameter	can	have	the	following	values:
“api”		-api	is	ready	to	use
“sip”	–sipstack	was	started
	

EVENT,TYPE,txt
Important	events	which	should	be	displayed	for	the	user.
The	following	TYPE	are	defined:	EVENT,	WARNING,	ERROR

This	means	that	you	might	receive	messages	like	this:
WPNOTIFICATION,EVENT,EVENT,any	text	NEOL	\r\n
	

POPUP,txt
Should	be	displayed	for	the	users	in	some	way.
	

ACTION,txt
Various	custom	messages.	Ignore.
	

LOG,TYPE,txt
Detailed	logs	(may	include	SIP	signaling).
The	following	TYPE	are	defined:	EVENT,	WARNING,	ERROR
	

VAD,parameters
Voice	activity.
This	is	sent	in	around	every	2000	milliseconds	(2	seconds)	by
default	from	java	and	NS	engines	(configurable	with	the
vadstat_ival	parameter	in	milliseconds)	if	you	set	the	“vadstat”
parameter	to	3	or	it	can	be	requested	by	API_VAD.	Also	make
sure	that	the	“vad”	parameter	is	set	to	at	least	“2”.
This	notification	can	be	used	to	detect	speaking/silence	or	to
display	a	visual	voice	activity	indicator.
	
Format:
VAD,local_vad:	ON	local_avg:	0	local_max:	0	local_speaking:	no
remote_vad:	ON	remote_avg:	0	remote_max:	0
remote_speaking:	no
	
Parameters:
local_vad:	whether	VAD	is	measured	for	microphone:	ON	or	OFF
local_avg:	average	signal	level	from	microphone
local_max:	maximum	signal	level	from	microphone

local_speaking:	local	user	speak	detected:	yes	or	no
	
remote_vad:	whether	VAD	is	measured	from	peer	to	speaker
out:	ON	or	OFF
remote_avg:	average	signal	level	from	peer	to	speaker	out
remote_max:	maximum	signal	level	from	peer	to	speaker	out
remote_speaking:	peer	user	speak	detected:	yes	or	no
	

Other	notifications
	

Format:	messageheader,	messagetext.	The	followings	are
defined:							

“CREDIT”	messages	are	received	with	the	user	balance
status	if	the	server	is	sending	such	messages.
“RATING”	messages	are	received	on	call	setup	with	the
current	call	cost	(tariff)	or	maximum	call	duration	if	the
server	is	sending	such	messages.
“MWI”	messages	are	received	on	new	voicemail
notifications	if	you	have	enabled	voicemail	and	there	are
pending	new	messages
“PRESENCE”	peer	online	status
“SERVERCONTACTS”	contact	found	at	local	VoIP	server
“NEWUSER”	new	user	request
“ANSWER”	answer	for	previous	request	(usually	http
requests)

	

FAQ
	

How	to	get	my	own	webphone?
1.							Try	from	your	desktop	or	webserver	by	downloading	the
webphone	package	or	try	the	online	demo.

2.							If	you	like	it,	we	can	send	your	own	licensed	build	within
one	workday	on	your	payment.
The	pricing	can	be	found	here.	For	the	payment	we	can
accept	PayPal,	credit	card	or	wire	transfer.
Contact	Mizutech	at	webphone@mizu-voip.comwith	the
following	details:

-your	VoIP	and/or	web	server(s)	address	(ip	or	domain
name	or	URL)
-your	company	details	for	the	invoice	(if	you	are
representing	a	company)

For	the	old	“websipphone”	(Java	Applet	based	webphone)	users:
Please	note	that	this	is	a	separate	product	and	purchase	or	upgrade	cost	might	be
required.	See	the	upgrade	guide	about	the	details.	The	old	java	applet	based
websipphone	have	been	renamed	to	“VoIP	Applet”	and	we	will	continue	to	fully
support	it	as	a	separate	product:	https://www.mizu-
voip.com/Software/Softphones/VoIPApplet.aspx
You	can	easily	upgrade	your	old	java	applet	websiphone	to	this	universal	webphone
by	following	the	steps	described	below	in	the	“How	to	upgrade	from	the	old	java
applet	websipphone”	FAQ.
	

What	about	support?
We	offer	support	and	maintenance	upgrades	to	all	our
customers.	Guaranteed	supports	hours	depend	on	the
purchased	license	plan	and	are	included	in	the	price.
Email	to	webphone@mizu-voip.com	with	any	issue	you	might
have.
Please	include	the	followings	with	your	message:

·									exact	issue	description
·									screenshot	if	applicable
·									detailed	logs

https://www.mizu-voip.com/Portals/0/Files/webphone.zip
https://www.webvoipphone.com/webphone_online_demo/index.html
https://www.mizu-voip.com/Support/Webphonepricing.aspx
https://www.mizu-voip.com/Company/Payments.aspx
mailto:webphone@mizu-voip.com
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+upgrade
https://www.mizu-voip.com/Software/Softphones/VoIPApplet.aspx
mailto:webphone@mizu-voip.com

·									optionally	a	description	about	how	we	can	reproduce	the
problem	with	valid	sip	test	account(s)

If	the	included	support	period	with	your	license	is	expired,	it	can
be	increased	by	2	years	for	around	$600	(Note:	This	is
completely	optional.	There	is	no	need	for	any	support	plan	to
operate	your	webphone).	For	gold	partners	we	also	offer
priority,	phone	and	24/7	emergency	support.
Direct	support	is	provided	for	the	common	features	(voice	calls,
chat,	dtmf,	hold,	forward	and	others)	and	common	OS/browsers
(Windows/Linux/Android/MAC	OS,	
IE/Firefox/Chrome/Safari/Opera)	and	not	for	extra	features	(such
as	presence,	fax)	and	exotic	OS/Browsers	(such	as	FreeBSD,
Chromium,	Konqueror).	The	webphone	should	work	also	with
other	OS/browsers,	but	we	are	not	testing	every	release	against
exotic	platforms.

What	I	will	receive	once	I	have	made	the
payment	for	the	webphone?

You	will	receive	the	followings:
·									the	web	phone	software	itself	(the	webphone	files
including	the	engines,	javascript	API,	html5/css	skins	and
examples)

·									the	ready-to-use/turn-key	softphone	skin	and	click	to	call
button

·									latest	documentations	and	code	examples
·									invoice	(on	request	or	if	you	haven’t	received	it	before	the
payment)

·									support	on	your	request	according	to	the	license	plan

Can	Mizutech	do	custom	development	if
required?

Yes.
You	can	fully	customize	the	webphone	yourself	by	its	numerous
configuration	options.	However	if	you	have	some	specific
requirement	which	you	can’t	handle	yourself,	please	contact	us
at	webphone@mizu-voip.com.	Contact	us	only	with

mailto:webphone@mizu-voip.com

webphone/VoIP	specific	requirements	(not	with	general	web
development/design	related	requests	as	these	can	be	handled
by	any	web	developer	and	we	are	specialized	for	VoIP).

Should	I	have	programmer	skills	to	be	able	to
use	the	webphone?

No.	The	webphone	can	be	deployed	by	anybody.	If	you	already
have	a	website,	then	you	should	be	able	to	copy-paste	and
rewrite	the	example	HTML	codes.	Some	basic	Java	Script
knowledge	is	required	only	if	you	plan	to	use	the	Java	Script	API
(although	there	are	copy-paste	examples	for	the	API	usage
also).

What	software/service	do	I	need	to	be	able	to
use/deploy	the	webphone?
·									A	webserver	(rented,	hosted)	to	host	the	webphone	files
·									A	SIP	account	by	one	of	the	followings:
o				Your	existing	IP-PBX	or	softswitch	OR
o				SIP	account(s)	at	any	VoIP	service	provider	and/or	trunk/call-termination
services	OR

o				Buy	a	VoIP	server	software	or	hardware	(Cisco,	Mizu,	Brekeke,	others)	OR
o				A	free	or	open	source	VoIP	server	(Asterisk,	FreePBX,	OpenSIPS,	others)	OR
o				Rent	a	softswitch	(SaaS)
·									Optional:	Some	server	side	scripts	if	more
customization/changes	are	required	than	possible	with	the
webphone	API	and	parameters

·									Optional	if	you	need	better	control	on	WebRTC:	WebRTC
capable	SIP	server	or	WebRTC-SIP	gateway		(both	options
are	freely	available)

Server	side	and	connectivity	requirements
The	webphone	is	a	self-hosted	client-side	software	completely
running	in	the	client	browser	and	with	no	any	“cloud”
dependencies.
It	has	the	following	server	side	dependencies	(all	of	this
controllable	by	you	so	you	can	run	the	web	VoIP	bowser	plugin
on	your	own	also	on	a	private	local	LAN	without	to	use	any	third-
party	service):

http://www.w3schools.com/js/default.asp
https://www.google.com/search?q=sip+service+providers
https://www.mizu-voip.com/Software/VoIPServer.aspx
http://www.asterisk.org/
https://www.mizu-voip.com/Services/VoIPHosting.aspx
https://www.mizu-voip.com/Software/WebRTCtoSIP.aspx

·									A	webserver	where	the	webphone	files	are	hosted	(we	send
all	the	required	files	so	it	can	be	hosted	on	any	web-server
including	servers	behind	NAT)
Note:	for	WebRTC	to	work	(if	you	need	this	engine)	the	webphone	have	to	be
hosted	on	https.	(This	means	that	if	you	run	the	webphone	from	local	LAN	then	at
least	browser	CA	verification	must	be	enabled	to	the	internet	or	you	have	to	setup
a	local	valid	certificate)

·									Optional:	connection	to	custom	web	application	(This	is	if
you	have	some	server	side	business	logic	such	as	.NET	or
.PHP	application	or	if	you	are	making	API	calls	or	using	any
resources	from	a	custom	web	application.	All	these	is	up	to
you	and	it	has	nothing	to	do	with	the	webphone	itself)

·									A	SIP	compatible	VoIP	server	where	the	webphone	will
connect:	any	SIP	server	which	can	be	otherwise	reached	by
any	sip	softphone,	including	local	LAN	PBX	services

·									Optional:	helper	connectivity	services	such	as	WebRTC
gateway	and	STUN/TURN	server.	All	of	these	can	be	disabled
and/or	the	webphone	works	also	if	these	are	not	reachable.

	

Web	server	requirements
In	short:
Use	any	web	server	to	host	the	webphone	files.	Just	copy	the
webphone	folder	to	your	webhost	and	you	are	ready	to	go.
	
Some	more	details:
All	the	functionality	of	the	web	sip	phone	is	implemented	on
client	side	(JavaScript	running	in	users	browser)	so	there	is	no
any	application	specific	requirements	for	the	webserver.	You	can
use	any	web	server	software	(IIS,	nginx,	Apache,	NodeJS,
Java,	others)	on	any	OS	(Linux,	Windows,	others).	You	can
integrate	the	webphone	with	any	server	side	framework	if	you
wish	(.NET,	PHP,	java	servlet,	J2EE,	NodeJS	and	others).
Integration	tasks	are	up	to	you,	and	it	can	be	done	multiple
ways	such	as	dynamic	webphone	configuration	per	request,
dynamic	URL	rewrite	(since	the	webphone	accepts	parameters
also	in	URL’s),	or	add	more	server	side	app	logic	via	your
custom	HTTP	API	which	can	be	called	from	webphone	(for

https://www.mizu-voip.com/Software/Softphones/Windowssoftphone.aspx

example	on	call,	on	call	disconnect	or	other	events;	the	VoIP
webphone	has	callbacks	for	these	to	ease	this	kind	of
integrations).	All	these	are	optional	since	you	can	implement
any	kind	of	app	logic	also	on	client	side	from	JavaScript	if	you
need	so.
We	recommend	deploying	the	webphone	to	a	secure	site
(https)	otherwise	the	latest	Chrome	and	Opera	doesn’t	allow
WebRTC.
If	you	can’t	enable	https	on	your	webhost	for	some	reason,	then
we	can	host	your	webphone	if	you	wish	on	a	secure	white-label
domain	for	free.
Depending	on	the	client	browser	and	the	selected	engine,	the
webphone	might	have	to	download	some	platform	specific
binaries.	(These	are	found	in	the	“native”	folder).	Make	sure	that
your	web	server	allows	the	download	of	these	resource	types	by
allowing/adding	the	following	mime	types	to	your	webserver
configuration	if	not	already	added/allowed:

·									extension:	.mxml													MIME	type:	application/octet-
stream	(or	application/xv+xml)

·									extension:	.exe																MIME	type:	application/octet-
stream	(or	application/x-msdownload)

·									extension:	.dll			MIME	type:	application/x-msdownload	(or
application/x-msdownload)

·									extension:	.jar			MIME	type:	application/java-archive
·									extension:	.jnilib														MIME	type:	application/java-
archive

·									extension:	.so		MIME	type:	application/octet-stream
·									extension:	.dylib														MIME	type:	application/octet-
stream

·									extension:	.pkg	MIME	type:	application/x-newton-
compatible-pkg	(or	application/octet-stream)

·									extension:	.dmg															MIME	type:	application/x-apple-
diskimage

·									extension:	.swf	MIME	type:	application/x-shockwave-flash
You	can	easily	test	if	works	by	trying	to	download	these	files

typing	their	exact	URI	in	the	browser	such	as:
http://yourwebsite.com/webphone/native/webphone.jar
(The	browser	should	begin	to	download	the	file,	otherwise	the
jar	mime	type	is	still	not	allowed	on	your	webserver	or	you
entered	an	incorrect	path	or	webserver	doesn’t	serve	files	from
the	specified	folder)
	

Is	it	working	with	my	VoIP	server?
The	webphone	works	with	any	SIP	capable	voip
server/softswitch/PBX	including	Asterisk,	FreePBX,	Huawei,
Cisco,	Mizu,	3CX,	Voipswitch,	Brekeke	and	many	others.	You
don’t	necessarily	need	to	have	your	own	SIP	server	to	use	the
webphone	as	you	can	use	any	SIP	account(s)	from	any	VoIP
provider.
The	web	phone	is	using	the	SIP	protocol	standard	to
communicate	with	VoIP	servers	and	sofswitches.	Since	most	of
the	VoIP	servers	are	based	on	the	SIP	protocol	today	the
webphone	should	work	without	any	issue.	Some	modules
(WebRTC	and	Flash)	might	require	specific	support	by	your
server	or	a	gateway	to	do	the	translation	to	SIP,	however	these
modules	are	optional,	gateway	software	are	available	for	free
and	also	mizutech	includes	its	own	free	tier	service	(usable	by
default	with	the	webphone).
If	you	have	any	incompatibility	problem,	please	contact
webphone@mizu-voip.com	with	a	problem	description	and	a
detailed	log	(loglevel	set	to	5).	For	more	tests	please	send	us
your	VoIP	server	address	with	3	test	accounts.
	

I	wish	to	use	the	webphone	but	I	don't	have	a
SIP	server	or	service

If	you	don’t	have	your	own	VoIP	server,	you	can	use	any	third-
party	solution	or	service:

o				SIP	account(s)	at	any	VoIP	service	provider	and/or	trunk/call-termination
services	OR

o				Buy	a	VoIP	server	software	or	hardware	(Cisco,	Mizu,	Brekeke,	others)	OR

http://yourwebsite.com/webphone/native/webphone.jar
https://en.wikipedia.org/wiki/List_of_SIP_software#Servers
mailto:webphone@mizu-voip.com
https://www.google.com/search?q=sip+service+providers
https://www.mizu-voip.com/Software/VoIPServer.aspx

o				A	free	or	open	source	VoIP	server	(Asterisk,	FreePBX,	OpenSIPS,	others)	OR
o				Rent	a	softswitch	(SaaS)

There	are	many	SIP	servers	over	the	internet	where	you	can
create	free	SIP	accounts.
We	also	provide	such	a	service	here:	voip	service		(you	can
create	multiple	sip	accounts	for	free	and	make	calls	between
them)
	

What	are	the	main	benefits?
Using	the	Mizu	webphone	you	can	have	a	single	solution	for	all
platforms	with	the	same	user	interface	and	API.	No	individual
apps	have	to	be	maintained	anymore	for	different	platforms
such	as	a	Windows	Installer,	a	Web	application,	Google	Play	app
for	Android	and	other	binaries.
	

·									Unlike	traditional	softphones,	the	webphone	can	be
embedded	in	webpages	while	providing	the	same
functionality	as	a	traditional	native	solution

·									Single	unified	JavaScript	API	and	custom	web	user
interface

·									Easy	and	flexible	customization	for	all	kind	of	use-case	(by
the	numerous	parameters	and	optionally	by	using	the	API)

·									Compatible	with	all	browsers	(IE,	Firefox,	Safari,	Opera,
Chrome,	etc)	and	all	OS	(Windows,	Linux,	MAC,	Android,
etc)

·									Compatible	with	your	existing	IP-PBX,	VoIP	server	or	any
SIP	service

·									Works	also	behind	corporate	firewalls	(auto	tunnel
over	TCP/HTTP	80	if	needed)

·									Combines	modern	browser	technologies	(WebRTC,	opus)
with	VoIP	industry	standards	(G.729,	conference,	transfer,
chat,	voice	recording,	etc)

·									Easy	to	use	and	easy	to	deploy	(copy-paste	HTML	code)
·									Easy	integration	with	your	existing	infrastructure	since	it	is
using	the	open	SIP/RTP	standards

·									Easy	integration	with	your	existing	website	design

http://www.asterisk.org/
https://www.mizu-voip.com/Services/VoIPHosting.aspx
https://www.mizu-voip.com/Services/VoIPServices.aspx

·									Proprietary	SIP/RTP	stack	guarantees	our	strong	long	term
and	continuous	support

·									Support	for	all	the	common	VoIP	features
·									Unlike	NPAPI	based	solutions,	the	webphone	works	in	all
browsers	(NPAPI	is	not	supported	anymore	in	Chrome	and
Firefox	also	plans	do	drop	it)

·									Unlike	pure	WebRTC	solutions,	the	webphone	works	in	all
browsers	(webrtc	doesn’t	work	in	IE,	Edge,	Safari	only	with
extra	plugin	downloads)

·									Unlike	pure	WebRTC	solutions,	the	webphone	is	optimized
for	SIP	with	fine-tuned	settings	(TURN,	STUN	and	others)

	

Usage	examples
·									As	a	browser	phone
·									Integration	with	other	web	or	desktop	based	software	to
add	VoIP	capabilities

·									A	convenient	dialer	that	can	be	offered	for	VoIP	endusers
since	it	runs	directly	from	your	website

·									Callcenter	VoIP	client	for	agents/operators	(easy
integration	with	your	existing	software)

·									Ready	to	use	web	VoIP	client	without	the	need	of	any
further	development	

·									SIP	API	for	your	favorite	JS	framework	such	as	React,
jQuery,	Angular,	Ember,	Backbone	or	any	others	or	just
plain/vanilla	JS

·									Embedded	in	VoIP	devices	such	as	PBX	or	gateways
·									Click	to	call	functionality	on	any	webpage
·									VoIP	conferencing	in	online	games
·									Buy/sell	portals
·									WebRTC	SIP	client	or	WebRTC	softphone
·									Salesforce	help	button
·									Social	networking	websites	,	facebook	phone
·									Integrate	SIP	client	with	jQuery,	Drupal,	joomla,
WordPress,	angularjs,	phpBB,	vBulletin	and	others	as	a	web
plugin,	module	or	API

·									As	an	efficient	and	portable	communication	tool	between

company	employees
·									VoIP	service	providers	can	deploy	the	webphone	on	their
web	pages	allowing	customers	to	initiate	SIP	calls	without
the	need	of	any	other	equipment	directly	from	their	web
browsers

·									Customer	support	calls	(VoIP	enabled	support	pages	where
people	can	call	your	support	people	from	your	website)

·									VoIP	enabled	blogs	and	forums	where	members	can	call
each	other

·									VoIP	enabled	sales	when	customers	can	call	agents	(In-
bound	sales	calls	from	web)

·									Java	Script	phone	or	WebRTC	SIP	client
·									Web	dialer	for	Asterisk	and	FreePBX
·									Turn	all	phone	numbers	into	clickable	links	on	your	website
·									Integrate	it	with	any	Java	applications	(add	the
webphone.jar	as	a	lib	to	your	project)

·									HTTP	Call	Me	buttons
·									Remote	meetings
·									HTML5	VoIP
·									Web	VoIP	phone	for	callcenter	agents	integrated	with	your
callcenter	frontend

·									Asterisk	integration	(or	with	any	other	IP-PBX)
·									Convert	any	SIP	link	(sip:	URI)	on	web	to	clickable	(click	to
call)	links	and	replace	native/softphone	solutions	with	a
pure	web	solution

	

Folders	and	file	structure
·									"css"	folder:	-	style	sheets	used	in	skin	(GUI).	The	style	of
the	skin	can	be	changed	by	editing	"mainlayout.css"	file

·									"css/themes"	folder:	jQuery	mobile	specific	cascading	style
sheets	and	images	used	by	the	softphone	and	click	to	call
skin	templates

·									"images"	folder:		images	used	by	the	includes	skins	(GUI)
·									“js”	folder:	this	is	for	javascript
·									"js/softphone"	folder:		GUI	files.	For	every	jQuery	mobile
"page"	there	is	an	equivalent	JavaScript	file,	which	handles

the	behavior	of	the	page.	Also	there	is	a	string	resource	file
(stringres.js)	which	contains	all	the	text	displayed	to	the
user.

·									"js/lib"	folder:		the	webphone	core	library	files
·									"oldieskin"	folder:		old	webphone	skin,	which	is	used	only
in	old	browsers,	ex:	IE	6

·									"sound"	folder:	contains	sound	files	(for	example	ringtone
and	keypad	dtmf	sounds)

·									“native”	folder:	platform	specific	native	binaries	(the
webphone	might	load	whichever	needed	if	any,	depending
on	the	engine	used)

·									the	root	folder	contains	the	following	files:
o			"favicon.ico":	web	page	favicon
o			"index.html":		a	start	page	for	the	examples
o			"oldapi_support.js":	backward	compatibility	with	old
skin.	Useful	for	cases	where	the	webphone	was
integrated	using	the	"old"	JavaScript	VoIP	API.

o			“iframe_helper.js”:	can	be	used	if	you	wish	to	access
the	webphone	in	a	separate	iframe

o			“minimal_example.html”:	shortest	implementation	to
make	a	call

o			"basic_example.html":	simple	usage	example	of
softphone	SDK

o			“incoming_example.html”:	simple	example	to	handle
incoming	call

o			"softphone.html":			GUI	html	file	for	a	full	featured	web
phone		(customize	this	after	your	needs	by	just
changing	the	settings)

o			“click2call.html”:	a	ready	to	use	click	to	call
implementation	(customize	this	after	your	needs	by
just	changing	the	settings)

o			"webphone_api.js":	the	public	Javascript	API	of	the	web
phone

	
It	is	possible	to	delete	the	unneeded	files	(for	example	you	can
delete	the	softphone	and	the	oldieskin	folders	if	you	are	using
the	webphone	as	an	API),	however	you	should	not	bother	too

much	about	these	and	just	leave	all	the	files	on	your	server.	This
can’t	have	any	security	implications;	the	webphone	will	use	only
the	required	files	for	your	use-case.
	

Does	the	webphone	depends	on	Mizutech
services?

No,	the	webphone	can	be	used	on	their	own	as	a	fully	self-
hosted	solution,	connecting	to	your	VoIP	server	directly	(Java,
NS	and	App),	via	WebRTC	or	via	Flash	so	you	will	have	a	solution
fully	owned/controlled/hosted	by	you	without	dependency	on
our	services.
With	other	words:	if	all	our	server	will	be	switched	off	tomorrow,
you	will	be	still	able	to	continue	using	our	webphone	softphone.
However	please	note	that	by	default	the	webphone	might	use
some	of	the	services	provided	by	mizutech	to	ease	the	usage
and	to	make	it	a	turn-key	solution	without	any	extra	settings	to
be	required	from	your	side.	Most	of	these	are	used	only	under
special	circumstances	and	none	of	these	are	critical	for
functionality;	all	of	them	can	be	turned	off	or	changed.	The
following	services	might	be	used:

·									Mizutech	license	service:	demo,	trial	or	free	versions	are	verified	against	the
license	service	to	prevent	unauthorized	usage.	This	can	be	turned	off	by
purchasing	a	license	and	your	final	build	will	not	have	any	DRM	and	will
continue	to	work	even	if	the	entire	mizutech	network	is	down.
Note:	this	is	not	used	at	all	in	paid	versions

·									WebRTC	to	SIP	gateway:	if	your	server	doesn’t	have	WebRTC	capabilities	but
you	enable	the	WebRTC	engine	in	the	webphone	then	it	might	use	the	Mizu
WebRTC	to	SIP	gateway	service.	Other	possibilities	are	listed	here.
Note:	this	might	be	used	only	if	you	are	using	the	webphone	WebRTC	engine
but	your	server	doesn’t	have	support	for	WebRTC	nor	you	have	a	WebRTC-SIP
gateway.

·									Flash	to	SIP	gateway:	rarely	used	(only	when	there	is	no	better	engine	then
Flash).	Just	turn	it	off	(by	setting	the	“enginepriority_flash”	parameter	to	0)	or
install	your	own	RTMP	server	and	specify	its	address.
Note:	usually	Flash	is	not	used	at	all	as	there	are	better	built-in	engines	which
are	supported	by	more	than	99.9%	of	the	browsers.

·									STUN	server:	by	default	the	webphone	might	use	the	Mizutech	STUN	service.
You	can	change	this	by	changing	the	“stunserveraddress”	to	your	server	of
choice	(there	are	a	lot	of	free	public	STUN	services	or	you	can	run	your	own:

https://github.com/Red5/red5-server
http://olegh.ftp.sh/public-stun.txt

stable	open	source	software	exists	for	this	and	it	requires	minimal	processing
power	and	network	bandwidth	as	STUN	is	basically	just	a	simple	ping-pong
protocol	sending	only	a	few	short	UDP	packets	and	it	is	not	a	critical	service).
Note:	you	can	use	the	webphone	without	any	STUN	service	if	your	SIP	server
has	basic	NAT	handling	capabilities	and	it	is	capable	to	route	the	RTP	if/when
needed.

·									TURN	server:	by	default	the	webphone	might	use	the	Mizutech	TURN	service
which	can	help	firewall/NAT	traversal	in	some	circumstances	(rarely	required).
You	can	specify	your	own	turn	server	by	setting	the	“turnserveraddress”
parameter	(if	TURN	is	required	at	all).
Note:	you	can	use	the	webphone	without	any	TURN	service	if	your	SIP	server
has	basic	NAT	handling	capabilities	and	it	is	capable	to	route	the	RTP	if/when
needed.

·									JSONP:	if	you	set	some	external	API	to	be	used	by	the	softphone	skin	(such	as
for	user	balance	or	call	rating	requests)	and	your	server	can’t	be	contacted
directly	with	AJAX	requests	due	to	CORS,	then	the	API	calls	might	be	relayed	by
the	Mizutech	JSONP	or	websocket	relay.	To	disable	this,	make	sure	that	the
domain	where	you	are	hosting	the	web	phone	plugin	can	access	your	domain
where	your	API	is	hosted.
Note:	this	might	be	used	only	in	very	specific	circumstances	(when	you
integrate	the	webphone	with	your	own	API,	but	your	own	API	can’t	be	accessed
by	the	webphone		via	normal	AJAX	GET/POST	requests)

·									HTTPS	proxy:	with	the	WebRTC	engine	if	you	are	using	the	webphone	from
Chrome	and	your	website	is	not	secured	(not	https)	then	the	webphone	might
reload	itself	via	the	Mizu	HTTPS	proxy.	To	disable	this,	host	your	webphone	on
HTTPS	if	you	wish	to	use	WebRTC	from	Chrome.	API	requests	can	be	also	routed
via	this	service	(such	as	credit	or	rating	requests)	if	you	are	running	the
webphone	on	HTTPS		but	defined	your	SIP	server	API	as	HTTP	(otherwise
browser	blocks	requests	from	secure	page	to	insecure	resources)
Note:	this	might	be	used	only	if	your	website	is	not	on	HTTPS	(no	SSL
certificate)	and	you	are	using	the	webphone	with	the	WebRTC	engine	in
Chrome.

·									Tunneling/encryption/obfuscation:	In	some	conditions	the	webphone	might	use
the	Mizu	tunneling	service	to	bypass	VoIP	blockage	and	firewalls.	This	is	usually
required	in	countries	where	VoIP	is	blocked	(such	as	UAE	or	China)	or	behind
heavy	firewalls	with	DPI	and	you	can	turn	it	off	by	setting	the	“usetunneling”
parameter	to	0.
Note:	this	is	a	special	feature	which	needs	to	be	turned	on	by	mizutech
support,	otherwise	it	is	not	enabled	by	default.

·									Auto	upgrade:	the	native	components	can	auto-upgrade	itself	from	Mizutech
download	service.	This	is	enforced	only	from	known	old	versions	to	know	good
versions	(only	if	the	new	version	is	already	used	by	other	customers	a	few
weeks).	You	can	disable	this	by	setting	the	“autoupgrade”	to	6.	(You	can	also
set	the	“autoupgrade”	to	5	which	will	also	disable	the	upgrade	of	the	built-in
SSL	certificates,	but	this	should	be	avoided	and	upgrading	the	certificates	can’t
do	any	harm	to	your	webphone.	This	is	just	to	avoid	expiring	ssl	certificates)
Note:	this	might	be	used	only	if	you	use	the	webphone	NS	engine	and	can	be
turned	off.

http://www.stunprotocol.org/
https://github.com/coturn/coturn
https://www.mizu-voip.com/Software/VoIPTunnel.aspx
https://en.wikipedia.org/wiki/Deep_packet_inspection

Note:	if	you	are	using	the	webphone	on	a	local	LAN	then	these
services	are	not	required	and	are	turned	off	automatically	(so
the	webphone	will	not	try	to	use	these	if	your	VoIP	and/or	Web
server	are	located	on	local	LAN	/	private	IP).
If	you	need	to	white-list	(or	block	for	some	reason)	our	servers,
here	is	the	address	list	associated	with	the	above	services:
www.mizu-voip.com,	mnt.mizu-voip.com,	rtc.mizu-voip.com,
usrtcx.webvoipphone.com,	usrtc.webvoipphone.com,
www.webvoipphone.com
88.150.148.180,		88.150.148.182,		88.150.183.87,
204.12.197.100,	204.12.197.98,	88.150.194.53

How	to	configure	the	webphone
The	webphone	can	be	configured	by	its	parameters	or
dynamically	via	the	setparameter	API.
There	are	many	ways	to	set	its	parameters.	You	can	statically
hardcode	them	in	the	webphone_api.js	file,	pass	as	URL
parameters	or	load	from	a	server	API	by	setting	the
scurl_setparameters	to	point	to	your	API	(HTTP	AJAX	URL).
For	more	details	see	the	beginning	of	the	Parameters	chapter.
	

How	to	handle	WebRTC?
WebRTC	is	just	one	of	the	important	engines	built	into	the
webphone.	The	webphone	works	also	without	this	engine	if	not
available	in	your	environment.	Otherwise	the	webphone	will
automatically	detect	WebRTC	and	will	use	if	available.
If	you	need	more	control,	you	have	several	options	to	deal	with
WebRTC:
1.							Don’t	use	WebRTC	at	all.	There	are	other	engines	built
into	the	web	sip	phone	which	can	be	used	most	of	the	time.
There	are	only	a	few	circumstances	when	the	only	available
engine	would	be	WebRTC.	(Although	WebRTC	is	convenient
for	enduser	since	it	doesn’t	need	any	browser	plugin	in
browsers	where	it	is	supported).	To	completely	disable
WebRTC,	set	the	enginepriority_webrtc	setting	to	0.

http://www.mizu-voip.com/
http://www.webvoipphone.com/
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+engine+support+grid

2.							Check	if	your	VoIP	server	already	has	WebRTC	support.
Most	modern	VoIP	server	already	has	implemented	WebRTC
(including	mizu	VoIP	server,	Asterisk	and	others)	or	you
might	just	need	to	add/enable	a	module	on	your	server	for
this,	so	chances	are	high	that	your	VoIP	server	can	handle
WebRTC	natively.	Just	set	the	webrtcserveraddress	setting
to	point	to	your	server	websocket	address

3.							Use	the	free	Mizutech	WebRTC	to	SIP	service	tier.	This	is
enabled	by	default	and	it	might	be	suitable	for	your	needs
if	you	don’t	have	too	much	traffic	over	WebRTC	(the
webphone	will	automatically	start	to	boost	the	priority	for
other	engines	when	you	are	over	the	free	quote)

4.							Use	the	mizutech	WebRTC	to	SIP	gateway	software.	We
are	providing	this	software	for	free	for	our	webphone
customers.	(You	just	have	to	setup	this	near	your	SIP
server)

5.							Use	any	third	party	WebRTC	to	SIP	gateway:	There	are	few
free	software	which	is	capable	to	do	this	task	for	you,
including	Asterisk	and	Dubango.	(However	if	you	don’t
have	any	of	these	installed	yet,	then	we	recommend	our
own	gateway	as	mentioned	above)

6.							Use	the	Mizutech	WebRTC	to	SIP	paid	service.	We	provide
dedicated	WebRTC	to	SIP	conversion	services	for	a	monthly
fee	if	required.

	
The	webphone	can	be	used	as	a	WebRTC	softphone	by
increasing	the	enginepriority_webrtc	to	3	or	4	(in	this	case	it	will
use	the	other	engines	only	when	WebRTC	is	not	supported	by
the	browser).
Note:	Latest	Chrome	and	Opera	browsers	requires	secure
connection	to	allow	WebRTC	for	both	your	website	(HTTPS)	and
websocket	(WSS).
	

How	to	handle	Flash?
First	of	all	it	is	important	to	mention	that	the	browser	web	phone
works	just	fine	without	Flash.

https://www.mizu-voip.com/Software/VoIPServer.aspx
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Asterisk+WebRTC
https://www.mizu-voip.com/Software/WebRTCtoSIP.aspx
https://github.com/DoubangoTelecom/webrtc2sip

Chances	are	high	that	you	don’t	need	Flash	at	all	even	if
available.	In	the	rare	circumstances	when	the	only	usable
engine	would	be	Flash	only,	the	webphone	can	automatically
use	the	Mizutech	Flash	to	SIP	free	service.	In	case	if	somehow
you	wish	to	drive	all	your	traffic	over	Flash,	then	you	can	install
a	Red5	server	(open	source	free	software)	to	handle	the
translation	between	RTMP	and	SIP/RTP,	then	set	the
rtmpserveraddress	to	point	to	your	flash	media	server	and
increase	the	value	of	the	enginepriority_flash	setting.

How	to	handle	Java,	Native	and	App	engines?
These	engines	doesn’t	need	any	special	server	side	support	and
they	works	with	old	legacy	SIP	(all	SIP	servers)	without	any	extra
settings	or	software.	When	the	browser	VoIP	plugin	uses	one	of
these	engines,	there	is	a	direct	connection	between	the	engine
(running	in	the	user’s	browser)	and	your	VoIP	server,	without
involving	any	intermediary	relay	(RTP	can	also	flow	directly
between	the	endusers,	bypassing	your	server.	This	is	up	to	your
server	settings	and	its	NAT	handling	features).	If	you	wish	to
force	the	usage	of	Java	(which	can	offer	top	quality	VoIP),	then
make	sure	to	install	the	JRE	from	here	(if	not	already	installed	on
your	system)	and	use	Firefox	or	IE	as	Chrome	doesn’t	have	Java
applet	support.
	

How	to	setup	the	webphone	for	Asterisk?
The	webphone	is	fine-tuned	for	Asterisk	out	of	the	box	and	no
changes	are	needed	to	work.	However	if	you	have	some	special
requirement,	such	as	using	the	built-in	WebRTC	module	in
Asterisk,	check	these	articles:

·									Setup	Web	SIP	client	for	Asterisk
·									Asterisk	WebRTC	setup

	

What	are	the	advantages	over	pure	WebRTC
solutions?

WebRTC	is	becoming	a	trendy	technology	but	it	has	a	lot	of

https://github.com/Red5/red5-server
https://www.java.com/en/download/
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Web+SIP+client+for+Asterisk
https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Asterisk+WebRTC

disadvantages	and	problems:
·									It	is	a	moving	target.	The	standards	are	not	completed
yet.	Lots	of	changes	are	planned	also	for	2016.	Edge	just
start	to	add	a	different	“ORTC”	implementation

·									Incompatibility.	WebRTC	has	known	incompatibility	issues
with	SIP	and	there	are	a	lot	of	incompatibilities	even
between	two	WebRTC	endpoint	as	browsers	has	different
implementation	and	different	codec	support

·									Not	supported	by	all	browsers.	No	support	in	Edge,	IE	and
Safari.	No	support	on	iOS	and	MAC	(except	with	extra
plugin	downloads).	No	support	on	older	Android	phones.

·									Lack	of	popular	VoIP	codec	such	as	G.729	which	can	be
solved	only	by	expensive	server	side	transcoding

·									It	is	a	black-box	in	the	browser	with	browser	specific	bugs
and	a	restrictive	API.	You	have	little	control	on	what	is	going
in	the	background

·									A	WebRTC	to	SIP	gateway	required	if	your	VoIP	server
don’t	have	built-in	support	for	WebRTC

·									Adds	unneeded	extra	complexity.	The	server	has	to
convert	from	the	websocket	protocol	to	clear	SIP	and	from
DTLS	to	RTP

Luckily	the	Mizu	webphone	has	some	more	robust	engines	that
can	be	used	without	these	limitations	and	by	default	will
prioritize	these	over	WebRTC	whenever	possible,	depending	on
available	browser	capabilities	and	user	willingness.	(Small	non-
obtrusive	notification	might	be	displayed	for	the	enduser	when
a	better	engine	is	available	or	if	a	user	can	upgrade	with	one-
click	install).
One	of	the	main	advantages	of	the	Mizu	webphone	is	that	it	can
offer	alternatives	for	WebRTC,	so	you	can	be	sure	that	all	your
VoIP	users	are	served	with	the	best	available	technology,
regardless	of	their	OS	and	browser.
However	we	do	understand	that	WebRTC	is	comfortable	for	the
endusers	as	it	doesn’t	require	any	extra	plugin	if	supported	by
the	user	browser.	The	mizu	browser	hone	takes	full	advantage	of

this	technology	and	we	provide	full	support	for	WebRTC	by
closely	following	the	evolution	of	the	standards.
With	a	WebRTC	only	client	you	would	miss	all	the	benefits	that
could	be	offered	by	a	standard	SIP/RTP	client	connecting	directly
to	your	VoIP	server	with	native	performance,	full	SIP	support
with	all	the	popular	VoIP	codecs	and	without	the	need	for	any
protocol	conversion,	directly	from	enduser	browser.

Known	limitations
-Not	all	the	listed	features	are	available	from	all	engines	(the
webphone	automatically	handle	these	differences	internally)
-Some	platforms	currently	have	very	limited	VoIP	support
available	from	browsers.	The	most	notable	is	iOS	where	the
default	browser	(Safari)	lacks	any	VoIP	support.	The	webphone
tries	all	the	best	to	work	around	about	these	by	using	its
secondary	engines	offering	call	capabilities	for	also	for	users	on
these	platforms
-Android	chrome	uses	the	speaker	(speakerphone)	for	audio
output	(this	is	hardcoded	in	their	WebRTC	engine	and	hopefully
they	will	change	this	behavior	in	upcoming	new	versions).	This
affects	only	the	WebRTC	engine	and	you	will	have	normal	audio
output	if	using	the	App	engine	on	Android.
-Some	features	might	not	work	correctly	between	WebRTC	and
SIP.	This	is	not	a	webphone	limitation,	but	it	depends	completely
on	server	side	(your	softswitch	or	gateway	responsible	for
WebRTC-SIP	protocol	conversion).	Presence	doesn’t	work
between	WebRTC	and	SIP	using	the	Mizu	public	WebRTC
gateway
-For	chat/IM	to	work	your	server	have	to	support	SIP	MESSAGE
as	described	in	RFC	3428	(Supported	by	most	SIP	servers.	See
also	Asterisk	patch	or	FreePBX	settings)
-Video	is	implemented	only	with	the	WebRTC	engine	(the
webphone	will	auto-switch	or	auto-offer	WebRTC	whenever
possible	on	video	request)
-Some	features	require	also	proper	server	side	support	to	work
correctly.	For	example	call	hold,	call	transfer	and	call	forward.

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+engine+support+grid
https://www.ietf.org/rfc/rfc3428.txt
http://www.voip-info.org/wiki/view/Asterisk+SIP+Messaging
http://issues.freepbx.org/browse/FREEPBX-7058

See	your	VoIP	server	documentation	about	proper	setup
-The	webphone	doesn’t	work	when	Private	Browsing	is	enabled
(because	no	outbound	WebSocket	connections	are	allowed
when	private	browsing	is	enabled)
	

OS/browser	related	issues
There	are	many	browser	and	OS	related	bugs	either	in	the
browser	itself	or	in	the	plugins	used	for	VoIP
(native/webrtc/java/flash).	Most	of	the	issues	are	handled
automatically	by	the	webphone	by	implementing	workarounds
for	a	list	of	well-known	problems.	Rarely	there	is	no	any	way	to
circumvent	such	issues	from	the	webphone	itself	and	needs
some	adjustment	on	server	or	client	side.
Some	chrome	versions	only	use	the	default	input	for	audio.	If
you	have	multiple	audio	devices	and	not	the	default	have	to	be
used	changing	on	chrome,	Advanced	config,	Privacy,	Content
and	media	section	will	fix	the	problem.
Some	linux	audio	drivers	allow	only	one	audio	stream	to	be
opened	which	might	cause	audio	issues	in	some	circumstances.
Workaround:	change	audio	driver	from	oss	to	alsa	or	inverse.	
Other	workarounds:	Change	JVM	(OpenJDK);	Change	browser.
Incoming	calls	might	not	have	audio	in	some	circumstances
when	the	webphone	is	running	in	Firefox	with	the	WebRTC
engine	using	the	mizu	WebRTC	to	SIP	gateway	(fixed	in	v.1.8).
If	the	java	(JVM	or	the	browser)	is	crashing	under	MAC	at	the
start	or	end	of	the	calls,	please	set	the	“cancloseaudioline”
parameter	to	3.	You	might	also	set	the	"singleaudiostream”	to	5.
If	the	webphone	doesn’t	load	at	all	on	MAC,	then	you	should
check	this	link.

One	way	audio	problem	on	OSX	10.9	Maverick	/	Safari	when
using	the	Java	engine:		Safari	7.0	allows	users	to	place	specific
websites	in	an	"Unsafe	Mode"	which	grants	access	to	the	audio
recording.	Navigate	to	"Safari	->Preferences	->	Security	(tab)

http://support.apple.com/kb/HT5559?viewlocale=en_US&locale=en_US

and	tick	"Allow	Plug-ins"	checkbox.	Then	depending	on	safari
version:
-from	the	Internet	plug-ins	(Manage	Website	Settings)"	find	the
site	in	question	and	modify	the	dropdown	to	"Run	In	Unsafe
Mode".	
-or	go	to	Plug-in	Settings	and	for	the	option	"When	visiting	other
websites"	select	"Run	in	Unsafe	Mode".	A	popup	will	ask	again,
click	"Trust"
You	will	be	asked	to	accept	the	site's	certificates	or	a	popup	will
ask	again,	click	"Trust".	Alternatively,	simply	use	the	latest
version	of	the	Firefox	browser.
Note	that	this	java	related	issue	is	not	a	real	problem	since	the
webphone	uses	WebRTC	plugin	by	default	on	MAC	(Java	might
be	used	only	if	you	explicitly	configured	the	webphone	browser
plugin	to	prefer	java	over	WebRTC)
Java	in	latest	Chrome	is	not	supported	anymore	(the	webphone
will	select	WebRTC	by	default).	
If	for	some	reason	you	still	wish	to	force	Java,	then	in	versions
prior	September	1,	2015		it	can	still	be	re-enabled:
Go	to	this	URL	in	Chrome:	chrome://flags/#enable-npapi		(then
mark	activate)
Or	via	registry:	reg	add
HKLM\software\policies\google\chrome\EnabledPlugins	/v	1	/t
REG_SZ	/d	java

(By	default	the	webphone	will	handle	this	automatically	by
choosing	some	other	engine	such	as	WebRTC	unless	you	forced
java	by	the	engine	priority	settings)

The	webphone	is	not	loading/starting
Symptoms:
·									If	your	html	can’t	find	the	webphone	library	files	you	might
see	the	following	errors	in	your	browser	console:

o			Failed	to	load	resource:	…/js/lib/api_helper.js
o			ReferenceError:	webphone_api	is	not	defined

·									If	not	supported	by	browser	or	your	webserver	doesn’t	allow
the	required	mime	types,	then	the	page	hosting	the

webphone	might	load,	but	you	will	not	be	able	to	make	calls
(VoIP	engine	will	not	start)

Fixes:
·									Missing	library:	Make	sure	that	you	have	copied	all	files	from
the	webphone	folder	(including	the	js	and	other	sub-folders)

·									Browser	support:	Make	sure	that	your	browser	has	support
for	any	of	the	implemented	VoIP	engines:	either	Java	or
WebRTC	is	available	in	your	browser	or	you	can	use	the	NS
engine	(on	Windows,	MAC	and	Android)	or	the	app	engine	(on
Android	and	iOS)

·									Web	server	mime	settings:	Make	sure	that	the	.jar	and	.exe
mime	types	are	allowed	on	your	webserver	so	the	browsers
are	able	to	download	platform	specific	native	binaries

·									HTTPS:	Set	a	SSL	certificate	for	your	website	for	secure	http,
otherwise	WebRTC	will	not	work	in	chrome

·									Lib	not	found:	If	your	webphone	files	are	near	your	html	(in
the	same	folder)	then	you	might	have	to	set	the
webphonebasedir	parameter	to	point	to	the	javascript
directory
webphonebasedir
This	setting	is	deprecated	after	1.9	as	the	webphone	should	automatically
detect	its	library	path	automatically.
If	the	html	page,	where	you	are	including	the	webphone,	is	not	in	the	same
directory	as	the	webphone,	then	you	must	set	the	"webphonebasedir"	as	the
relative	path	to	the	webphone	base	directory	in	relation	to	your	html	page.
The	base	directory	is	the	"webphone"	directory	as	you	download	it	from
Mizutech	(which	contains	the	css,js,native,...	directories).
For	example	if	your	page	is	located	at	http://yoursite.com/content/page.html
and	the	webphone	files	are	located	at	http://yoursite.com/modules/webphone
then	the	webphonebasedir	have	to	be	set	to	'../modules/webphone/'
The	webphonebasedir	parameter	must	be	set	in	the	webphone_api.js	file
directly	(not	at	runtime	by	webphone_api.webphonebasedir).
Default	is	empty	(assumes	that	your	html	is	in	the	webphone	folder).

	
·									NS	engine	download	not	found:	you	might	have	to	set	the
nativepluginurl	parameter	to	point	to	the	ns	installer	file.
nativepluginurl
(string)
This	setting	is	deprecated	after	1.9	as	the	webphone	should	automatically
detect	its	library	path	automatically.
The	absolute	location	of	the	Native	Service/Plugin	installer.	In	most	of	the	cases
this	is	automatically	guessed	by	the	webphone,	but	if	for	some	reason	(for

example:	you	era	using	URL	rewrite)	the	guessed	location	is	incorrect,	then	it
can	be	specified	with	this	parameter.
The	Service/Plugin	installer	is	located	in	webphone	package	"native"	directory.
Example:
“https://mydomain.com/webphopne/native/WebPhoneService_Install.exe”
Default	value	is	empty.
	

	
	

Can’t	connect	to	SIP	server
Make	sure	that:
-you	have	set	your	SIP	server	address:port	correctly	(from	the
user	interface	or	“serveraddress”	parameter	in	the
webphone_api.js	file)
-make	sure	that	you	are	using	a	SIP	username/password	valid	on
your	SIP	server
-if	you	are	using	the	WebRTC	engine	with	the	Mizu	WebRTC	SIP
gateway	service,	make	sure	that	your	firewall	or	fail2ban
doesn’t	block	the	gateways.	You	should	white-list	rtc.mizu-
voip.com	and	usrtc.webvoipphone.com
-make	a	test	from	a	regular	SIP	client	such	as	mizu	softphone	or
x-lite		from	the	same	device	(if	these	also	doesn’t	work,	then
there	is	some	fundamental	problem	on	your	server	not	related
to	our	webphone	or	your	device	firewall	or	network	connection
is	too	restrictive)
-send	us	a	detailed	client	side	log	if	still	doesn’t	work	with
loglevel	set	to	5	(from	the	browser	console	or	from	softphone
skin	help	menu)
	

Failed	outgoing	calls
Make	a	test	call	first	from	a	simple	SIP	client	such	as	mizu
softphone	or	x-lite

By	default	only	the	PCMU,PCMA,	G.729	and	the	speex	ultra-
wideband	codec’s	are	offered	on	call	setup	which	might	not	be
enabled	on	your	server	or	peer	UA.	
You	can	enable	all	other	codec’s	(PCMA,	GSM,	speex

https://www.mizu-voip.com/Software/Softphones/Windowssoftphone.aspx
http://www.counterpath.com/x-lite-download/
mailto:webphone@mizu-voip.com?subject=webphone%20cannot%20register
https://www.mizu-voip.com/Software/Softphones/Windowssoftphone.aspx
http://www.counterpath.com/x-lite-download/

narrowband,	iLBC	and	G.729)	with	the	use_xxx	parameters	set
to	2	or	3	(where	xxx	is	the	name	of	the	codec:	use_pcma=2,
use_gsm=2,	use_speex=2,use_g729=2,use_ilbc=2).	Some
servers	has	problems	with	codec	negotiation	(requiring	re-invite
which	is	not	support	by	some	devices).	In	these	situations	you
might	disable	all	codec’s	and	enable	only	one	codec	which	is
supported	by	your	server	(try	to	use	G.729	if	possible.
Otherwise	PCMU	or	PCMA	is	should	be	supported	by	all	servers)
	
If	you	receive	the	“ERROR,	Already	in	call	with	xxx”	error	on
outbound	call	attempts	and	you	wish	to	enable	multiple	calls
to/from	the	same	number,	set	the	disablesamecall	parameter	to
0.
If	still	doesn’t	work	send	us	a	detailed	client	side	log	with
loglevel	set	to	5	(from	the	browser	console	or	from	softphone
skin	help	menu)

Calls	are	disconnecting
-Call	disconnection	immediately	upon	setup	can	have	many
reasons	such	as	codec	incompatibility	issues,	NAT	issues,
DTLS/SRTP	setup	problems	or	audio	problems.	If	you	are	not
sure,	send	a	detailed	log	to	webphone@mizu-voip.com
-If	the	calls	are	disconnecting	after	a	few	second,	then	try	to	set
the	“invrecordroute”	parameter	to	“true”	and	the
“setfinalcodec”	to	0.
-If	the	calls	are	disconnecting	at	around	100	second,	then	most
probably	you	are	using	the	demo	version	which	has	a	100
second	call	limit.

Using	the	webphone	on	local	LAN
In	short:
Yes,	the	webphone	works	fine	on	private	networks	by	default,
without	the	need	of	any	configuration	changes.
Note:	It	is	completely	normal	to	use	the	webphone	on	LAN’s
(browser	client	with	private	IP).	This	FAQ	refers	to	the	case	when

mailto:webphone@mizu-voip.com?subject=webphone%20cannot%20call
mailto:webphone@mizu-voip.com

the	SIP	server	(set	by	the	“serveraddress”	parameter	where	the	webphone	will
register	to)	or	Web	server	(from	where	you	load	your	webpage	embedding	the
webphone)	is	located	on	private	IP.
	
Details:
The	webphone	can	be	used	also	on	local	LAN’s	(when	your	VoIP
server	and/or	Web	server	are	on	your	private	network).
-The	NS	and	Java	engines	will	connect	directly	to	your	server	as
a	normal	SIP	softphone	does.	
-For	WebRTC	to	work	you	will	need	a	WebRTC	to	SIP	gateway	on
your	LAN	or	your	PBX	have	to	support	WebRTC,	otherwise	this
engine	will	not	be	picked	up	(this	is	handled	automatically).	You
should	also	host	your	webpage	on	https	(SSL	certificate	installed
on	your	Web	server)	for	WebRTC	to	work	in	Chrome.
-The	webphone	could	use	the	Mizutech	STUN,	TURN,	JSONP	and
HTTPS	gateway	services	by	default,	however	these	are	not
required	on	local	LAN’s	(the	webphone	will	detect	this
automatically	and	will	not	try	to	use	these	services	while	on
local	LAN).
	
With	other	worlds,	if	you	wish	to	work	with	the	webphone	on
local	LAN	and	your	VoIP	server	doesn’t	have	WebRTC	support	or
your	webserver	doesn’t	have	SSL	installed	for	the	domain	you
are	using	(HTTPS),	we	recommend	to:
-use	the	NS	engine	on	Windows	(this	should	be	preferred	and
auto-selected	anyway	for	these	circumstances)
-use	Firefox	with	Java	on	other	platforms	(because	the	built-in
Java	applet	engine	will	provide	top	quality	VoIP	for	you)
	

Using	the	webphone	without	internet
connection

The	webphone	can	be	used	also	without	internet	connection
with	some	limitations.	An	easy	workaround	for	all	this	would	be
to	enable	at	least	CA	verifications	(SSL	certificate	verifications)
to	the	internet,	however	if	this	is	not	possible	then	the	following
applies:

-WebRTC	in	Chrome	needs	https	(secure	http),	which	will	work
only	with	a	local	policy,	otherwise	the	browser	will	not	be	able	to
verify	the	SSL	certificate	against	public	CA.	If	you	can’t	setup	a
local	CA	or	browser	rule	for	this,	just	disable	WebRTC	(or	use
Firefox	instead	of	Chrome	if	you	need	WebRTC	without
certificate).
-Java	applets	need	to	be	signed	and	on	startup	the	JVM	will	have
to	pass	the	code	verification	signature.	Workaround:	Just	disable
the	Java	engine	or	add	the	applet	location	to	the	exception	site
list
-The	NS	engine	can	be	used	from	unsecured	http	in	local	LAN’s
with	no	issues	(on	https	you	need	to	add	the
localhost.daplie.com	to	the	browser	security	exception	list)
These	circumstances	will	be	automatically	handled	by	the
webphone,	always	selecting	the	best	suitable	engine	if	it	has	at
least	one	available	and	unless	you	change	the	engine	priority
related	settings.

Using	the	webphone	in	controlled	environment
If	you	are	using	the	webphone	in	a	controlled	environment
(where	you	have	control	over	the	clients,	such	as	call-centers)
then	you	might	force	the	NS	or	Java	engines	by	disabling	or
lowering	the	priority	for	the	WebRTC	engine
(enginepriority_webrtc	=	1).	This	is	because	NS	and	Java	are
more	native	for	SIP/RTP	and	might	have	better	quality,	more
features	and	lower	processing	costs	on	your	server.	The	big
advantage	of	WebRTC	is	that	it	can	work	without	any	extra
plugin	download/install,	however	in	a	controlled	environment
you	can	train	your	users	(such	as	the	callcenter	agents)	to	allow
and	install	the	NS	engine	when	requested	and	this	one-time
extra	action	will	reward	with	long	term	quality	improvement.

Including	the	webphone	to	all	your	pages
In	case	if	you	wish	to	include	the	webphone	globally	to	your
websites	to	be	present	on	all	pages	(such	as	a	“call	to	support”
widget	flying	on	the	bottom-right	side	of	your	page),	make	sure

https://www.java.com/en/download/faq/exception_sitelist.xml

to	don’t	let	the	webphone	to	auto-initialize	itself	automatically
with	each	page	load/reload	because	this	might	slow-down	the
responsivity	of	your	website.
For	this	just	set	the	“autostart”	parameter	to	“false”.
In	this	call	you	can	delay	the	VoIP	engine	initialization	to	the
point	when	the	enduser	actually	wish	to	interact	with	your	VoIP
US	(such	as	clicking	on	your	click	to	call	button).
	

Multiple	phones	on	the	same	page
You	just	have	to	include	the	“webphone_api.js”	to	your	page	and
create	multiple	VoIP	UI	elements.
For	example	you	might	have	a	contact	list	(or	people	list)
displayed	on	your	page,	with	a	“Dial”	button	near	each	other.	
You	don’t	even	need	to	initialize	the	webphone	on	your	page
load	(set	the	“autostart”	parameter	to	“false”).	Just	use	the
webhone_api.call(number)	function	when	a	user	click	on	the	dial
button	and	the	webphone	will	initialize	itself	on	the	first	call.
	
The	softphone	user	interface	(softphone.html)	can’t	be	included
multiple	times	in	a	page	(if	you	really	need	multiple	phone	UI	on
your	page,	then	use	separate	iFrame	for	them).
	

Load	the	webphone	on	demand
Below	are	a	few	(both	recommended	and	NOT	recommended)
methods	to	load	the	webphone	into	your	webpage:
	
1.	Load	"webphone_api.js"	using	a	script	tag	in	the	<head>
section	of	your	web	page.	This	is	actually	not	“on	demand”,	the
webphone	will	be	loaded	when	the	page	is	loaded.
	
2.	Load	"webphone_api.js"	on	demand,	by	creating	a	<script>
DOM	element.	Below	is	an	example	function	which	loads	the
script	into	the	<head>	section	of	the	page:
function	insertScript(pathToScript)
{

				var	addScript	=	document.createElement("script");
				addScript.type	=	"text/javascript";
				addScript.src	=	pathToScript;
				document.head.appendChild(addScript);
}
	
3.	The	webphone	can	also	be	loaded	into	an	iframe	on	demand.
To	have	access	to	the	webphone	API	in	the	iframe	from	the
parent	page,	you	have	to	follow	the	below	two	steps:

a.							set	the	iframe's	"id"	attribute	to	"webphoneframe",
for	example:	<iframe	id="webphoneframe"
src="softphone.html"	width="300"	height="500"
frameborder="0"	></iframe>

b.						include	the	"iframe_helper.js"	file	into	your	parent
html	page	<head>	section

	
	
Not	recommended:
1.	The	web	phone	can	be	loaded	on	demand	using
document.write(),	but	it	is	a	bad	practice	to	call
document.write()	after	the	page	has	finished	loading.
2.	The	web	phone	can	also	be	loaded	using	any	AMD
(Asynchronous		Module	Loader).	This	is	not	recommended,
because	webphone	also	uses	AMD	(Require	JS)	to	load	its
modules,	so	it	won't	improve	performance,	but	it	can	lead	to
conflict	between	AMD	loaders.
	

How	to	keep	the	webphone	call	between	page
loads?

The	webphone	is	a	client	side	software	and	pages/tabs	in	your
browser	are	separate	entities,	so	a	new	page	doesn’t	know
anything	about	an	old	one	(except	via	server	side	sessions,	but
it	is	impossible	to	transfer	live	JavaScript	object	via	your	server
in	this	way).
	
There	is	no	way	to	keep	the	webphone	session	alive	between

page	loads.	
Instead	of	this,	you	should	choose	one	of	the	followings:

·									run	the	webphone	in	a	separate	page	(on	its	own
dedicated	page,	so	the	enduser	can	just	switch	to	this
window/tab	if	needs	to	interact	with	the	webphone)

·									run	the	webphone	in	an	frame
·									load	your	content	dynamically	(Ajax)

If	this	functionality	is	a	must	for	your	project,	check	the
following	FAQ	for	the	possibilities.
	

Single	webphone	instance	on	multiple	pages
There	might	be	situations	when	you	might	wish	to	use	the	same
webphone	instance	on	multiple	pages	(opened	in	different
browser	tab	or	windows).
For	example	to	start	a	call	on	a	page,	open	a	second	page	and
be	able	to	hangup	the	call	on	this	second	page.
	
First	of	all,	it	is	important	to	note	that	the	webphone	is	client
side	software	(it	is	impossible	to	implement	a	voip	client	which
would	run	on	the	server	side).
This	means	that	from	the	browser	perspective,	each	of	the
pages	are	treated	completely	separately	(Only	your	web	server
knows	that	those	belongs	together	called	a	“session”).	Each
page	load	or	reload	will	completely	re-initialize	also	the
webphone	(if	the	webphone	is	included	in	the	page).	With	other
worlds:	multiple	pages	opened	from	your	domain	doesn’t	know
about	each	other	at	all	and	one	page	can’t	access	the	other	one
(except	if	you	send	some	ajax	message	via	your	web	server,	but
this	kind	of	message	passing	is	useless	in	this	case	since	you
can't	transfer	the	whole	webphone	javascript	object).
This	means	that	you	should	avoid	the	above	use-case	and	just
launch	the	webphone	on	a	separate	page	in	this	case,	so	the
enduser	can	switch	to	the	page	dedicated	for	the	webphone	if
need	to	interact	with	a	call	(make	a	call,	hangup	current	call	or
other	operations	such	as	mute,	conference,	dtmf).
	

Here	are	a	few	ways	to	implement	such	functionality:
·									Simple	data	sharing:	If	you	just	want	to	share	some	details
across	your	pages,	then	you	can	do	it	via	cookies	or	from	pure
javascript	using	the	window.name	reference.	(This	can	be
used	only	for	simple	data	sharing,	but	not	to	share	live
JavaScript	objects	such	as	the	webphone)

·									NS	engine:	It	is	possible	with	the	NS	engine	to	have	the
webphone	survive	page	(re)loads	or	opening	new	pages	on
your	website.	Contact	mizutech	if	you	are	interested	in	this
(works	only	with	the	NS	engine)

·									Using	a	global	webphone	object:		There	is	way	to	share	a
global	webphone	instance	across	the	opened	pages:	using	the
window.opener	property	which	is	a	reference	to	the	window
that	opened	the	current	window.	This	means	that	you	can
access	your	global	webphone	object	from	secondary	opened
pages	via	the	opener	reference	(Find	an	example	for	this
below)

·									Avoid	this	use-case	and	just	launch	the	webphone	on	a
separate	page	in	this	case,	so	the	enduser	can	switch	to	the
page	dedicated	for	the	webphone	if	need	to	interact	with	a
call	(make	a	call,	hangup	current	call	or	other	operations	such
as	mute,	conference,	dtmf).
	

	
Here	is	a	simplified	example	to	access	the	webphone	object	via
window.opener:
//Important:	Set	the	“autostart”	parameter	to	“false”	in	the	webphone_api.js
parameters	section	to	avoid	auto	initialization	of	the	webphone	on	all	pages	where
included	(we	will	start	the	webphone	explicitly	when	needed)
	
//store	the	wopener	variable	to	be	used	here	and	also	on	subsequent	pages	(useful	if
we	open	a	third	page	from	the	second	and	so)
var	wopener	=	window;		//set	to	this	document
if(window.opener	&&	window.opener.webphone_api)
{
																wopener	=	window.opener;	//set	to	parent	page	document
}
if(wopener.wopener	&&	wopener.wopener.webphone_api)
{
																wopener	=	wopener.wopener;		//the	parent	page	might	also	loaded	from	its
own	parent,	so	load	it	from	there

https://www.sitepoint.com/javascript-session-variable-library/
http://www.w3schools.com/jsref/prop_win_name.asp
https://developer.mozilla.org/en/docs/Web/API/Window/opener

}
	
//create	a	reference	to	the	webphone	so	we	can	easily	access	it	on	this	page	via	this
variable
var	wapi	=	webphone_api;
	
//Initialize	your	webphone	if	not	initialized	yet
if(wopener	&&	wopener.webphone_api)
{
				//load	the	wapi	instance	from	the	parent	page	in	this	case
																wapi	=	wopener.webphone_api;
															
																//check	if	already	initialized
																if(wapi.isstarted	!=	1)
																{
																																wapi.isstarted	=	1;	

//we	are	staring	the	engine	here,	however	you	can	delay	the	start	if	you
wish	to	the	point	when	the	user	actually	wish	to	use	the	phone	such	as	making
a	cal;		wapi.start();											

																}														
																//else	already	initialized	by	parent
}
else	if(wapi	&&	wapi.isstarted	!=	1)
{
																//we	are	the	first	page
																wapi.isstarted	=	1;
																wopener	=	window;	//set	the	wopener	to	point	to	this	page														
																wapi.start();																															
}
	
//use	the	phone	api	on	this	page
function	onCalllButtonClick()
{
																if(wapi)	wapi.call();
																else	alert('error:	no	webphone	found	(webphone_api.js	not	included?)');
}
	
You	can	find	a	better/fully	working	example	in	the	webphone
package:	multipage_example.html.

New	parameters	was	set	but	the	old	settings	was
loaded

Sometimes	you	might	have	to	change	the	settings	for	each
session	(for	example	changing	the	user	credentials).
In	these	situations	it	might	happen	that	the	webphone	is	still
using	the	old	setting	(which	you	have	set	for	the	previous

session	and	not	for	the	current	one).
Usually	this	might	happen	if	the	webphone	is	already	started
and	registered	with	the	old	parameters	before	it	loads	the	new
parameters	(For	example	before	you	call	the	setparameter()	API
with	the	new	values).
	
To	prevent	this,	you	should	set	the	"autostart"	parameter	to
"false"	in	the	webphone_api.js
You	can	also	set	the	“register”	parameter	to	"0".
The	use	the	start()	and/or	register()	functions	only	after	the
webphone	were	supplied	with	the	new	parameters.
	
Note:
The	webphone	is	also	capable	to	load	it’s	parameters	from	the	URL.	Just	us	the	format
required	(wp_username,	wp_password	and	others).
It	is	not	needed	to	call	the	register()	after	start()	because	the	start()	will	automatically
initiate	the	register	if	the	server/username/password	is	already	preset	when	it	starts
and	if	you	leave	the	register	parameter	at	1.
	

How	to	prevent	unwanted	unload	event
Certain	operations	(such	as	file	download	controls)	might	trigger
window.unload	events	which	might	trigger	webphone
unregistrations.
You	might	have	to	prevent	these	event	being	triggered	by	your
controls	by	using	this	technique	(It	can	be	applied	to	any
element	such	as	<div>,<a>,<button>)
	

RTP	statistics
For	RTP	statistics	increase	the	log	level	to	at	least	3	and	then
after	each	call	longer	than	7	seconds	you	should	see	the
following	line	in	the	log:
EVENT,	rtp	stat:	sent	X	rec	X	loss	X	X%.
If	you	set	the	“loglevel”	parameter	to	at	least	“5”	than	the
important	rtp	and	media	related	events	are	also	stored	in	the
logs.
You	can	also	access	the	details	about	the	last	call	from	the
softphone	skin	menu	“Last	call	statistics”	item.

http://stackoverflow.com/questions/7650063/how-can-i-prevent-window-onbeforeunload-from-being-triggered-by-javascript-href

NAT	settings
In	the	SIP	protocol	the	client	endpoints	have	to	send	their	(correct)	address	in	the	SIP
signaling,	however	in	many	situations	the	client	is	not	able	to	detect	it’s	correct
public	IP	(or	even	the	correct	private	local	IP).	This	is	a	common	problem	in	the	SIP
protocol	which	occurs	with	clients	behind	NAT	devices	(behind	routers).	The	clients
have	to	set	its	IP	address	in	the	following	SIP	headers:	contact,	via,	SDP	connect
(used	for	RTP	media).	A	well	written	VoIP	server	should	be	able	to	easily	handle	this
situation,	but	a	lot	of	widely	used	VoIP	server	fails	in	correct	NAT	detection.	RTP
routing	or	offload	should	be	also	determined	based	in	this	factor	(servers	should	be
always	route	the	media	between	2	nat-ed	endpoint	and	when	at	least	one	endpoint	is
on	public	IP	than	the	server	should	offload	the	media	routing).	This	is	just	a	short
description.	The	actual	implementation	might	be		more	complicated.

With	the	WebRTC	engine	make	sure	that	the	STUN	and	TURN
settings	are	set	correctly	(by	default	it	will	use	mizu	services
which	will	work	fine	if	your	server	is	on	the	public	internet).
For	NS	and	Java	engines	you	may	have	to	change	the	webphone
configuration	according	to	your	SIP	server	if	you	have	any
problems	with	devices	behind	NAT	(router,	firewall).
If	your	server	has	NAT	support	then	set	the	use_fast_stun	and
use_rport	parameters	to	0	and	you	should	not	have	any	problem
with	the	signaling	and	media	for	webphone	behind	NAT.	If	your
server	doesn’t	have	NAT	support	then	you	should	set	these
settings	to	2.	In	this	case	the	webphone	will	always	try	to
discover	its	external	network	address.
Example	configurations:
If	your	server	can	work	only	with	public	IP	sent	in	the	signaling:
-use_rport	2	or	3
-use_fast_stun:	1	or	2

If	your	server	can	work	fine	with	private	IP’s	in	signaling	(but	not
when	a	wrong	public	IP	is	sent	in	signaling):
-use_rport9
-use_fast_stun:	0
-optionally	you	can	also	set	the	“udpconnect”	parameter	to	1

Asterisk	is	well	known	about	its	bad	default	NAT	handling.
Instead	of	detecting	the	client	capabilities	automatically	it	relies
on	pre-configurations.	You	should	set	the	"nat"	option	to	"yes"

for	all	peers.
More	details:
http://www.voip-info.org/wiki/view/NAT+and+VOIP
http://www.voip-info.org/wiki/view/Asterisk+sip+nat
http://www.asteriskguru.com/tutorials/sip_nat_oneway_or_no_audio_asterisk.html

Server	failover/fallback
Use	the	following	settings	if	you	have	2	voip	servers:

·									serveraddressfirst:	the	IP	or	domain	name	of	the	first
server	to	try

·									serveraddress:	the	IP	or	domain	name	of	the	next	server
·									autotransportdetect:	true
·									enablefallback:	true

In	this	way	the	webphone	will	always	send	a	register	to	the	first
server	first	and	on	no	answer	will	use	the	second	server	(the
“first”	server	is	the	“serveraddressfirst”	at	the	beginning,	but	it
can	change	to	“serveraddress”	on	subsequent	failures	to	speed
up	the	initialization	time)
Alternatively	you	can	also	use	SRV	DNS	records	to	implement
failover	or	load	balancing,	or	use	a	server	side	load	balancer.

I	have	WebRTC	related	issues
The	WebRTC	functionality	highly	depends	on	your	OS/browser
and	server	side	WebRTC	–SIP	module.	Check	the	followings	if	the
webphone	is	using	the	WebRTC	engine	and	you	have	difficulties:

·									Make	sure	that	your	browser	has	support	for	WebRTC	and
it	works.	Visit	the	following	test	pages:	test1,	test2,	test3

·									Make	sure	to	run	the	webphone	from	secure	http	(https)
otherwise	WebRTC	will	not	work	in	Chrome	and	Opera

·									If	you	have	set	the	“webrtcserveraddress”	parameter	to
point	to	your	server	or	gateway,	make	sure	that	your
server/gateway	has	WebRTC	enabled	and	test	it	also	from
some	other	client	such	as	sipml5:	config;	test

·									You	might	contact	mizutech	support	with	a	detailed	log
about	the	problem

http://www.voip-info.org/wiki/view/NAT+and+VOIP
http://www.voip-info.org/wiki/view/Asterisk+sip+nat
http://www.asteriskguru.com/tutorials/sip_nat_oneway_or_no_audio_asterisk.html
https://test.webrtc.org/
https://test.webrtc.org/manual/
https://www.webrtc-experiment.com/DetectRTC/
https://www.doubango.org/sipml5/expert.htm
https://www.doubango.org/sipml5/call.htm
mailto:webphone@mizu-voip.com?subject=webrtc%20problem

·									If	you	are	unable	to	fix	webrtc	in	your	setup	then	you
might	disable	the	webrtc	engine	by	setting	the
enginepriority_webrtc	parameter	to	0	or	1.
See	the	other	possibilities	here.

	

Media	access	or	Media	stream
permission	denied	popup

You	might	receive	similar	popups	or	the	calls	just	fails	if	you	are
using	the	WebRTC	engine	but	haven’t	enabled	the	browser	to
use	your	microphone/camera	device	or	denied	it	previously
(Technically	the	WebRTC	getUserMedia()	function	call	will	fail	in
this	case).
Normally	before	WebRTC	calls	your	browser	should	popup	a	box
asking	to	allow	microphone	access.	You	should	click	on	the
Ok/Yes/Allow/Share/Always	Share	button	there.
However	if	you	clicked	on	No/Not/Don’t	Share/Deny/Always
Deny	button	sometime	before	then	the	browser	might	not

popup	with	this	question	again.
·									In	this	case	you	should	see	a	red	icon	in	your
browser	address	bar	and	click	on	“Allow”	from	there.

·									You	can	also	allow	a	website	from	your	browser
security/privacy	settings.
(In	Chrome:	settings	->	show	advanced	settings	->	privacy
section	->	content	settings	->	microphone	->	manage
exceptions).

·									In	some	situations	the	browser	might	not	ask	for	permission,
just	silently	fails.	This	happens	in	Chrome	if	your	website	is
not	on	secure	https	(Chrome	doesn’t	allow	WebRTC	from	http)
or	if	you	are	using	an	invalid	or	self-signed	certificate	(yes,
Chrome	might	just	silently	fail	with	self-signed	certificates).

·									Also	you	must	use	wss	(secure	websocket)	for	your	WebRTC
server	WebSocket	connection,	otherwise	Chrome	will	fail	on
unsecure	ws.

·									In	some	situations	the	browser	might	not	ask	for	permission,
just	silently	fails.	This	happens	in	Chrome	if	your	website	is

not	on	secure	https	(Chrome	doesn’t	allow	WebRTC	from	http)
or	if	you	are	using	an	invalid	or	self-signed	certificate	(yes,
Chrome	might	just	silently	fail	with	self-signed	certificates).
Also	you	must	use	wss	(secure	websocket)	for	your	WebRTC
server	WebSocket	connection,	otherwise	Chrome	will	fail	on
unsecure	ws.

·									Chrome	also	might	fail	if	you	try	to	run	WebRTC	from	html
launched	from	local	file	system
The	workaround	for	this	is	to	lauch	with	--allow-file-access-
from-files	parameter
(Something	like	this	on	windows:	"C:\Program	Files
(x86)\Google\Chrome\Application\chrome.exe"	--allow-file-
access-from-files	C:\path\softphone.html)

·									Also	test	your	browser	webrtc	capabilities	from	here	and
here.

	

VoIP	calls	without	microphone	device
The	webphone	is	capable	to	handle	the	situation	when	calls	are
beeing	connected	without	a	microphone	device.	This	is	useful
only	if	the	user	needs	to	listen	for	some	audio	such	as	an	IVR.
The	only	exception	is	if	you	use	it’s	WebRTC	engine	with	Firefox
since	Firefox		require	the	MediaStream	to	have	a	valid
MediaStreamTrack,	but	this	is	returned	from	getUserMedia()
which	fails	on	Firefox	if	the	user	don't	have	a	microphone	with
the	following	error:
WRTC,	ERROR,	InternalError:	Cannot	create	an	offer	with	no	local
tracks,	no	offerToReceiveAudio/Video,	and	no	DataChannel.
This	is	a	bug	in	Firefox	already	reported	also	by	others	as	you
can	see	here	and	here.
This	situation	is	handled	automatically	by	the	webphone	or	you
can	force	calls	to	always	pass	or	always	fail	via	the
checkmicrophone	setting.
	

I	have	call	quality	issues
Call	quality	is	influenced	primarily	by	the	followings:

https://test.webrtc.org/
https://test.webrtc.org/manual/
https://bugs.chromium.org/p/chromium/issues/detail?id=357410
https://groups.google.com/forum/#!topic/mozilla.dev.media/avL3T9z0F9g

·									The	engine	used	(Java	and	NS	tends	to	have	the	best
quality)

·									Codec	used	to	carry	the	media	(wideband	has	better
quality)

·									Network	conditions	(check	your	upload	speed,	packet	loss,
delay	and	jitter)

·									Hardware:	enough	CPU	power	and	quality
microphone/speaker	(try	a	headset,	try	on	another	device)

·									AEC	and	denoise	availability
If	you	have	call	quality	issues	then	the	followings	should	be
verified:

·									whether	you	have	good	call	quality	using	a	third	party
softphone	from	the	same	location	(try	X-Lite	for	example).
If	not,	than	the	problem	should	be	with	your	server,
termination	gateway	or	bandwidth	issues.

·									make	sure	that	the	CPU	load	is	not	near	100%	when	you
are	doing	the	tests

·									make	sure	that	you	have	enough	bandwidth/QoS	for	the
codec	that	you	are	using

·									change	the	codec	(disable/enabled	codec’s	with	the
“codec”	parameter)

·									deploy	the	mediaench	module	(for	AEC	and	denoise).	(Or
disable	it	if	it	is	already	deployed	and	you	have	bad	call
quality)

·									webphone	logs	(Check	audio	and	RTP	related	log	entries.
Also	check	the	statistics	after	call	disconnect.)

·									wireshark	log	(Check	missing	or	duplicated	packets)

I	have	one	way	audio
1.							Review	your	server	NAT	related	settings
2.							Set	the	“setfinalcodec”	parameter	to	0	(especially	if	you
are	using	Asterisk	or	OpenSIPS)

3.							Check	stun	and	turn	settings	(might	be	used	for	WebRTC
if	your	server	is	not	on	the	public	internet,	doesn’t	route
the	RTP	or	you	need	peer	to	peer	media	routing)

4.							Set	use_fast_stun,	use_fast_ice	and	use_rport	to	0

(especially	if	you	are	using	SIP	aware	routers).	If	these
don’t	help,	set	them	to	2.

5.							If	you	are	using	Mizu	VoIP	server,	set	the	RTP	routing	to
“always”	for	the	user(s)

6.							Make	sure	that	you	have	enabled	all	codec’s
7.							Make	a	test	call	with	only	one	codec	enabled	(this	will
solve	codec	negotiation	issues	if	any)

8.							Try	the	changes	from	the	next	section	(Audio	device
cannot	be	opened)

9.							If	you	still	have	one	way	audio,	please	make	a	test	with
any	other	softphone	from	the	same	PC.	If	that	works,	then
contact	our	support	with	a	detailed	log	(set	the”	loglevel”
parameter	to	5	for	this)

Audio	device	cannot	be	opened
If	you	can’t	hear	audio,	and	you	can	see	audio	related	errors	in
the	logs	(with	the	loglevel	parameter	set	to	5),	then	make	sure
that	your	system	has	a	suitable	audio	device	capable	for	full
duplex	playback	and	recording	with	the	following	format:
PCM	SIGNED	8000.0	Hz	(8	kHz)	16	bit	mono	(2	bytes/frame)	in
little-endian
If	you	have	multiple	sound	drivers	then	make	sure	that	the
system	default	is	workable	or	set	the	device	explicitly	from	the
webphone	(with	the	“Audio”	button	from	the	default	user
interface	or	using	the	“API_AudioDevice”	function	call	from	java-
script)
To	make	sure	that	it	is	a	local	PC	related	issue,	please	try	the
webphone	also	from	some	other	PC.
You	might	also	try	to	disable	the	wideband	codec’s	(set	the
use_speexwb	and	use_speexuwb	parameters	to	0	or	1).
Another	source	for	this	problem	can	be	if	your	sound	device
doesn’t	support	full	duplex	audio	(some	wrong	Linux	drivers	has
this	problem).	In	this	case	you	might	try	to	disable	the	ringtone
(set	the	“playring”	parameter	to	0	and	check	if	this	will	solve
the	problem).

If	these	don’t	help,	you	might	set	the	“cancloseaudioline”
parameter	to	3	and/or	the	"singleaudiostream”	to	5.

No	ringback	tone
Depending	on	your	server	configuration,	you	might	not	have
ringback	tone	or	early	media	on	call	connect.
There	are	a	few	parameters	that	can	be	used	in	this	situation:

·									set	the	“changesptoring”	parameter	to	3
·									set	the	“natopenpackets”	parameter	to	10
·									set	the	“earlymedia”	parameter	to	3
·									change	the	“use_fast_stun”	parameter	(try	with	0	or	2)

One	of	these	should	solve	the	problem.

Chat	is	not	working
Make	sure	that	your	softswitch	has	support	for	IM	and	it	is
enabled.	The	webphone	is	using	the	MESSAGE	protocol	for	this
from	the	SIP	SIMPLE	protocol	suite	as	described	in	RFC	3428.
Most	Asterisk	installations	might	not	have	support	for	this	by
default.	You	might	use	Kamailio	for	this	purpose	or	any	other
softswitch		(most	of	them	has	support	for	RFC	3428).
	
If	subsequent	chat	messages	are	not	sent	reliably,	set	the
“separatechatdiag”	parameter	to	1.
	

The	webphone	doesn’t	receive	incoming	calls
To	be	able	to	receive	calls,	the	webphone	must	be	registered	to
your	server	by	clicking	on	the	“Connect”	button	on	the	user
interface	(or	in	case	if	you	don’t	display	the	webphone	GUI	than
you	can	use	the	“register”	parameter	with	supplied	username
and	password,	or	via	the	register()	JavaScript	SIP	API)
Once	the	webphone	is	registered,	the	server	should	be	able	to
send	incoming	calls	to	it.
	
Other	common	causes	include:

http://www.ietf.org/rfc/rfc3428.txt
http://www.voip-info.org/wiki/view/Asterisk+SIP+Messaging
http://www.kamailio.org/
https://www.mizu-voip.com/Products/VoIPServer.aspx

-NAT:	if	your	browser	webphone	is	behind	NAT,	check	if	your
server	can	handle	NAT’s	properly	(via	rport	and	other	settings).
As	a	workaround	you	might	try	to	start	the	webphone	with
use_fast_stunparameter	set	to	0	and	if	still	not	works	then	try	it
with	2.
-call	fork:	if	you	are	registered	from	multiple	locations	with	the
same	credentials	then	your	server	must	be	able	to	support	call
fork	to	ring	on	all	devices.	Otherwise	make	sure	to	use	the	same
credentials	only	from	one	location	and	one	protocol	(don’t
mismatch	SIP	and	WebRTC	logins)
-make	sure	that	autoignore	or	DND	(do	not	disturb)	are	not	set
-check	if	your	server	is	sending	the	INVITE	to	the	proper	IP:port
(from	where	it	received	the	latest	valid	REGISTER	from	the
webphone)
	
If	the	calls	are	still	not	coming,	send	a	detailed	log	from	the
webphone	(set	the	loglevel	parameter	to	5)	and	also	from	the
caller	(your	server	or	remote	SIP	client)
	

What	is	the	best	codec?
This	depends	on	the	circumstances	and	there	is	no	such	thing
as	the	"best	codec".	All	commonly	used	codec's	present	in	the
webphone	are	well	tested	and	suitable	for	IP	calls	with
optimized	priority	order	by	default,	regarding	to	environment
(client	device,	bandwidth,	server	capabilities).
This	means	that	usually	you	don’t	need	to	change	any	codec
related	settings	except	if	you	have	some	special	requirement.
Between	webphone	users	(or	other	IP	to	IP	calls)	you	should
prefer	wideband	codec's	(this	is	why	you	just	always	leave	the
opus	and	speex	wideband	and	ultra	wideband	with	the	highest
priority	if	you	have	calls	between	your	VoIP	users.	These	will	be
picked	for	IP	to	IP	calls	and	simply	omitted	for	IP	to	PSTN	calls).
Otherwise	G.729	provides	both	good	quality	and	low	bandwidth
if	this	codec	is	available	for	you.
G.711	(PCMU/PCMA)	is	always	supported	and	they	offer	good
call	quality	using	some	more	bandwidth	then	G.729.

The	other	available	codec’s	are	iLBC	and	GSM.	These	offers	a
good	compromise	between	quality	and	bandwidth	usage	if	the
above	mentioned	opus	and	G.729	is	not	supported	by	your
server	or	the	other	peer.
To	calculate	the	bandwidth	needed,	you	can	use	this	tool.		You
might	also	check	this	blog	entry:	Codec	misunderstandings
With	the	webphone	you	don’t	need	to	change	the	codec	settings
except	if	you	have	some	special	requirement.	With	the	default
settings	the	webphone	is	already	optimized	and	will	always
choose	and	negotiate	the	“best”	available	codec.
	

Optimized	VoIP	for	callcenter
The	webphone	is	a	favorite	VoIP	client	for	callcenter	as	it	can	be
easily	integrated	with	any	frontend	or	CRM	and	it	can	be	used
for	both	inbound	and	outbound	campaigns.	The	integration
usually	consists	of	database	lookup	for	caller/callee	details	on
incoming/outgoing	calls	so	the	agent	can	see	all	the	details
about	the	customer.
There	are	multiple	ways	to	implement	such	kind	of
database/CRM	lookups:
-From	JavaScript	catch	the	call	init	from	the	onCallStateChange
callback	(on	status	=	callSetup)	and	load	the	required	data	by
an	AJAX	call	to	your	backend
-Via	the	“scurl_displaypeerdetails”:	implement	a	HTTP	API	on
your	server	which	will	return	the	peer	details	and	set	the
scurl_displaypeerdetails	webphone	setting	to	point	to	this	API
URL
-If	your	backend	has	VoIP	client	integration	capabilities,	then
just	implement	its	specification.	For	example	here	is	a	tutorial
about	integrating	the	webphone	with	salesfoce
	
There	are	many	other	things	what	you	can	do	for	a	better
integration,	such	as	processing	cdr	records	or	recording	the	calls
however	most	of	these	can	be	easily	controlled	by	the
webphone	parameters	or	implemented	via	the	API.
	

http://www.bandcalc.com/
https://www.mizu-voip.com/Support/Blog/tabid/100/EntryID/7/Default.aspx
https://www.mizu-voip.com/Portals/0/Files/SalesforceWebPhone.pdf

We	recommend	use	the	NS	and/or	the	Java	VoIP	engine	in	call-
centers	since	these	provides	native	call	processing,	connecting
directly	to	your	SIP	server	without	the	need	of	any	extra	layer
such	as	WebRTC.	More	details	here.
	

P2P
The	“P2P”	term	is	misleading	sometimes	and	it	can	have	the
following	meanings:
·									Server	assisted	phone	to	phone	calls.	This	means	that	both
endpoints	will	be	called	by	the	server	and	once	connected,
the	server	interconnects	the	2	endpoint.	It	can	be	useful	when
the	client	device	doesn’t	have	internet	connection	or	doesn’t
have	any	platform	to	enable	VoIP,	such	as	an	old	dumb
phone.	Exactly	for	this	concept	we	refer	with	the	P2P	engine.

·									Peer	to	peer	connection:	useful	to	bypass	the	server	for
media	or	both	media	and	signaling	(peer	to	peer	media
routing	is	more	important	here).

·									Sometimes	it	might	refer	to	peer	to	peer	encryption	(or	end
to	end	E2E	encryption)	which	means	that	the	server	(if	used)
is	a	passive	party	from	the	encryption	point	of	view	and	is
unable	to	decrypt	the	streams	between	the	endpoints	(just
forwards	the	stream	if	needed)

The	webphone	also	has	support	for	peer	to	peer	encrypted
media	with	direct	streaming	(this	is	done	via	ICE	techniques
with	automatic	failback	to	routing	via	server	if	a	direct	path
can’t	be	found.)
	

Register	vs	Login	vs	Credentials
These	terms	might	be	also	misleading	especially	for	user	with
no	VoIP/SIP	knowledge.
Register	or	registration	provides	a	way	for	the	SIP	clients	to
connect/login	to	the	server	so	the	server	will	learn	the	client
address	and	will	be	able	to	route	calls	and	other	message	to	it.
It	is	implemented	by	sending	a	REGISTER	message	by	the	SIP
signaling.	The	server	might	or	might	not	challenge	the	request

with	an	authentication	request	(in	this	case	the	client	will	send	a
second	REGISTER	with	a	hash	of	its	credentials).	On	credentials
we	refer	to	the	sip	username/password.
However:

·									Register	is	optional	and	is	not	really	needed	if	your	client
will	make	only	outbound	calls	(not	used	to	accept	calls	or
chat)

·									You	can	configure	your	server	to	not	require	registrations
(actually	most	server	doesn’t	require	it	by	default,	however
in	some	servers	the	default	configuration	is	to	not	allow
calls	if	there	was	no	previous	successful	registration)

·									For	the	webphone	you	can	set	the	“register”	parameter	to
0	to	skip	registration	(so	the	webphone	will	not	send
REGISTER	requests)

·									Disabling	registration	is	not	a	security	treat	since	the
server	will	do	the	same	authentication	for	each	call	as	it
does	for	registrations	(so	the	clients	will	not	be	able	to
make	calls	if	their	credentials	are	incorrect)

·									You	can	also	configure	your	server	to	allow	blind
registrations.	This	means	that	the	client	might	send	the
REGISTER	with	any	credentials	(any	username/password)
and	it	will	be	unconditionally	accepted

·									You	can	also	configure	your	server	to	allow	blind	calls.	This
means	that	the	client	might	send	the	INVITE	with	any
credentials	(any	username/password)	and	it	will	be
unconditionally	accepted	(the	call	will	be	routed)

·									If	your	server	accepts	blind	registrations	and	calls	then
you	can	set	the	webphone	password	parameter	to	any
value	since	it	will	not	be	checked	or	used	anyway.	(You	can
set	it	to	“nopassword”	as	a	special	value	to	hide	it	from
settings	and	login	forms)

·									There	are	situations	when	even	the	username	doesn’t
matter	(if	you	wish	to	make	only	unconditional	outbound
calls	or	calls	to	ivr).	However	you	must	also	set	the
username	parameter	to	some	value	or	allow	the	user	to
enter	something	since	it	is	required	for	the	SIP	messages.
You	might	set	it	to	“Anonymous”	in	this	case.

	
Sometime	you	might	use	a	separate	username/password
combination	on	your	website	then	on	your	SIP	server.	In	this
case	you	can	auto-provision	the	webphone	with	the	sip
credentials	if	the	user	is	already	logged	in	on	your	website	to
avoid	typing	a	different	username/password.	This	can	be
implemented	multiple	ways:

·									by	dynamically	generating	the	webphone	settings	from	a
server	script	(set	the	username/password	from	the	server
since	there	you	already	know	the	signed	in	user	details	and
you	can	grab	the	SIP	credentials	from	your	softswitch
database)

·									implement	a	custom	API	which	returns	the	sip	credentials
and	set	it’s	URI	as	the	“scurl_setparameters”	parameter
(webphone	will	call	scurl_setparameters	URI	and	wait	for
the	(key/value)	parameters	in	response	and	once	received
it	will	start	the	webphone)

·									handle	it	from	JavaScript	(use	the	setparameter()	API	to
set	the	username/password)

·									implement	some	alternative	authentication	method	on
your	SIP	server	(for	example	based	a	custom	SIP	header
which	you	might	set	from	the	web	session	using	the
setsipheader()	API	call)

How	to	find	out	registration	status
Depending	on	the	settings,	the	webphone	will	automatically
register	upon	startup	or	you	can	explicitly	connect	to	the	server
by	calling	the	register()	API.
To	find	out	whether	the	webphone	is	successfully	registered	or
not,	you	can	use	the	isregistered()	API	to	query	the	status	at	any
time.
You	can	also	receive	notifications	about	the	registration	status
via	the	followings	callbacks:
·									onRegistered:	callback	called	on	successful	registration
·									onUnRegistered:	callback	called	after	“logoff”
·									onDisplay:	callback	called	when	register	fails	with	the
message	containing	one	of	the	following	text:

o				Connection	lost
o				No	network
o				No	response	from	server
o				Server	lost
o				Authentication	failed
o				Rejected	by	server
o				Register	rejected
o				Register	expired
o				Register	failed

	

Caller	ID	display
For	outgoing	calls	the	Caller	ID		(CLI/A	number	display)	is
controlled	by	the	server	and	the	application	at	the	peer	side	(be
it	a	VoIP	softphone	or	a	pstn/mobile	phone).
You	can	use	the	following	parameters	to	influence	the	caller	id
display	at	the	remote	end:

o			username	(this	is	used	for	both	SIP	username	and
authentication	username	if	sipusername	is	not	set)

o			sipusername	(if	this	parameter	is	set,	then	the
“sipusername”	will	be	used	for	authentication	and	the
“username”	parameter	as	the	SIP	username)

o			displayname	(SIP	display	name)
If	you	set	all	these	parameters,	then	it	will	be	sent	in	the	SIP
signaling	in	the	following	way	(see	the	uppercase	worlds):

INVITE	sip:called@sipdomain.com	SIP/2.0
From:	"DISPLAYNAME"	<sip:USERNAME@sipdomain.com>;tag=xyz
Contact:	"DISPLAYNAME"<sip:USERNAME@sipdomain.com>
Remote-Party-ID:	"DISPLAYNAME"
<sip:USERNAME@88.150.183.87>;party=calling;screen=yes;privacy=off
Authorization:	Digest	username="SIPUSERNAME",realm="sipdomain.com"	…

	
Some	VoIP	server	will	suppress	the	CLI	if	you	are	calling	to	pstn	and	the	number	is	not
a	valid	DID	number	or	the	webphone	account	doesn’t	have	a	valid	DID	number
assigned	(You	can	buy	DID	numbers	from	various	providers).
The	CLI	is	usually	suppressed	if	you	set	the	caller	name	to	“Anonymous”	(hide	CLI).
If	required	by	your	SIP	server,	you	can	also	set	a	Caller	Identity	header	as	a
“customsipheader”	parameter.	(P-Preferred-Identity/P-Asserted-Identity/Identity-Info)
	
For	incoming	calls	the	webphone	will	use	the	caller	username,
name	or	display	name	to	display	the	Caller	ID.	(SIP	From	,
Contact	and	Remote-Party-ID	fields).

How	to	catch	incoming	calls?
Here	is	a	simple	example:
webphone_api.onCallStateChange(function	(event,	direction,	peername,
peerdisplayname,	otherdetails)
{
				if	(event	===	'callSetup')
				{
								if	(direction	==	1)
								{
												//	means	it	is	an	outgoing	call
								}
								else	if	(direction	==	2)
								{
												//	means	it	is	an	icoming	call
												document.getElementById('icoming_call_layout').style.display	=	'block';	//
display	Accept,	Reject	buttons
											/*					
												<div	id="icoming_call_layout">
																<button	onclick="webphone_api.accept();">Accept</button>
																<button	onclick="webphone_api.reject();">Reject</button>
												</div>
											*/
								}
				}
	
				//	end	of	a	call,	even	if	it	wasn't	successfull
				if	(event	===	'callDisconnected')
				{
								document.getElementById('icoming_call_layout').style.display	=	'none';	//	hide
Accept,	Reject	buttons
				}
});
	
More	details	and	examples	can	be	found	here.
	

New	settings	not	applied
If	you	have	changed	any	parameter	in	the	webphone_api.js,
make	sure	that	you	see	the	latest	version	if	you	open	the	js	file
directly	in	the	browser	like:
www.yourdomain.com/webphonefolderpath/webphone_api.js	
If	you	don’t	see	the	recent	settings	that	means	that	the	old
version	was	cached	by	your	browser,	by	your	webserver	or
some	intermediary	proxy.

http://www.yourdomain.com/webphonefolderpath/webphone_api.js

The	webphone	might	store/cache	previous	settings	in	cookie
and	indexDB	"localforage".
	
Refresh	the	browser	cache	by	pressing	F5	or	Ctrl+F5.
In	Firefox	you	can	clear	all	settings	related	to	the	webphone	by	pressing	ALT,	then
select	“Show	All	History”	from	the	“History”	menu,	then	right	click	to	your	domain
and	select	“Forget	About	This	Site”.
Make	sure	that	you	don’t	have	some	caching	proxy	on	the	path.
A	sure	way	to	bypass	all	caching	is	to	change	the	server	folder
(deploy	in	a	“test2”	directory	and	launch	from	there).	If	you	are
using	the	NS	engine,	then	you	might	need	to	upgrade	the
webphone	service.
	
Once	a	parameter	is	set,	it	might	be	cached	by	the	browser
phone	and	used	even	if	you	remove	it	later.
To	prevent	this,	set	the	parameter	to	“DEF”	or	“NULL”.	So
instead	of	just	deleting	or	setting	an	empty	value,	set	its	value
to	“DEF”	or	“NULL”.	“DEF”	means	that	it	will	use	the	parameter
default	value.	For	number	values	instead	of	removing	or
commenting	them	out,	you	might	change	to	their	default	value
instead.
	
Also	check	this	FAQ	if	you	made	a	recent	upgrade	but	still
seems	that	the	old	version	is	running.
If	still	doesn’t	work,	you	should	check	from	another	PC	(to	make
sure	that	nothing	is	preinstalled/cached	on	your	PC).
If	still	doesn’t	work,	send	a	detailed	log	to	Mizutech	support.
	

How	to	upgrade	to	a	newer	version	of	the
webphone?

First	you	should	backup	your	existing	webphone	folder.
Extract	the	zip	supplied	by	Mizutech	and	replace	all	the	files	in
your	webphone	folder	with	the	new	content,	but	make	sure	to:
-preserve	the	settings:	if	you	have	set	the	webphone
configuration	to	the	webphone_api.js	parameters,	make	sure	to
set	them	also	in	the	new	file
-don’t	overwrite	other	files	where	you	made	changes	if	any	(for

this	reason	it	is	not	recommended	to	make	any	changes	in	the
webphone	files)
	
Although	the	webphone_js.api	file	is	rarely	changed,	we	don’t
recommend	writing	code	in	this	file.	Use	your	separate	js	files
for	your	project	and	just	include	the	webphone_api.js	instead	of
using	it	for	custom	code.
	
Also	make	sure	to	adjust	the	minserviceversion	if	you	have	this
set	to	any	value,	otherwise	you	might	have	to	upgrade	the	NS
service	manually	or	the	new	webphone	will	continue	to	use	the
old	version	(which	is	not	a	problem	most	of	the	time,	but	we
don’t	recommend	to	use	very	old	outdated	versions).
	
Note:	new	versions	of	the	webphone	is	always	backward
compatible	and	backward	API	compatibility	is	always	ensured
except	occasional	minor/compatible	changes	so	you	can
upgrade	without	any	changes	in	your	code.	However	each	you
version	contains	changes	in	the	VoIP	engines	so	you	should
always	verify	if	it	fulfills	your	needs	and	downgrade	to	the
previous	version	if	you	encounter	any	issues	(Then	you	might
try	the	upcoming	release	again	to	see	if	your	issue	were	fixed).
	

I	got	an	upgrade	for	my	feature/issue	request,
but	nothings	seems	to	be	changed

Make	sure	that	you	are	actually	using	the	new	version.	Refresh
the	browser	cache	by	pressing	F5	or	Ctrl+F5.	Make	sure	that
you	don’t	have	some	caching	proxy	on	the	path.	A	sure	way	to
bypass	all	caching	is	to	change	the	server	folder	(deploy	in	a
“test2”	directory	and	launch	from	there).	If	you	are	using	the	NS
engine,	then	you	might	need	to	upgrade	the	webphone	service.
	
If	your	webphone	is	using	the	NS	engine,	then	it	might	be
possible	that	the	PC	is	running	an	old	version.	This	can	be
updated	in	the	following	ways:
-manually	as	described	below

-set	the	minserviceversion	parameter.	If	higher	than	the	current
installed	version	then	it	will	ask	the	user	to	upgrade	(one	click
install)
Note:	the	NS	service	version	for	v.1.9	softphone	is	7	(so	you	can	set	the
“minserviceversion”	setting	to	6	to	force	the	latest	version	for	all	users,	but	this	is
already	enforced	by	default)
-auto-upgrade:	the	core	of	the	ns	engine	is	capable	to	auto
upgrade	itself	if	new	versions	are	found	(you	can	disable	this	by
setting	the	“autoupgrade”	parameter	to	6)
(In	the	NS	service	there	is	a	built-in	SSL	certificate	for	localhost.
This	is	also	capable	for	auto-upgrade	when	new	certificates	are
found	unless	you	set	the	“autoupgrade”	to	5)
	
Also	check	this	FAQ	if	your	new	settings	are	not	applied.
	
If	still	doesn’t	work,	you	should	check	from	another	PC	(to	make
sure	that	nothing	is	preinstalled/cached	on	your	PC).
If	still	doesn’t	work,	send	a	detailed	log	to	Mizutech	support.
	

How	to	uninstall	or	(re)install	the	webphone
service

In	some	situation	under	Windows	OS	the	webphone	might	install
an	NT	service	named	“Webphone”	(This	is	the	NS	service	plugin
and	it	is	installed	only	on	user	opt-in)

·									Disabling:	If	you	don’t	wish	to	use	the	NS	engine,	you	can
just	disable	the	service	(set	startup	type	to	Manual	and
Stop	the	service)	or	set	the	enginepriority_ns	to	0

·									Uninstalling:	The	service	has	its	own	uninstaller,	so	you
can	easily	uninstall	it	from	the	Add/Remove	Programs
control	panel.	It	can	be	also	removed	with	the	–uninstall
parameter.	Example:	C:\Program	Files
(x86)\WebPhoneService\WebPhoneService.exe	–uninstall.

·									Re(installing):	The	install	can	be	done	from	the	softphone
skin	by	just	going	to	menu	->	settings	->	advanced
settings	->	sip	settings	->	voip	engine	->	select	the	NS
engine.	That	should	offer	the	download	of	the	new	version
(if	the	service	is	not	already	running,	so	if	you	need	to

install	a	new	version,	then	you	should	uninstall	or	stop	it
first).
You	can	also	(re)install/upgrade	manually	by	running	the
“WebPhoneService_Install.exe”	from	the	webphone\native
folder.	(You	can	also	download	it	from	your	webserver:
http://yourdomain.com/path_to_webphone/native/WebPhoneService_Install.exe
or	from	the	webphone	package	provided	by	mizutech).	Just
run	the	executable	and	it	will	install	the	NS	engine
automatically	(this	should	work	even	if	the	service	is
already	running	as	it	will	automatically	update	your	old
version)

	

How	to	upgrade	from	the	old	java	applet
websipphone?

Note:	this	is	relevant	only	for	our	old	customers	using	the	old
java	applet	based	webphone.
	
This	new	webphone	has	an	easy	to	use	API,	however	if	you	wish
to	keep	your	old	code,	you	can	do	so	with	minimal	changes	as
we	created	a	compatibility	layer	for	your	convenience.	Follow
the	next	steps	to	upgrade	to	our	new	webphone:
	
1.	The	root	folder	of	the	new	webphone	is	the	folder,	in	which
"webphone_api.js"	and	"softphone.html"	files	are	located.
2.	Copy	the	contents	of	the	new	webphone	root	folder,	in	the
same	folder	where	the	old	webphone's	.html	file	is	(merge
"images"	and	"js"	folders,	if	asked	upon	copy	process).
3.	In	the	<head>	section	of	the	.html	file,	where	the	old
webphone	is,	replace	line:
<script	type="text/JavaScript"	src="js/wp_common.js">
</script>"
with	the	following	lines:
<script	type="text/JavaScript"	src="webphone_api.js">
</script>
<script	type="text/JavaScript"	src="oldapi_support.js">
</script>

http://yourdomain.com/path_to_webphone/native/WebPhoneService_Install.exe
https://www.mizu-voip.com/Software/Softphones/VoIPApplet.aspx

	
Note:		Don't	remove	or	add	any	webphone	related	Javascript	file
imports.
"jquery-1.8.3.min.js	"	file	will	be	imported	twice,	but	that	is	how
it	supposed	to	be,	in	order	for	the	upgrade	to	work	correctly.
	
For	old	webphone	customers:	please	note	that	this	new
webphone	is	a	separate	product	and	purchase	or	upgrade	cost
might	be	required.	The	old	java	applet	webphone	have	been
renamed	to	“VoIP	Applet”	and	we	will	continue	to	fully	support
it.	More	details	can	be	found	in	the	wiki.
	

Auto-provisioning
Auto-provisioning	or	auto-configuration	is	a	simple	way	to
configure	IP-phones	for	SIP	servers	used	on	local	LAN.
The	exact	same	behavior	can	be	easily	achieved	by	using	the
webphone	with	dynamic	parameters.
First	you	should	set	the	parameters	common	for	all	instances
(all	users)	on	your	webserver	in	the	webphone_api.js	file.
Then	you	just	have	to	set	account	related	settings	(per	user
settings)	at	runtime	using	one	of	the	method	specified	in	the
Parameters	chapter	(by	URL,	via	a	server	API	by
scurl_setparameters,	or	from	javascript	by	the	setparameter
API).
	
How	to	translate?
The	web	sip	phone	can	be	easily	localized	for	multiple
languages.
The	"language"		parameter,	is	a	2	character	language	code
string,	for	example:		"en"	for	English	and	"hu"	for	Hungarian.
	
To	add	another	language,	just	take	the	list	of	English	strings
from	stringres.js,	translate	them	to	the	desired	language	and
add	an	underscore	followed	by	the	two	character	language	code
suffix,	to	every	string	entry	like	below:
Desired	language:	Italian

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=Webphone+upgrade

Language	code	will	be:	it
-	set	the	language	API	parameter:		language:	'it',
-	after	translating	all	strings	from	English		to	Italian,	copy	them
back	to	stringres.js	adding	the	"_it"	suffix:
String	resource	example:
For	english:	my_page_title:	'Phone',
For	italian:	my_page_title_it:	'Telefono',
	
Contact	support	if	you	have	any	difficulties	with	this.	We	will
send	you	the	file	to	be	translated	and	once	you	translate	it,	we
will	apply	to	your	webphone	build.
	
How	to	add	a	color	theme?
Webphone	comes	with	a	few	prebuilt	skins,	which	can	be
changed	from	Settings	->	Theme.
The	look	and	feel	of	the	webphone	skin	can	further	be
customized	by	altering	any	of	the	predefined	themes	found	in:
js\softphone\themes.js.
Open	the	themes.js	file	(it	is	located	in	webphone/js/softphone
folder)	with	your	favorite	text	editor.
In	the	"themelist"	variable	are	stored	the	current	webphone
themes,	you	can	edit	for	example	the	theme_1	after	your	needs.
Please	note	that	the	theme_0	(default	theme)	can't	be	modified
from	this	file.
From	the	variables	names	should	be	obvious	they	meaning	(bg	-
means	background),	the	colors	are	defined	in	RGB	hex.

mainlayout.css:	color	to	replace:	#1d1d1d	with	urlparam:	bgcolor
wphone_1.0.css:	color	to	replace:	#333	with	urlparam:	buttoncolor
wphone_1.0.css:	color	to	replace:	#373737	with	urlparam:	buttonhover
wphone_1.0.css:	color	to	replace:	#22aadd	with	urlparam:	tabselectedcolor
mainlayout.css:	color	to	replace:	#31b6e7	with	urlparam:	fontctheme
mainlayout.css:	color	to	replace:	#ffffff	with	urlparam:	fontcwhite
wphone_1.0.css:	color	to	replace:	sans-serif	with	urlparam:	fontfamily

After	you	modify	a	variables	value,	you	need	to	reload	your
webphone	otherwise	the	modifications	will	not	any	effect.
You	will	also	need	to	set	the	“colortheme”	parameter	to	match
your	theme	index.
	
You	can	create	new	themes	easily	by	searching	for	existent

https://www.google.com/search?q=dialer&source=lnms&tbm=isch&sa=X

dialer	skins	and	after	you	find	one	that	it	is	close	to	your	needs
just	pick	the	preferred	colors
using	a	software	like	Color	Pic	or	you	can	search	for	a	color
matching	tool	to	help	you	in	building	better	color	schemes.

How	to	use	the	webphone	via	URL	parameters?
The	webphone	can	load	its	settings	also	from	the	webpage	URL
and	perform	various	actions	such	as	initiate	a	call.	All	the	listed
parameters	can	be	used,	prefixed	with	“wp_”.
Example	to	trigger	a	call	with	the	softphone	by	html	url
parameters:
http://www.yourwebsite.com/webphonedir/softphone.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
Example	to	trigger	a	call	with	the	click	to	call	by	html	url
parameters:
http://www.yourwebsite.com/webphonedir/click2call_example.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
Example	trigger	chat	by	html	parameters
http://www.yourwebsite.com/webphonedir/softphone.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_sendchat=TEXT&wp_to=DESTINATION&wp_autoaction=2
Note:	you	should	use	clear	password	only	if	the	account	is
locked	on	your	server	(can’t	call	costly	outside	numbers).
Otherwise	you	should	pass	it	encrypted	or	use	MD5	instead.
See	also	click	to	call.
	

Click	to	call	from	email	signature
Just	set	your	phone	number	in	your	email	signature	as	a	link
(URL	anchor)	to	the	webphone	click	to	call:
http://www.yourwebsite.com/webphonedir/click2call_example.html?
wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=YOURNUMBER
In	this	way	the	phone	number	in	your	email	signature	will
become	a	clickable	link	which	will	trigger	the	webphone	and	will
call	your	number	automatically	on	SIP.
Instead	of	the	click2call_example.html,	you	can	also	use	the
softhone.html	(or	your	custom	webphone	html).
	

http://www.iconico.com/colorpic/
https://www.google.com/?gws_rd=ssl#q=color+matching+tool
http://www.yourwebsite.com/webphonedir/softphone.html?wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
http://www.yourwebsite.com/webphonedir/click2call_example.html?wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=CALLEDNUMBER&wp_autoaction=1
http://www.yourwebsite.com/webphonedir/click2call_example.html?wp_serveraddress=YOURSIPDOMAIN&wp_username=USERNAME&wp_password=PASSWORD&wp_callto=YOURNUMBER

For	account	username/password	you	should	just	create	a	special
extension	on	your	SIP	server	which	is	not	authenticated	and
allows	unrestricted	calls	to	local	extensions	only	(not	to
outbound/paid).
	
More	details	about	click	to	call	can	be	found	here.
	

How	to	manage	multiple	lines?
Multi-line	means	the	capability	to	handle	more	than	one	call	at
the	same	time	(multiple	channels).
	
By	default	you	don't	need	to	do	anything	to	have	multi-line
functionality	as	this	is	managed	automatically	with	each	line	on
the	first	“free”	line.
If	you	have	multiple	ongoing	calls,	then	the	active	call	will	be
the	last	one	you	make	or	pickup.
	
User	interface:
Multi	line	functionality	is	enabled	by	default	in	the	webphone.
Once	the	enduser	initiate	or	receive	a	second	call,	the
webphone	will	automatically	switch	to	multi-line	mode.
If	you	are	using	the	softphone	skin	(the	softphone.html)	its	user
interface	will	display	the	separate	calls	in	separate	tabs,	so	the
user	can	easily	switch	between	the	active	calls.
	
Actually	the	followings	user	interface	elements	are	related	to	to
multi	line:

·									on	the	Call	page,	once	you	have	a	call,	you	can	initiate
more	calls	from	Menu	->	New	call

·									for	every	call	session,	a	line	button	will	appear	at	the	top
of	the	page	so	the	users	can	change	the	active	line	from
there

·									the	line	buttons	for	managing	call	sessions,	will	also
appear	in	case	another	incoming	call	arrives

·									you	can	easily	transfer	the	call	from	line	A	to	line	B
·									you	can	easily	interconnect	the	active	lines	(create

conference	calls)
	
Disable	multi-line
You	can	disable	multi-lien	functionality	with	the	following
settings:
-set	the	“multilinegui”	webphone	parameter	to	0
-set	the	"rejectonbusy"	setting	to	"true"
	
Other	related	parameters	are	the	"automute"	and	"autohold"
settings.
	
JavaScript	library/API
When	the	webphone	is	used	as	an	SDK,	the	lines	can	be
explicitly	managed	by	calling	the	setline/getline	API	functions:
-	webphone_api.setline(line);	//	Will	set	the	current	line.	Just	set
it	before	other	API	calls	and	the	next	API	calls	will	be	applied	for
the	selected	line
-	webphone_api.getline();		//Will	return	the	current	active	line
number.	This	should	be	the	line	which	you	have	set	previously
except	after	incoming	and	outgoing	calls	(the	webphone	will
automatically	switch	the	active	line	to	a	new	free	line	for	these
if	the	current	active	line	is	already	occupied	by	a	call)
	
For	example	if	there	are	multiple	calls	in	progress	and	you	wish
to	hangup	one	of	the	calls,	then	just	call	the
webphone_api.setline(X)	before	to	call	webphone_api.hangup().
The	active	line	is	also	switched	automatically	on	new	outgoing
or	incoming	calls	(to	the	line	where	the	new	call	is	handled).
	
Channels
The	following	line	numbers	are	defined:

o			-2:	all	(some	API	calls	can	be	applied	to	all	lines.	For
example	calling	hangup(-2)	will	disconnect	all	current	calls)

o			-1:	current	line	(means	the	currently	selected	line	or
otherwise	the	“best”	line	to	be	used	for	the	respective	API)

o			0:	undefined
o			1:	first	channel

o			2:	second	channel
o			…
o			N:	channel	number	X

	
Some	behaviors	will	automatically	change	when	you	have
multiple	simultaneous	calls.	For	example	the	conference
API/button	will	automatically	interconnect	the	existing	parties	or
the	transfer	API/button	will	transfer	the	call	from	the	current	line
to	the	other	line.
Note:	If	you	use	the	setline()	with	-2	and	-1,	it	will	be
remembered	only	for	a	short	time;	after	that	the	getline()	will
report	the	real	active	line	or	“best”	line.
	
API	usage	example:

webphone_api.call(‘1111’);		//make	a	call
webphone_api.call(‘2222’);		//make	second	call
	
//setup	conference	call	between	all	lines
webphone_api.setline(-2);		//select	all	lines
webphone_api.conference();
	
//disconnect	the	second	call
webphone_api.setline(‘2222’);
webphone_api.hold(true);
	
//put	first	call	on	hold
webphone_api.setline(‘1111’);
webphone_api.hold(true);

	

How	can	I	set	the	engine	to	be	used?
The	best	engine	is	selected	by	the	webphone	automatically
based	on	circumstances	(client	device,	OS,	browser,	network,
server):
However	the	preferred	engine	can	influenced	on	3	levels:
-Choice	presented	to	the	user	in	some	circumstances	on	startup
(This	is	not	always	presented.	The	webphone	will	go	with	the

best	engine	when	there	is	a	definitive	winner,	without	asking
the	user)
-Engine	settings	in	the	user	interface,	so	the	enduser	might
change	its	own	preferred	engine
-Engine	priority	options	in	the	configuration.	You	can	set	this	in
the	“webphone_api.js”	(enginepriority_xxx	settings	as	discussed
in	this	documentation	Parameters	section)
	
There	should	be	very	rare	circumstances	when	the	default
engine	selection	algorithm	should	be	changed.	The	web	sip	lib
always	tries	to	select	the	engine	which	will	disturb	the	user	the
less	(minimizing	required	user	actions)	and	offers	the	best
performance.
For	example	don't	be	inclined	to	disable	Java	for	the	sake	of	its	age.	Users	will	not	be
alerted	to	install	Java	by	default.	However	if	Java	is	already	enabled	in	the	user
browser	then	why	not	to	use	it?	Java	can	offer	native	like	VoIP	capabilities	and	there
should	be	no	reason	to	disable	it.
We	spent	a	considerable	amount	of	work	to	always	select	the
best	possible	engine	in	all	circumstances.	Don't	change	this
unadvisedly,	except	if	you	have	a	good	reason	to	use	a
particular	engine	in	a	controlled	environment.
	

What	are	the	“best”	settings?
This	is	a	question	often	asked	by	our	customers	about	how	to
optimize	the	webphone	library	for	best	call	quality.	The	answer
is	rather	simple	for	this	question:
The	best	settings	are	the	default	settings.	The	default	settings
are	optimized	and	should	be	preferred	in	almost	all	use	cases
except	if	you	have	some	uncommon	needs.	You	should	change
the	default	settings	only	if	you	have	a	good	reason	to	do	so.	See
also	the	“best	codec“	section.
	

How	to	set	the	webphone	parameters
dynamically?

The	easiest	way	to	specify	parameters	for	the	webphone	is	to
just	enter	them	in	the	webphone_api.js	file	(parameters	variable

at	the	top	of	the	file).
However	if	you	need	to	integrate	the	webphone	with	your	server
(for	example	with	a	CRM)	you	might	have	to	set	different
parameters	regarding	the	session	(for	example	different	user
credentials	based	on	the	currently	logged-in	user).	There	are	3
ways	to	do	this:
	
1.							With	the	client	side	JavaScript	using	the	webphone
setparameter	API	(get	the	parameters	from	you	webapp	or
via	ajax	requests)

2.							Just	generate	the	URL	(iframe	or	link)	dynamically	from
your	server	side	scripts	with	the	parameters	set	as	required
(wp_username,	wp_password	and	other	URL	parameters).

3.							Set	the	“scurl_setparameters”	setting	to	point	to	your
server	side	http	api	which	will	have	to	return	the	details
once	called	by	the	webphone.
This	will	be	called	after	"onStart"	event	and	can	be	used	to
provision	the	webphone	from	server	API.	The	answer	should
contain	parameters	as	key/value	pairs,	ex:
username=xxx,password=yyy.

	
See	the	beginning	of	the	parameters	section	for	all	other
possibilities.
	

How	to	get	the	logs?
The	webphone	can	generate	detailed	logs	for	debugging
purposes.
For	this	just	set	the	“loglevel”	setting	to	5	(or	enable	logs	from
the	user	interface	if	any;	this	is	already	set	to	5	by	default	in	the
demo	versions).
Once	enabled,	you	can	see	the	logs	in	the	browser	console	or	in
the	softphone	skin	help	menu	(if	you	are	using	this	GUI).	If	the
Java	engine	is	being	used,	then	the	logs	will	appear	also	in	the
Java	console.	You	can	also	use	the	API:	getlogs()	and	the
onLog(callback)	functions.
When	contacting	Mizutech	support	with	any	issue,	please

https://www.mizu-voip.com/Support/Wiki/tabid/99/Default.aspx?topic=WebPhone+Logs

always	attach	the	detailed	logs:	just	send	the	output	of	the
browser	console	(or	you	can	find	the	same	from	the	softphone
skin	help	menu	if	you	are	using	the	softphone.html).
On	Firefox	and	Chrome	you	can	access	the	logs	with	the
Ctrl+Shift+J	shortcut	(or	Cmd+Shift+J	on	a	Mac).	On	Edge	and
Internet	Explorer	the	shortcut	key	is	F12.
	
WebRTC	engine	detailed	logs

If	the	webphone	is	using	the	WebRTC	engine	then	the	browser	console	output
will	contain	the	most	important	logs.

If	you	are	using	the	softphone	skin,	then	better	if	you	check	the	logs	from	the
skin	help	menu	because	the	number	of	lines	are	limited	in	the	browser	console.

If	you	have	voice	issues	(no	voce,	one	side	voice,	delays)	then	you	should	get	a
detailed	log.	With	Chrome	this	can	be	done	by	launching	it	like:

"C:\Program	Files	(x86)\Google\Chrome\Application\chrome.exe"	--enable-
logging	--v=4	--vmodule=*libjingle/source/talk/*=4	--vmodule=*media/audio/*=4

Then	you	can	find	the	logs	at:
C:\Users\USER\AppData\Local\Google\Chrome\User	Data\chrome_debug.log
	
Java	engine	detailed	logs

If	the	webphone	is	using	the	Java	engine,	then	a	log	window	will	appear	if	the
“loglevel”	is	set	to	“5”	and	the	“canopenlogview”	to	“true”.
Grab	the	logs	also	from	this	window	(Ctrl+A,	Ctrl+C,	Ctrl+V)	or	from	the	Java
console.

	
NS	engine	detailed	logs

If	the	webphone	library	is	using	the	NS	engine	on	Windows,	then	some	more
detailed	logs	can	be	obtained	from

C:\Program	Files	(x86)\WebPhone_Service\WebPhone_Servicelog.dat
and	C:\Program	Files

(x86)\WebPhone_Service\content\native\webphonelog.dat.
	(C:\Program	Files	(x86)\WebPhone_Service	is	the	default	data	directory	which

might	be	different	on	your	PC.
It	might	be	located	in	the	C:\Users\USER\AppData\Roaming\WebPhone_Service

directory	if	the	account	doesn’t	have	write	access	to	Program	Files).
If	there	is	no	*log.dat	file,	just	send	the	“wphoneout.dat”	file	or	all	the	*.dat

files	if	you	are	not	sure	(from	both	the	app	directory	and	from	/content/native	folder).
	
ERROR	and	WARNING	messages	in	the	log

If	you	set	the	loglevel	higher	than	1	than	you	will	receive	messages	that	are
useful	only	for	debug.
Most	of	ERROR	and	WARNING	message	cannot	be	considered	as	faults	in	this
case.
Some	of	them	will	appear	also	under	normal	circumstances	and	you	should	not
take	special	attention	for	these	messages.	
If	there	are	any	issue	affecting	the	normal	usage,	please	send	the	detailed	logs
to	Mizutech	support	(webphone@mizu-voip.com)	in	a	text	file	attachment.

mailto:webphone@mizu-voip.com

	
Why	I	see	RTP	warning	in	my	server	log

The	webphone	will	send	a	few	(maximum	10)	short	UDP	packets	(\r\n)	to	open
the	media	path	(also	the	NAT	if	any).	
For	this	reason	you	might	see	the	following	or	similar	Asterisk	log	entries:
“WARNING[8860]:	res_rtp_asterisk.c:2019	ast_rtp_read:	RTP	Read	too	short”	or
“Unknown	RTP	Version	1”.	
These	packets	are	simply	dropped	by	Asterisk	which	is	the	expected	behavior.
This	is	not	a	webphone	or	Asterisk	error	and	will	not	have	any	negative	impact
for	the	calls.	You	can	safely	skip	this.
You	might	turn	this	off	by	the	“natopenpackets”	parameter	(set	to	0).	You	might
also	set	the	“keepaliveival”	to	0	and	modify	the	“keepaliveival”	(all	these	might
have	an	impact	on	the	webphone	NAT	traversal	capability).

	
How	to	find	which	engine	was	tried?

To	find	all	engine	related	log,	like	which	engines	are	supported,
selected/recommended	engine,	just	search	for	"engine".
Also,	before	every	engine	start,	all	the	engine	priorities	are	logged,	search	for:
"enginepriority"

	
How	to	find	which	engine	is	was	finally	selected?

To	find	out	which	engine	was	started,	search	for:	"start	engine:"
	
If	WebRTC	engine	is	selected,	how	to	find	the	websocket	URL,	sip	server	and	ice
settings.

Search	for:	"Webrtc	connection	details:".	There	you	will	find	all	the	above
details.

	
When	sending	logs	to	Mizutech	support,	please	attach	them	as
text	files	(don’t	insert	in	email	body).

Resources
Homepage:	https://www.mizu-
voip.com/Software/WebPhone.aspx
Download:	https://www.mizu-
voip.com/Portals/0/Files/webphone.zip
Pricing:	https://www.mizu-
voip.com/Support/Webphonepricing.aspx
Contact	webphone@mizu-voip.com
	
	
Copyright	©	2008-2017	Mizutech	SRL

https://www.mizu-voip.com/Software/WebPhone.aspx
https://www.mizu-voip.com/Portals/0/Files/webphone.zip
https://www.mizu-voip.com/Support/Webphonepricing.aspx
mailto:webphone@mizu-voip.com

