
Show	All

Microsoft	Office	Objects
			

AnswerWizard	 AnswerWizardFiles
Assistant
Balloon
BalloonCheckboxes
BalloonCheckbox

BalloonLabels
BalloonLabel

COMAddIns
COMAddIn

CommandBarButton
CommandBarControl

CommandBarComboBox
CommandBarControl

CommandBarPopup
CommandBarControl

DocumentProperties
DocumentProperty

FileDialog
FileDialogFilters
FileDialogFilter

FileDialogSelectedItems
FileSearch
FileTypes
FoundFiles
PropertyTests
PropertyTest

SearchFolders
ScopeFolder
ScopeFolders

SearchScopes
SearchScope
ScopeFolder
ScopeFolders

HTMLProject
HTMLProjectItems
HTMLProjectItem

LanguageSettings
MsoEnvelope
CommandBars

NewFile
OfficeDataSourceObject
ODSOColumns
ODSOColumn

ODSOFilters
ODSOFilter

Scripts
Script

SignatureSet
Signature

WebPageFonts
WebPageFont

Legend

		Object	and	collection
		Object	only

What's	New	for	Microsoft	Office
Developers
			

Extensive	changes	have	been	made	to	the	Microsoft	Office	Visual	Basic	object
model	to	support	new	and	improved	features	in	shared	components.	Many
objects,	properties,	methods,	and	events	have	been	added.

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft
Office	development	information,	including	new	technical	articles,	downloads,
samples,	product	news,	and	more.

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=OFFICE&HelpLCID=1033&LinkNum=99000030&Version=0,

New	Language	Elements

The	following	topics	provide	lists	of	language	elements	that	are	new	in	Office:

New	Objects

New	Properties	(by	Object)

New	Properties	(Alphabetic	List)

New	Methods

New	Events

New	Objects
			

Visit	the	Office	Developer	Center	at	MSDN	Online	for	the	latest	Microsoft
Office	development	information,	including	new	technical	articles,	downloads,
samples,	product	news,	and	more.

Objects	that	were	added	to	Visual	Basic	in	Microsoft	Office	are	listed	in	the
following	table.

Objects
FileDialog
FileDialogFilter
FileDialogFilters
FileDialogSelectedItems
FileTypes
MsoEnvelope
NewFile
ODSOColumn
ODSOColumns
ODSOFilter
ODSOFilters
OfficeDataSourceObject
ScopeFolder
ScopeFolders
SearchFolders
SearchScope
SearchScopes
Signature
SignatureSet

http://officeupdate.microsoft.com/office/redirect/10/Helplinks.asp?AppName=OFFICE&HelpLCID=1033&LinkNum=99000030&Version=0,

New	Events
			

New	events	in	Microsoft	Office	are	listed	in	the	following	table.

Events
EnvelopeHide
EnvelopeShow

New	Methods
			

Methods	that	have	been	added	to	existing	objects	in	Microsoft	Office	are	listed
in	the	following	table,	sorted	by	object.

Objects Methods
Assistant DoAlert
FileSearch RefreshScopes

OfficeDataSourceObject
ApplyFilter	

SetSortOrder

ScopeFolder AddToSearchFolders
SignatureSet Commit

New	Properties	(Alphabetic	List)
			

Properties	that	have	been	added	to	existing	objects	in	Microsoft	Office	are	listed
in	the	following	table	(sorted	alphabetically).

Properties
AllowMultiSelect
AttachCertificate
ButtonName
Column
Columns
CommandBars
CompareTo
Comparison
Conjunction
ConnectString
DataSource
DialogType
DisableAskAQuestionDropdown
DisableCustomize
ExpireDate
Extensions
FileTypes
FilterIndex
Filters
InitialFileName
InitialView
Introduction
IsCertificateExpired
IsCertificateRevoked

Issuer
IsValid
Mask
Path
Picture
RowCount
ScopeFolder
ScopeFolders
SearchFolders
SearchScopes
SelectedItems
SignDate
Signer
Table

New	Properties	(by	Object)
			

Properties	that	have	been	added	to	existing	objects	in	Microsoft	Office	are	listed
in	the	following	table	(sorted	by	object	name).

Objects Properties

CommandBarButton Mask
Picture

CommandBars
DisableAskAQuestionDropdown	

DisableCustomize

FileDialog

AllowMultiSelect	

ButtonName

DialogType

FilterIndex

Filters

InitialFileName

InitialView

SelectedItems

FileDialogFilter Extensions

FileSearch

FileTypes	

SearchFolders

SearchScopes

MsoEnvelope
CommandBars	

Introduction

ODSOFilter

Column	

CompareTo

Comparison

Conjunction

OfficeDataSourceObject

Columns	

ConnectString

DataSource

Filters

RowCount

Table

ScopeFolder
Path	

ScopeFolders

SearchScope ScopeFolder

Signature

AttachCertificate	

ExpireDate

IsCertificateExpired

IsCertificateRevoked

Issuer

IsValid

SignDate

Signer

AnswerWizard	Object
									
AnswerWizard	(AnswerWizardFiles)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	the	Answer	Wizard	in	a	Microsoft	Office	application.	There’s	only
one	Answer	Wizard	per	application,	and	all	changes	to	the	AnswerWizard	or
the	AnswerWizardFiles	collection	affect	the	active	Office	application
immediately.

Using	the	AnswerWizard	Object

Use	the	ClearFileList	method	to	remove	all	entries	from	the	list	of	files
available	to	the	current	Answer	Wizard.	Using	this	method	ensures	that	the
default	files	available	to	the	Office	host	application	are	no	longer	accessible
through	the	Answer	Wizard,	such	as	when	you’re	replacing	the	Answer	Wizard
files	with	custom	.AW	files.	The	following	example	clears	the	file	list	for	the
default	Answer	Wizard	and	then	adds	two	files	to	the	custom	Answer	Wizard.

customAnswerWizard.ClearFileList

customAnswerWizard.Files.Add	("c:\awfiles\custom_1.aw")

customAnswerWizard.Files.Add	("c:\awfiles\custom_2.aw")

Use	the	ResetFileList	method	to	restore	the	list	of	files	for	the	current	Answer
Wizard	to	the	default	list	of	files	for	the	Office	host	application.	You	can	also
establish	a	custom	default	file	list	in	the	Windows	registry	by	adding	the	names
of	the	custom	files	to	the	appropriate	registry	key;	the	files	specified	in	that
registry	key	will	then	be	restored	when	ResetFileList	is	called.	This	example
resets	the	file	list	for	the	current	Answer	Wizard.

customAnswerWizard.ResetFileList

Use	the	Files	property	to	get	the	collection	of	Answer	Wizard	file	references.
The	Files	property	returns	a	collection	of	strings	that	refer	to	.AW	files.	The
following	example	returns	the	AnswerWizardFiles	collection	and	displays	the
file	count	in	a	message	box.

Dim	customAnswerWizardFiles	As	AnswerWizardFiles

Set	customAnswerWizardFiles	=	Application.AnswerWizard.Files

MsgBox	customAnswerWizardFiles.Count

AnswerWizardFiles	Collection	Object
									
AnswerWizard	(AnswerWizardFiles)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

A	collection	of	references	to	Answer	Wizard	files.	The	AnswerWizardFiles
collection	contains	all	of	the	Answer	Wizard	files	(with	the	file	name	extension
.AW)	available	to	the	active	Microsoft	Office	application.

Using	the	AnswerWizardFiles	Collection

Use	the	Files	property	to	get	the	collection	of	Answer	Wizard	file	references.
The	Files	property	returns	a	collection	of	strings	that	refer	to	.AW	files.	The
following	example	returns	the	AnswerWizardFiles	collection	and	displays	the
file	count	in	a	message	box.

Dim	customAnswerWizardFiles	As	AnswerWizardFiles

Set	customAnswerWizardFiles	=	Application.AnswerWizard.Files

MsgBox	customAnswerWizardFiles.Count

Use	the	Add	method	to	make	additional	files	available	to	the	current	Answer
Wizard.	The	following	example	adds	the	file	Custom_1.aw	to	the	list	of	Answer
Wizard	files	in	the	active	Office	application.

Dim	customAnswerWizard	As	AnswerWizard

Set	customAnswerWizard	=	Application.AnswerWizard

customAnswerWizard.Files.Add	("c:\awfiles\custom_1.aw")

Use	the	Item	property	to	get	the	name	of	an	existing	Answer	Wizard	file
reference.	The	following	example	displays	a	message	box	containing	the	name
of	the	file	referred	to	by	Item(1).

MsgBox	customAnswerWizard.Files.Item(1)

Assistant	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	the	Microsoft	Office	Assistant.

Using	the	Assistant	Object

Use	the	Assistant	property	to	return	the	Assistant	object.	There	isn't	a	collection
for	the	Assistant	object;	only	one	Assistant	object	can	be	active	at	a	time.	Use
the	Visible	property	to	display	the	Assistant,	and	use	the	On	property	to	enable
the	Assistant.

Remarks

The	default	Assistant	is	Rocky.	To	select	a	different	Assistant	programmatically,
use	the	FileName	property.

The	following	example	displays	and	animates	the	Assistant.

With	Assistant

				.Visible	=	True

				.Animation	=	msoAnimationGreeting

End	With

Balloon	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	the	balloon	where	the	Office	Assistant	displays	information.	A
balloon	can	contain	controls	such	as	check	boxes	and	labels.

Using	the	Balloon	Object

Use	the	NewBalloon	property	to	return	a	Balloon	object.	There	isn't	a	collection
for	the	Balloon	object;	only	one	balloon	can	be	visible	at	a	time.	However,	it's
possible	to	define	several	balloons	and	display	any	one	of	them	when	needed.
For	more	information,	see	"Defining	and	Reusing	Balloons"	later	in	this	topic.

Use	the	Show	method	to	make	the	specified	balloon	visible.	Use	the	Callback
property	to	run	procedures	based	on	selections	from	modeless	balloons	(balloons
that	remain	visible	while	a	user	works	in	the	application).	Use	the	Close	method
to	close	modeless	balloons.

The	following	example	creates	a	balloon	that	contains	tips	for	saving	entered
data.

With	Assistant.NewBalloon

				.BalloonType	=	msoBalloonTypeBullets

				.Icon	=	msoIconTip

				.Button	=	msoButtonSetOk

				.Heading	=	"Tips	for	Saving	Information."

				.Labels(1).Text	=	"Save	your	work	often."

				.Labels(2).Text	=	"Install	a	surge	protector."

				.Labels(3).Text	=	"Exit	your	application	properly."

				.Show

End	With

Defining	and	Reusing	Balloons

You	can	reuse	balloon	objects	you've	already	created	by	assigning	the	object	to	a
variable	and	displaying	the	variable	when	you	need	it.	This	example	defines
balloon1	and	balloon2	separately	so	that	they	can	be	reused.

Set	balloon1	=	Assistant.NewBalloon

balloon1.Heading	=	"First	balloon"

Set	balloon2	=	Assistant.NewBalloon

balloon2.Heading	=	"Second	balloon"

balloon1.Show

balloon2.Show

balloon1.Heading	=	"First	balloon,	new	heading"

balloon1.Show

Alternatively,	instead	of	using	separate	variables,	you	can	place	the	balloon
object	into	an	array.

BalloonCheckBox	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	a	check	box	in	the	Office	Assistant	balloon.	The	BalloonCheckBox
object	is	a	member	of	the	BalloonCheckBoxes	collection.

Using	the	BalloonCheckBox	Object

Use	CheckBoxes(index),	where	index	is	a	number	from	1	through	5,	to	return	a
single	BalloonCheckBox	object.	There	can	be	up	to	five	check	boxes	in	one
balloon;	each	check	box	appears	when	a	value	is	assigned	to	its	Text	property.

The	following	example	creates	a	balloon	with	a	heading,	text,	and	three	region
choices.	The	user	selects	one	or	more	check	boxes	and	clicks	OK.	The	example
calls	the	specified	procedure	or	procedures.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	your	region"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Button	=	msoButtonSetOkCancel

				.Show

				If	.CheckBoxes(1).Checked	Then

								runregion1

				End	If

				If	.CheckBoxes(2).Checked	Then

								runregion2

				End	If

				If	.CheckBoxes(3).Checked	Then

								runregion3

				End	If

End	With

Remarks

Balloon	check	boxes	display	the	user's	choices	until	the	user	dismisses	the
balloon.	You	can	use	balloon	labels	to	return	a	number	corresponding	to	the
user's	choice	in	the	Select	method	as	soon	as	the	user	clicks	the	button	beside	the
label.	To	pass	values	to	the	Select	method	based	on	the	user's	choice,	you	must
have	the	balloon	type	set	to	msoBalloonTypeButtons.

BalloonCheckBoxes	Collection	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

A	collection	of	BalloonCheckBox	objects	that	represent	all	the	check	boxes	in
the	Office	Assistant	balloon.

Using	the	BalloonCheckBoxes	Collection

Use	the	CheckBoxes	property	to	return	the	BalloonCheckBoxes	collection.

Use	CheckBoxes(index),	where	index	is	a	number	from	1	through	5,	to	return	a
single	BalloonCheckBox	object.	You	can	specify	up	to	five	check	boxes	(and
five	labels)	per	balloon;	each	check	box	appears	when	a	value	is	assigned	to	its
Text	property.	If	you	specify	more	than	five	check	boxes,	a	run-time	error
occurs.

The	following	example	creates	a	balloon	with	a	heading,	text,	and	three	region
choices.	When	the	user	selects	one	or	more	check	boxes	and	then	clicks	OK,	the
specified	procedure	or	procedures	are	called.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	your	region"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Button	=	msoButtonSetOkCancel

				.Show

				If	.CheckBoxes(1).Checked	Then

								runregion1

				End	If

				If	.CheckBoxes(2).Checked	Then

								runregion2

				End	If

				If	.CheckBoxes(3).Checked	Then

								runregion3

				End	If

End	With

You	cannot	add	check	boxes	to	or	remove	check	boxes	from	the
BalloonCheckBoxes	collection	after	the	balloon	has	been	displayed.

Remarks

Balloon	check	boxes	display	the	user's	choices	until	the	user	dismisses	the
balloon.	You	can	use	balloon	labels	in	conjunction	with	the	Select	method	to
return	a	number	corresponding	to	the	user's	choice	of	check	boxes	as	soon	as	the
user	clicks	the	button	beside	the	label.	To	pass	values	to	the	Select	method	based
on	the	user's	choice,	you	must	have	the	balloon	type	set	to
msoBalloonTypeButtons.

BalloonLabel	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	a	label	in	the	Office	Assistant	balloon.	The	BalloonLabel	object	is	a
member	of	the	BalloonLabels	collection.

Using	the	BalloonLabel	Object

Use	Labels(index),	where	index	is	a	number	from	1	through	5,	to	return	a
BalloonLabel	object.	There	can	be	up	to	five	labels	on	one	balloon;	each	label
appears	when	a	value	is	assisgned	to	its	Text	property.

The	following	example	creates	a	balloon	that	asks	the	user	to	click	the	label
corresponding	to	his	or	her	age.

With	Assistant.NewBalloon

				.Heading	=	"Check	Your	Age	Group."

				.Labels(1).Text	=	"Under	30."

				.Labels(2).Text	=	"30	to	50."

				.Labels(3).Text	=	"Over	50."

				.Text	=	"Which	of	the	following	"	_

								&	.Labels.Count	&	"	choices	apply	to	you?"

				.Show

End	With	

Remarks

Balloon	check	boxes	display	the	user's	choices	until	he	or	she	dismisses	the
balloon.	You	can	use	balloon	labels	to	return	a	number	corresponding	to	the
user's	choice	in	the	Select	method	as	soon	as	the	user	clicks	the	button	beside	the
label.	To	pass	values	to	the	Select	method	based	on	the	user's	choice,	you	must
have	the	balloon	type	be	set	to	msoBalloonTypeButtons.

BalloonLabels	Collection	Object
									
Assistant	 Balloon

BalloonCheckBoxes	(BalloonCheckBox)
BalloonLabels	(BalloonLabel)

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

A	collection	of	BalloonLabel	objects	that	represent	all	the	labels	in	the	Office
Assistant	balloon.

Using	the	BalloonLabels	Collection

Use	the	Labels	property	to	return	the	BalloonLabels	collection.

Use	Labels(index),	where	index	is	a	number	from	1	through	5,	to	return	a
BalloonLabel	object.	You	can	specify	up	to	five	labels	(and	five	check	boxes)
per	balloon;	each	label	appears	when	a	value	is	assisgned	to	its	Text	property.	If
you	specify	more	than	five	labels,	a	run-time	error	occurs.

The	following	example	creates	a	balloon	containing	three	choices.	The	variable
returnValue	is	set	to	the	return	value	of	the	Show	method,	which	will	be	1,	2,
or	3,	corresponding	to	the	label	the	user	clicks.	The	example	returns	the	value	of
the	variable	returnValue,	which	you	can	either	pass	to	another	procedure	or	use
in	a	Select	Case	statement.

Set	b	=	Assistant.NewBalloon

With	b

				.Heading	=	"This	is	my	heading"

				.Text	=	"Select	one	of	these	things:"

				.Labels(1).Text	=	"Choice	One"

				.Labels(2).Text	=	"Choice	Two"

				.Labels(3).Text	=	"Choice	Three"

				returnValue	=	.Show

End	With

Remarks

Balloon	check	boxes	display	the	user's	choices	until	the	user	dismisses	the
balloon.	You	can	use	balloon	labels	to	return	a	number	corresponding	to	the
user's	choice	in	the	Select	method	as	soon	as	the	user	clicks	the	button	beside	the
label.	To	pass	values	to	the	Select	method	based	on	the	user's	choice,	you	must
have	the	balloon	type	set	to	msoBalloonTypeButtons.

COMAddIn	Object
									
COMAddIns	(COMAddIn)

Represents	a	COM	add-in	in	the	Microsoft	Office	host	application.	The
COMAddIn	object	is	a	member	of	the	COMAddIns	collection.

Using	the	COMAddIn	Object

Use	COMAddIns.Item(index),	where	index	is	either	an	ordinal	value	that
returns	the	COM	add-in	at	that	position	in	the	COMAddIns	collection,	or	a
String	value	that	represents	the	ProgID	of	the	specified	COM	add-in.	The
following	example	displays	a	COM	add-in’s	description	text	in	a	message	box.

MsgBox	Application.COMAddIns.Item("msodraa9.ShapeSelect").Description

Use	the	ProgID	property	of	the	COMAddin	object	to	return	the	programmatic
identifier	for	a	COM	add-in,	and	use	the	Guid	property	to	return	the	globally
unique	identifier	(GUID)	for	the	add-in.	The	following	example	displays	the
ProgID	and	GUID	for	COM	add-in	one	in	a	message	box.

MsgBox	"My	ProgID	is	"	&	_

				Application.COMAddIns(1).ProgID	&	_

				"	and	my	GUID	is	"	&	_

				Application.COMAddIns(1).Guid

Use	the	Connect	property	to	set	or	return	the	state	of	the	connection	to	a
specified	COM	add-in.	The	following	example	displays	a	message	box	that
indicates	whether	COM	add-in	one	is	registered	and	currently	connected.

If	Application.COMAddIns(1).Connect	Then

				MsgBox	"The	add-in	is	connected."

Else

MsgBox	"The	add-in	is	not	connected."

End	If

COMAddIns	Collection	Object
									
COMAddIns	(COMAddIn)

A	collection	of	COMAddIn	objects	that	provide	information	about	a	COM	add-
in	registered	in	the	Windows	registry.

Using	the	COMAddIns	Collection

Use	the	COMAddIns	property	of	the	Application	object	to	return	the
COMAddIns	collection	for	a	Microsoft	Office	host	application.	This	collection
contains	all	of	the	COM	add-ins	that	are	available	to	a	given	Office	host
application,	and	the	Count	property	of	the	COMAddins	collection	returns	the
number	of	available	COM	add-ins,	as	in	the	following	example.

MsgBox	Application.COMAddIns.Count

Use	the	Update	method	of	the	COMAddins	collection	to	refresh	the	list	of
COM	add-ins	from	the	Windows	registry,	as	in	the	following	example.

Application.COMAddIns.Update

Use	COMAddIns.Item(index),	where	index	is	either	an	ordinal	value	that
returns	the	COM	add-in	at	that	position	in	the	COMAddIns	collection,	or	a
String	value	that	represents	the	ProgID	of	the	specified	COM	add-in.	The
following	example	displays	a	COM	add-in’s	description	text	and	ProgID
("msodraa9.ShapeSelect")	in	a	message	box.

MsgBox	Application.COMAddIns.Item("msodraa9.ShapeSelect").Description

Show	All

CommandBar	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	a	command	bar	in	the	container	application.	The	CommandBar
object	is	a	member	of	the	CommandBars	collection.

Using	the	CommandBar	Object

Use	CommandBars(index),	where	index	is	the	name	or	index	number	of	a
command	bar,	to	return	a	single	CommandBar	object.	The	following	example
steps	through	the	collection	of	command	bars	to	find	the	command	bar	named
"Forms."	If	it	finds	this	command	bar,	the	example	makes	it	visible	and	protects
its	docking	state.	In	this	example,	the	variable	cb	represents	a	CommandBar
object.

foundFlag	=	False

For	Each	cb	In	CommandBars

				If	cb.Name	=	"Forms"	Then

								cb.Protection	=	msoBarNoChangeDock

								cb.Visible	=	True

								foundFlag	=	True

				End	If

Next	cb

If	Not	foundFlag	Then

				MsgBox	"The	collection	does	not	contain	a	Forms	command	bar."

End	If

You	can	use	a	name	or	index	number	to	specify	a	menu	bar	or	toolbar	in	the	list
of	available	menu	bars	and	toolbars	in	the	container	application.	However,	you
must	use	a	name	to	specify	a	menu,	shortcut	menu,	or	submenu	(all	of	which	are
represented	by	CommandBar	objects).	This	example	adds	a	new	menu	item	to

the	bottom	of	the	Tools	menu.	When	clicked,	the	new	menu	item	runs	the
procedure	named	"qtrReport."

Set	newItem	=	CommandBars("Tools").Controls.Add(Type:=msoControlButton)

With	newItem

				.BeginGroup	=	True

				.Caption	=	"Make	Report"

				.FaceID	=	0

				.OnAction	=	"qtrReport"

End	With

If	two	or	more	custom	menus	or	submenus	have	the	same	name,
CommandBars(index)	returns	the	first	one.	To	ensure	that	you	return	the	correct
menu	or	submenu,	locate	the	pop-up	control	that	displays	that	menu.	Then	apply
the	CommandBar	property	to	the	pop-up	control	to	return	the	command	bar	that
represents	that	menu.

Assuming	that	the	third	control	on	the	toolbar	named	"Custom	Tools"	is	a	pop-
up	control,	this	example	adds	the	Save	command	to	the	bottom	of	that	menu.

Set	viewMenu	=	CommandBars("Custom	Tools").Controls(3)

viewMenu.Controls.Add	ID:=3				'ID	of	Save	command	is	3

Show	All

CommandBarButton	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

Represents	a	button	control	on	a	command	bar.

Using	the	CommandBarButton	Object

Use	Controls(index),	where	index	is	the	index	number	of	the	control,	to	return	a
CommandBarButton	object.	(The	Type	property	of	the	control	must	be
msoControlButton.)

Assuming	that	the	second	control	on	the	command	bar	named	"Custom"	is	a
button,	the	following	example	changes	the	style	of	that	button.

Set	c	=	CommandBars("Custom").Controls(2)

With	c

If	.Type	=	msoControlButton	Then

				If	.Style	=	msoButtonIcon	Then

								.Style	=	msoButtonIconAndCaption

				Else

								.Style	=	msoButtonIcon

				End	If

End	If

End	With

You	can	also	use	the	FindControl	method	to	return	a	CommandBarButton
object.

Show	All

CommandBarComboBox	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

Represents	a	combo	box	control	on	a	command	bar.

Using	the	CommandBarComboBox	Object

Use	Controls(index),	where	index	is	the	index	number	of	the	control,	to	return	a
CommandBarComboBox	object.	(The	Type	property	of	the	control	must	be
msoControlEdit,	msoControlDropdown,	msoControlComboBox,
msoControlButtonDropdown,	msoControlSplitDropdown,
msoControlOCXDropdown,	msoControlGraphicCombo,	or
msoControlGraphicDropdown.)

The	following	example	adds	two	items	to	the	second	control	on	the	command
bar	named	"Custom,"	and	then	it	adjusts	the	size	of	the	control.

Set	combo	=	CommandBars("Custom").Controls(2)

With	combo

				.AddItem	"First	Item",	1

				.AddItem	"Second	Item",	2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListIndex	=	0

End	With

You	can	also	use	the	FindControl	method	to	return	a	CommandBarComboBox
object.	The	following	example	searches	all	command	bars	for	a	visible
CommandBarComboBox	object	whose	tag	is	"sheet	assignments."

Set	myControl	=	CommandBars.FindControl	_

(Type:=msoControlComboBox,	Tag:="sheet	assignments",	Visible:=True)

Show	All

CommandBarControl	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

Represents	a	command	bar	control.	The	CommandBarControl	object	is	a
member	of	the	CommandBarControls	collection.	The	properties	and	methods
of	the	CommandBarControl	object	are	all	shared	by	the
CommandBarButton,	CommandBarComboBox,	and	CommandBarPopup
objects.

Note			When	writing	Visual	Basic	code	to	work	with	custom	command	bar
controls,	you	use	the	CommandBarButton,	CommandBarComboBox,	and
CommandBarPopup	objects.	When	writing	code	to	work	with	built-in	controls
in	the	container	application	that	cannot	be	represented	by	one	of	those	three
objects,	you	use	the	CommandBarControl	object.

Using	the	CommandBarControl	Object

Use	Controls(index),	where	index	is	the	index	number	of	a	control,	to	return	a
CommandBarControl	object.	(The	Type	property	of	the	control	must	be
msoControlLabel,	msoControlExpandingGrid,
msoControlSplitExpandingGrid,	msoControlGrid,	or	msoControlGauge.)

Note			Variables	declared	as	CommandBarControl	can	be	assigned
CommandBarButton,	CommandBarComboBox,	and	CommandBarPopup
values.

You	can	also	use	the	FindControl	method	to	return	a	CommandBarControl
object.	The	following	example	searches	for	a	control	of	type	msoControlGauge;
if	it	finds	one,	it	displays	the	index	number	of	the	control	and	the	name	of	the
command	bar	that	contains	it.	In	this	example,	the	variable	lbl	represents	a
CommandBarControl	object.

Set	lbl	=	CommandBars.FindControl(Type:=	msoControlGauge)

If	lbl	Is	Nothing	Then

				MsgBox	"A	control	of	type	msoControlGauge	was	not	found."

Else

				MsgBox	"Control	"	&	lbl.Index	&	"	on	command	bar	"	_

								&	lbl.Parent.Name	&	"	is	type	msoControlGauge"

End	If

Show	All

CommandBarControls	Collection
Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

A	collection	of	CommandBarControl	objects	that	represent	the	command	bar
controls	on	a	command	bar.

Using	the	CommandBarControls	Collection

Use	the	Controls	property	to	return	the	CommandBarControls	collection.	The
following	example	changes	the	caption	of	every	control	on	the	toolbar	named
"Standard"	to	the	current	value	of	the	Id	property	for	that	control.

For	Each	ctl	In	CommandBars("Standard").Controls

				ctl.Caption	=	CStr(ctl.Id)

Next	ctl

Use	the	Add	method	to	add	a	new	command	bar	control	to	the
CommandBarControls	collection.	This	example	adds	a	new,	blank	button	to
the	command	bar	named	"Custom."

Set	myBlankBtn	=	CommandBars("Custom").Controls.Add

Use	Controls(index),	where	index	is	the	caption	or	index	number	of	a	control,	to
return	a	CommandBarControl,	CommandBarButton,
CommandBarComboBox,	or	CommandBarPopup	object.	The	following
example	copies	the	first	control	from	the	command	bar	named	"Standard"	to	the
command	bar	named	"Custom."

Set	myCustomBar	=	CommandBars("Custom")

Set	myControl	=	CommandBars("Standard").Controls(1)

myControl.Copy	Bar:=myCustomBar,	Before:=1

Show	All

CommandBarPopup	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

Represents	a	pop-up	control	on	a	command	bar.

Using	the	CommandBarPopup	Object

Use	Controls(index),	where	index	is	the	number	of	the	control,	to	return	a
CommandBarPopup	object.	(The	Type	property	of	the	control	must	be
msoControlPopup,	msoControlGraphicPopup,	msoControlButtonPopup,
msoControlSplitButtonPopup,	or	msoControlSplitButtonMRUPopup.)

You	can	also	use	the	FindControl	method	to	return	a	CommandBarPopup
object.	The	following	example	searches	all	command	bars	for	a
CommandBarPopup	object	whose	tag	is	"Graphics."

Set	myControl	=	Application.CommandBars.FindControl	_

(Type:=msoControlPopup,	Tag:="Graphics")

Remarks

Every	pop-up	control	contains	a	CommandBar	object.	To	return	the	command
bar	from	a	pop-up	control,	apply	the	CommandBar	property	to	the
CommandBarPopup	object.

Show	All

CommandBars	Collection	Object
									
CommandBars	(CommandBar)	 CommandBarControls	(CommandBarControl)

CommandBarButton
CommandBarComboBox
CommandBarPopup

A	collection	of	CommandBar	objects	that	represent	the	command	bars	in	the
container	application.

Using	the	CommandBars	Collection

Use	the	CommandBars	property	to	return	the	CommandBars	collection.	The
following	example	displays	in	the	Immediate	window	both	the	name	and	local
name	of	each	menu	bar	and	toolbar,	and	it	displays	a	value	that	indicates	whether
the	menu	bar	or	toolbar	is	visible.

For	Each	cbar	in	CommandBars

				Debug.Print	cbar.Name,	cbar.NameLocal,	cbar.Visible

Next

Use	the	Add	method	to	add	a	new	command	bar	to	the	collection.	The	following
example	creates	a	custom	toolbar	named	"Custom1"	and	displays	it	as	a	floating
toolbar.

Set	cbar1	=	CommandBars.Add(Name:="Custom1",	Position:=msoBarFloating)

cbar1.Visible	=	True

Use	CommandBars(index),	where	index	is	the	name	or	index	number	of	a
command	bar,	to	return	a	single	CommandBar	object.	The	following	example
docks	the	toolbar	named	"Custom1"	at	the	bottom	of	the	application	window.

CommandBars("Custom1").Position	=	msoBarBottom

Note			You	can	use	the	name	or	index	number	to	specify	a	menu	bar	or	toolbar	in
the	list	of	available	menu	bars	and	toolbars	in	the	container	application.
However,	you	must	use	the	name	to	specify	a	menu,	shortcut	menu,	or	submenu
(all	of	which	are	represented	by	CommandBar	objects).

If	two	or	more	custom	menus	or	submenus	have	the	same	name,
CommandBars(index)	returns	the	first	one.	To	ensure	that	you	return	the	correct
menu	or	submenu,	locate	the	pop-up	control	that	displays	that	menu.	Then	apply
the	CommandBar	property	to	the	pop-up	control	to	return	the	command	bar	that
represents	that	menu.

DocumentProperties	Collection
Object
									

A	collection	of	DocumentProperty	objects.	Each	DocumentProperty	object
represents	a	built-in	or	custom	property	of	a	container	document.

Using	the	DocumentProperties	Collection

Use	the	Add	method	to	create	a	new	custom	property	and	add	it	to	the
DocumentProperties	collection.	You	cannot	use	the	Add	method	to	create	a
built-in	document	property.

Use	BuiltinDocumentProperties(index),	where	index	is	the	index	number	of	the
built-in	document	property,	to	return	a	single	DocumentProperty	object	that
represents	a	specific	built-in	document	property.	Use
CustomDocumentProperties(index),	where	index	is	the	number	of	the	custom
document	property,	to	return	a	DocumentProperty	object	that	represents	a
specific	custom	document	property.

DocumentProperty	Object
									

Represents	a	custom	or	built-in	document	property	of	a	container	document.	The
DocumentProperty	object	is	a	member	of	the	DocumentProperties	collection.

Using	the	DocumentProperty	Object

Use	BuiltinDocumentProperties(index),	where	index	is	the	name	or	index
number	of	the	built-in	document	property,	to	return	a	single	DocumentProperty
object	that	represents	a	specific	built-in	document	property.	Use
CustomDocumentProperties(index),	where	index	is	the	name	or	index	number
of	the	custom	document	property,	to	return	a	DocumentProperty	object	that
represents	a	specific	custom	document	property.

The	following	list	contains	the	names	of	all	the	available	built-in	document
properties:

Title

Subject

Author

Keywords

Comments

Template

Last	Author

Revision	Number

Application	Name

Last	Print	Date

Creation	Date

Last	Save	Time

Total	Editing	Time

Number	of	Words

Number	of	Characters

Security

Category

Format

Manager

Company

Number	of	Bytes

Number	of	Lines

Number	of	Paragraphs

Number	of	Slides

Number	of	Notes

Number	of	Hidden	Slides

Number	of	Multimedia

Number	of	Pages Clips

Container	applications	don't	necessarily	define	a	value	for	every	built-in
document	property.	If	a	given	application	doesn't	define	a	value	for	one	of	the
built-in	document	properties,	returning	the	Value	property	for	that	document
property	causes	an	error.

FileDialog	Object
									
FileDialog	 Multiple	objects

Provides	file	dialog	box	functionality	similar	to	the	functionality	of	the	standard
Open	and	Save	dialog	boxes	found	in	Microsoft	Office	applications.	With	these
dialog	boxes,	users	of	your	solutions	can	easily	specify	the	files	and	folders	that
your	solution	should	use.

Using	the	FileDialog	object

Use	the	FileDialog	property	to	return	a	FileDialog	object.	The	FileDialog
property	is	located	in	each	individual	Office	application's	Application	object.
The	property	takes	a	single	argument,	DialogType,	that	determines	the	type	of
FileDialog	object	that	the	property	returns.	There	are	four	types	of	FileDialog
object:

Open	dialog	box	-	lets	users	select	one	or	more	files	that	you	can	then	open
in	the	host	application	using	the	Execute	method.
SaveAs	dialog	box	-	lets	users	select	a	single	file	that	you	can	then	save	the
current	file	as	using	the	Execute	method.
File	Picker	dialog	box	-	lets	users	select	one	or	more	files.	The	file	paths
that	the	user	selects	are	captured	in	the	FileDialogSelectedItems	collection.
Folder	Picker	dialog	box	-	lets	users	select	a	path.	The	path	that	the	user
selects	is	captured	in	the	FileDialogSelectedItems	collection.

Each	host	application	can	only	instantiate	a	single	instance	of	the	FileDialog
object.	Therefore,	many	of	the	properties	of	the	FileDialog	object	persist	even
when	you	create	multiple	FileDialog	objects.	Therefore,	make	sure	that	you've
set	all	of	the	properties	appropriately	for	your	purpose	before	you	display	the
dialog	box.

In	order	to	display	a	file	dialog	box	using	the	FileDialog	object,	you	must	use
the	Show	method.	Once	a	dialog	box	is	displayed,	no	code	will	execute	until	the
user	dismisses	the	dialog	box.	The	following	example	creates	and	displays	a	File
Picker	dialog	box	and	then	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'The	user	pressed	the	action	button.

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"The	path	is:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'The	user	pressed	Cancel.

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

FileDialogFilter	Object
									
FileDialogFilters	 FileDialogFilter

Represents	a	file	filter	in	a	file	dialog	box	displayed	through	the	FileDialog
object.	Each	file	filter	determines	which	files	are	displayed	in	the	file	dialog	box.

Using	the	FileDialogFilter	object

Use	the	Item	method	with	the	FileDialogFilters	collection	to	return	a
FileDialogFilter	object.	Use	the	Add	method	to	add	a	FileDialogFilter	object	to
the	FileDialogFilters	collection.	You	can	return	the	extensions	that	a
FileDialogFilter	object	uses	to	filter	files	with	the	Extensions	property	and	you
can	return	the	description	of	the	filter	with	the	Description	property;	however,
both	of	these	properties	are	read-only.	If	you	want	to	set	the	extension	or
description	you	must	use	the	Add	method.

The	following	example	iterates	through	the	default	filters	of	the	SaveAs	dialog
box	and	displays	the	description	of	each	filter	that	includes	a	Microsoft	Excel
file.

Sub	Main()

				'Declare	a	variable	as	a	FileDialogFilters	collection.

				Dim	fdfs	As	FileDialogFilters

				'Declare	a	variable	as	a	FileDialogFilter	object.

				Dim	fdf	As	FileDialogFilter

				'Set	the	FileDialogFilters	collection	variable	to

				'the	FileDialogFilters	collection	of	the	SaveAs	dialog	box.

				Set	fdfs	=	Application.FileDialog(msoFileDialogSaveAs).Filters

				'Iterate	through	the	description	and	extensions	of	each

				'default	filter	in	the	SaveAs	dialog	box.

				For	Each	fdf	In	fdfs

								'Display	the	description	of	filters	that	include

								'Microsoft	Excel	files.

								If	InStr(1,	fdf.Extensions,	"xls",	vbTextCompare)	>	0	Then

												MsgBox	"Description	of	filter:	"	&	fdf.Description

								End	If

				Next	fdf

End	Sub

FileDialogFilters	Collection
									
FileDialog	 FileDialogFilters

FileDialogFilter

A	collection	of	FileDialogFilter	objects	that	represent	the	types	of	files	that	can
be	selected	in	a	file	dialog	box	that	is	displayed	using	the	FileDialog	object.

Using	the	FileDialogFilters	collection

Use	the	Filters	property	of	the	FileDialog	object	to	return	a	FileDialogFilters
collection.	The	following	code	returns	the	FileDialogFilters	collection	for	the
File	Open	dialog	box.

Application.FileDialog(msoFileDialogOpen).Filters

Use	the	Add	method	to	add	FileDialogFilter	objects	to	the	FileDialogFilters
collection.	The	following	example	uses	the	Clear	method	to	clear	the	collection
and	then	adds	filters	to	the	collection.	The	Clear	method	completely	empties	the
collection;	however,	if	you	don't	add	any	filters	to	the	collection	after	you	clear
it,	the	"All	files	(*.*)"	filter	is	added	automatically.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Change	the	contents	of	the	Files	of	Type	list.

								'Empty	the	list	by	clearing	the	FileDialogFilters	collection.

								.Filters.Clear

								'Add	a	filter	that	includes	all	files.

								.Filters.Add	"All	files",	"*.*"

								'Add	a	filter	that	includes	GIF	and	JPEG	images	and	make	it	the	first	item	in	the	list.

								.Filters.Add	"Images",	"*.gif;	*.jpg;	*.jpeg",	1

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'The	user	pressed	the	action	button.

								If	.Show	=	-1	Then

												'Step	through	each	String	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Path	name:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'The	user	pressed	Cancel.

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

When	changing	the	FileDialogFilters	collection,	remember	that	each	application
can	only	instantiate	a	single	FileDialog	object.	This	means	that	the
FileDialogFilters	collection	will	reset	to	its	default	filters	whenever	you	call	the
FileDialog	method	with	a	new	dialog	box	type.

The	following	example	iterates	through	the	default	filters	of	the	SaveAs	dialog
box	and	displays	the	description	of	each	filter	that	includes	a	Microsoft	Excel
file.

Sub	Main()

				'Declare	a	variable	as	a	FileDialogFilters	collection.

				Dim	fdfs	As	FileDialogFilters

				'Declare	a	variable	as	a	FileDialogFilter	object.

				Dim	fdf	As	FileDialogFilter

				'Set	the	FileDialogFilters	collection	variable	to

				'the	FileDialogFilters	collection	of	the	SaveAs	dialog	box.

				Set	fdfs	=	Application.FileDialog(msoFileDialogSaveAs).Filters

				'Iterate	through	the	description	and	extensions	of	each

				'default	filter	in	the	SaveAs	dialog	box.

				For	Each	fdf	In	fdfs

								'Display	the	description	of	filters	that	include

								'Microsoft	Excel	files

								If	InStr(1,	fdf.Extensions,	"xls",	vbTextCompare)	>	0	Then

												MsgBox	"Description	of	filter:	"	&	fdf.Description

								End	If

				Next	fdf

End	Sub

Note		A	run-time	error	will	occur	if	the	Filters	property	is	used	in	conjunction
with	the	Clear,	Add,	or	Delete	methods	when	applied	to	a	Save	As	FileDiaog
object.	For	example,
Application.FileDialog(msoFileDialogSaveAs).Filters.Clear	will	result
in	a	run-time	error.

FileDialogSelectedItems	Collection
									
FileDialog	 FileDialogSelectedItems

A	collection	of	String	values	that	correspond	to	the	paths	of	the	files	or	folders
that	a	user	has	selected	from	a	file	dialog	box	displayed	through	the	FileDialog
object.

Using	the	FileDialogSelectedItems	collection

Use	the	SelectedItems	property	with	the	FileDialog	object	to	return	a
FileDialogSelectedItems	collection.	The	following	example	displays	a	File
Picker	dialog	box	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

					 	

					 	'Allow	the	selection	of	multiple	file.	

								.AllowMultiSelect	=	True

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'The	user	pressed	the	action	button.

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'The	user	pressed	Cancel.

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

FileSearch	Object
									
FileSearch	 Multiple	objects

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Represents	the	functionality	of	the	Open	dialog	box	(File	menu).

Using	the	FileSearch	Object

Use	the	FileSearch	property	to	return	the	FileSearch	object.	The	following
example	searches	for	files	and	displays	the	number	of	files	found	and	the	name
of	each	file.

With	Application.FileSearch

				If	.Execute()	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

												"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

Use	the	NewSearch	method	to	reset	the	search	criteria	to	the	default	settings.	All
property	values	are	retained	after	each	search	is	run,	and	by	using	the
NewSearch	method	you	can	selectively	set	properties	for	the	next	file	search
without	manually	resetting	previous	property	values.	The	following	example
resets	the	search	criteria	to	the	default	settings	before	beginning	a	new	search.

With	Application.FileSearch

				.NewSearch

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.FileName	=	"Run"

				.MatchTextExactly	=	True

				.FileType	=	msoFileTypeAllFiles

End	With

FileTypes	Collection
									
FileSearch	 FileTypes

A	collection	of	values	of	the	type	msoFileType	that	determine	which	types	of
files	are	returned	by	the	Execute	method	of	the	FileSearch	object.

Using	the	FileTypes	collection

Use	the	FileTypes	property	with	the	FileSearch	object	to	return	a	FileTypes
collection;	for	example:

Set	ft	=	Application.FileSearch.FileTypes

Note				The	FileType	property	of	the	FileSearch	object	clears	the	FileTypes
collection	and	sets	the	first	item	in	the	collection	to	the	file	type	defined	by	the
FileType	property.

There	is	only	one	FileTypes	collection	for	all	searches	so	it's	important	to	clear
the	FileTypes	collection	before	executing	a	search	unless	you	wish	to	search	for
file	types	from	previous	searches.	The	easiest	way	to	clear	the	collection	is	to	set
the	FileType	property	to	the	first	file	type	for	which	you	want	to	search.	You	can
also	remove	individual	types	using	the	Remove	method.	To	determine	the	file
type	of	each	item	in	the	collection,	use	the	Item	method	to	return	the
msoFileType	value.

The	following	example	searches	for	all	HTML	and	Microsoft	Excel	files	on	the
C:\	drive.

Sub	SearchForFiles()

				'Declare	a	variable	to	act	as	a	generic	counter

				Dim	lngCount	As	Long

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object

				With	Application.FileSearch

								'Clear	all	the	parameters	of	the	previous	searches.

								'This	method	doesn't	clear	the	LookIn	property	or

								'the	SearchFolders	collection.

								.NewSearch

								'Setting	the	FileType	property	clears	the

								'FileTypes	collection	and	sets	the	first

								'item	in	the	collection	to	the	file	type

								'defined	by	the	FileType	property.

								.FileType	=	msoFileTypeWebPages

								'Add	a	second	item	to	the	FileTypes	collection

								.FileTypes.Add	msoFileTypeExcelWorkbooks

								'Display	the	number	of	FileTypes	in	the	collection.

								MsgBox	"You	are	about	to	search	for	"	&	.FileTypes.Count	&	_

												"	file	types."

								'Set	up	the	search	to	look	in	all	subfolders	on	the	C:\	drive.

								.LookIn	=	"C:\"

								.SearchSubFolders	=	True

								'Execute	the	search	and	test	to	see	if	any	files

								'were	found.

								If	.Execute	<>	0	Then

												'Display	the	number	of	files	found.

												MsgBox	"Files	found:	"	&	.FoundFiles.Count

												'Loop	through	the	list	of	found	files	and

												'display	the	path	of	each	one	in	a	message	box.

												For	lngCount	=	1	To	.FoundFiles.Count

																If	MsgBox(.FoundFiles.Item(lngCount),	vbOKCancel,	_

																				"Found	files")	=	vbCancel	Then

																				'Break	out	of	the	loop

																				lngCount	=	.FoundFiles.Count

																End	If

												Next	lngCount

								Else

												MsgBox	"No	files	found."

								End	If

				End	With

End	Sub

The	following	example	loops	through	the	FileTypes	collection	and	removes	any
file	types	that	aren't	Microsoft	Word	or	Microsoft	Excel	files	(in	general,	it's
simpler	to	clear	the	FileTypes	collection	and	start	from	scratch).

Sub	RemoveFileTypeFromCollection()

				'Define	an	integer	to	use	as	a	counter

				'when	iterating	through	the	FileTypes	collection.

				Dim	intFileIndex	As	Integer

				'Use	a	With...End	With	block	to	reference	the	FileSearch	object.

				With	Application.FileSearch

								'Loop	through	all	of	the	items	in	the	FileTypes	collection.

								intFileIndex	=	1

								Do	While	intFileIndex	<=	.FileTypes.Count

												Select	Case	.FileTypes.Item(intFileIndex)

																Case	msoFileTypeWordDocuments,	msoFileTypeExcelWorkbooks

																Case	Else

																				'If	the	file	type	isn't	a	Microsoft	Word	or

																				'Microsoft	Excel	file,	remove	it.

																				.FileTypes.Remove	intFileIndex

																				'Decrement	the	counter	so	that	no	file	types	are	missed.

																				intFileIndex	=	intFileIndex	-	1

												End	Select

												'Increment	the	counter	to	test	the	next	file	type.

												intFileIndex	=	intFileIndex	+	1

								Loop

				End	With

End	Sub

FoundFiles	Object
									
FileSearch	 PropertyTests	(PropertyTest)
FoundFiles

Represents	the	list	of	files	returned	from	a	file	search.

Using	the	FoundFiles	Object

Use	the	FoundFiles	property	to	return	the	FoundFiles	object.	This	example
steps	through	the	list	of	files	that	are	found	and	displays	the	path	and	file	name
of	each	file.	Use	FoundFiles(index),	where	index	is	the	index	number,	to	return
the	path	and	file	name	of	a	specific	file	found	during	the	search.

With	Application.FileSearch

				For	i	=	1	To	.FoundFiles.Count

								MsgBox	.FoundFiles(i)

				Next	I

End	With

Use	the	Execute	method	to	begin	the	file	search	and	update	the	FoundFiles
object.	The	following	example	searches	the	My	Documents	folder	for	all	files
whose	names	begin	with	"Cmd"	and	displays	the	name	and	location	of	each	file
that's	found.	The	example	also	sorts	the	returned	files	in	ascending	alphabetic
order	by	file	name.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.FileName	=	"cmd*"

				If	.Execute(SortBy:=msoSortbyFileName,	_

				SortOrder:=msoSortOrderAscending)	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

												"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

HTMLProject	Object
									
HTMLProject	 HTMLProjectItems	(HTMLProjectItem)

Represents	a	top-level	project	branch,	as	in	the	Project	Explorer	in	the	Microsoft
Script	Editor.

Using	the	HTMLProject	Object

Use	the	Open	method	of	the	HTMLProject	object	to	open	an	HTML	project	in
the	Microsoft	Script	Editor.	The	project	is	opened	in	source	view	or	text	view	for
the	active	Microsoft	Word	document,	Excel	workbook,	or	PowerPoint
presentation.	The	following	example	opens	an	HTML	project	in	the	active	Word
document	in	source	view.

ActiveDocument.HTMLProject.Open	(msoHTMLProjectOpenSourceView)

Use	the	HTMLProjectItems	property	to	return	the	collection	of
HTMLProjectItem	objects	in	the	HTML	project.	Use	the	RefreshDocument
method	to	refresh	the	HTML	document	in	the	host	application.	Use	the
RefreshProject	method	to	refresh	the	project	in	the	Microsoft	Script	Editor.	Use
the	State	method	to	determine	whether	the	HTML	project	needs	to	be	refreshed.

HTMLProjectItem	Object
									
HTMLProject	 HTMLProjectItems	(HTMLProjectItem)

Represents	an	individual	project	item	that’s	a	project	item	branch	in	the	Project
Explorer	in	the	Microsoft	Script	Editor.	The	HTMLProjectItem	object	is	a
member	of	the	HTMLProjectItems	collection.

Using	the	HTMLProjectItem	Object

Use	HTMLProjectItems(index),	where	index	is	the	name	or	index	number	of	a
project	item,	to	return	a	single	HTMLProjectItem	object.	Use	the	Name
property	to	return	the	display	name	of	the	project	item.	The	following	example
returns	the	name	of	the	first	project	item	in	the	HTMLProjectItems	collection
for	the	active	document.

MsgBox	"The	first	item	is	"	&	_

				ActiveDocument.HTMLProject.HTMLProjectItems(1).Name

Use	the	Open	method	to	open	a	project	item	in	source	view	or	text	view,	and	use
the	IsOpen	property	to	determine	whether	the	project	item	is	currently	open.
The	following	example	opens	the	project	item	named	“ItemOne”	(in	the	active
document)	in	the	default	view	and	then	displays	a	message	box	stating	whether
the	item	was	opened	successfully.

ActiveDocument.HTMLProject.HTMLProjectItems("ItemOne").Open

If	ActiveDocument.HTMLProject.	_

								HTMLProjectItems("ItemOne").IsOpen	Then

MsgBox	"Opened	project	item	"	&	ActiveDocument.HTMLProject.HTMLProjectItems("ItemOne").Name

End	If

Use	the	SaveCopyAs	method	to	save	the	project	item	using	a	new	file	name.
The	following	example	saves	a	copy	of	ItemOne	as	“NewItem”.

ActiveDocument.HTMLProject.HTMLProjectItems("ItemOne")	_

				.Open	(msoHTMLProjectOpenTextView)

ActiveDocument.HTMLProject.HTMLProjectItems("ItemOne")	_

				.SaveCopyAs("C:\NewItem.txt")

Assuming	that	the	text	file	C:\NewText.txt	exists,	the	following	example	uses	the
LoadFromFile	property	to	set	the	text	of	ItemOne	to	the	text	contained	in	the
file.	The	following	example	uses	the	Text	property	to	display	the	new	text	in	a
message	box.

MsgBox	ActiveDocument.HTMLProject.HTMLProjectItems	_

				("ItemOne").Text

ActiveDocument.HTMLProject.HTMLProjectItems	_

				("ItemOne").LoadFromFile("C:\NewText.txt")

MsgBox	ActiveDocument.HTMLProject.HTMLProjectItems	_

				("ItemOne").Text

HTMLProjectItems	Collection	Object
									
HTMLProject	 HTMLProjectItems	(HTMLProjectItem)

A	collection	of	HTMLProjectItem	objects	that	represent	the	HTML	project
items	contained	in	the	HTMLProject	object.

Using	the	HTMLProjectItems	Collection

Use	the	HTMLProjectItems	property	of	the	HTMLProject	object	to	return	the
HTMLProjectItems	collection.	Use	the	Count	property	of	the
HTMLProjectItems	collection	to	return	the	number	of	project	items	in	the
HTML	project	for	the	specified	document.	Use	the	Item	method	of	the
HTMLProjectItems	collection	to	return	an	individual	project	item.	The
following	example	returns	the	name	of	the	first	project	item	in	the
HTMLProjectItems	collection	for	the	active	document.

MsgBox	"The	first	item	is	"	&	_

				ActiveDocument.HTMLProject.HTMLProjectItems(1).Name

LanguageSettings	Object
									
LanguageSettings

Returns	information	about	the	language	settings	in	a	Microsoft	Office
application.

Using	the	LanguageSettings	Object

Use	Application.LanguageSettings.LanguageID(MsoAppLanguageID),	where
MsoAppLanguageID	is	a	constant	used	to	return	locale	identifier	(LCID)
information	to	the	specified	application.

MsoAppLanguageID	can	be	one	of	these	MsoAppLanguageID	constants.
msoLanguageIDExeMode
msoLanguageIDHelp
msoLanguageIDInstall
msoLanguageIDUI
msoLanguageIDUIPrevious

The	following	example	returns	the	install	language,	user	interface	language,	and
Help	language	LCIDs	in	a	message	box.

MsgBox	"The	following	locale	IDs	are	registered	"	&	_

				"for	this	application:	Install	Language	-	"	&	_

				Application.LanguageSettings.LanguageID(msoLanguageIDInstall)	&	_

				"	User	Interface	Language	-	"	&	_

				Application.LanguageSettings.LanguageID(msoLanguageIDUI)	&	_

				"	Help	Language	-	"	&	_

				Application.LanguageSettings.LanguageID(msoLanguageIDHelp)

Use	Application.LanguageSettings.LanguagePreferredForEditing	to
determine	which	LCIDs	are	registered	as	preferred	editing	languages	for	the
application,	as	in	the	following	example.

If	Application.LanguageSettings.	_

				LanguagePreferredForEditing(msoLanguageIDEnglishUS)	Then

				MsgBox	"U.S.	English	is	one	of	the	chosen	editing	languagess."

End	If

MsoEnvelope	Object
									
MsoEnvelope	 CommandBars

Provides	access	to	functionality	that	lets	you	send	documents	as	emails	directly
from	Microsoft	Office	applications.

Using	the	MsoEnvelope	object

Use	the	MailEnvelope	property	of	the	Document	object,	Chart	object	or
Worksheet	object	(depending	on	the	application	you	are	using)	to	return	a
MsoEnvelope	object.

The	following	example	sends	the	active	Microsoft	Word	document	as	an	e-mail
to	the	e-mail	address	that	you	pass	to	the	subroutine.

Sub	SendMail(ByVal	strRecipient	As	String)

				'Use	a	With...End	With	block	to	reference	the	MsoEnvelope	object.

				With	Application.ActiveDocument.MailEnvelope

								'Add	some	introductory	text	before	the	body	of	the	e-mail.

								.Introduction	=	"Please	read	this	and	send	me	your	comments."

								'Return	a	Microsoft	Outlook	MailItem	object	that

								'you	can	use	to	send	the	document.

								With	.Item

												'All	of	the	mail	item	settings	are	saved	with	the	document.

												'When	you	add	a	recipient	to	the	Recipients	collection

												'or	change	other	properties,	these	settings	will	persist.

												.Recipients.Add	strRecipient

												.Subject	=	"Here	is	the	document."

												'The	body	of	this	message	will	be

												'the	content	of	the	active	document.

												.Send

								End	With

				End	With

End	Sub

NewFile	Object
									
NewFile

The	NewFile	object	represents	items	listed	on	the	New	Item	task	pane	available
in	several	Microsoft	Office	applications.	The	following	table	shows	the	property
to	use	to	access	the	NewFile	object	in	each	of	the	applications.

Application Property
Microsoft	Access NewFileTaskPane
Microsoft	Excel NewWorkbook
Microsoft	FrontPage NewPageOrWeb
Microsoft	PowerPoint NewPresentation
Microsoft	Word NewDocument

Note		The	examples	below	are	for	Word,	but	you	can	change	the	NewDocument
property	for	any	of	the	properties	listed	above	and	use	the	code	in	the
corresponding	application.

mk:@MSITStore:vbaac10.chm::/html/acproNewFile.htm
mk:@MSITStore:vbaxl10.chm::/html/xlproNewWorkbook.htm
mk:@MSITStore:vbafpw10.chm::/html/fpproNewPageOrWeb.htm
mk:@MSITStore:vbapp10.chm::/html/ppproNewPresentation.htm
mk:@MSITStore:vbawd10.chm::/html/woproNewDocument.htm

Using	the	NewFile	object

Use	the	Add	method	to	add	a	new	item	to	the	New	Item	task	pane.	The
following	example	adds	an	item	to	Word's	New	Document	task	pane.

Sub	AddNewDocToTaskPane()

				Application.NewDocument.Add	FileName:="C:\NewDocument.doc",	_

								Section:=msoNew,	DisplayName:="New	Document"

				CommandBars("Task	Pane").Visible	=	True

End	Sub

Use	the	Remove	method	to	remove	an	item	from	the	New	Item	task	pane.	The
following	example	removes	the	document	added	in	the	above	example	from
Word's	New	Document	task	pane.

Sub	RemoveDocFromTaskPane()

				Application.NewDocument.Remove	FileName:="C:\NewDocument.doc",	_

								Section:=msoNew,	DisplayName:="New	Document"

				CommandBars("Task	Pane").Visible	=	True

End	Sub

ODSOColumn	Object
									
ODSOColumns	 ODSOColumn

Represents	a	field	in	a	data	source.	The	ODSOColumn	object	is	a	member	of
the	ODSOColumns	collection.	The	ODSOColumns	collection	includes	all	the
data	fields	in	a	mail	merge	data	source	(for	example,	Name,	Address,	and	City).

Using	the	ODSOColumn	object

Use	Columns(index),	where	index	is	the	data	field	name	or	index	number,	to
return	a	single	ODSOColumn	object.	The	index	number	represents	the	position
of	the	data	field	in	the	mail	merge	data	source.	This	example	retrieves	the	name
and	value	of	the	first	field	of	the	first	record	in	the	data	source	attached	to	the
active	publication.

Sub	GetDataFromSource()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Columns

								MsgBox	"Field	Name:	"	&	.Item(1).Name	&	vbLf	&	_

												"Value:	"	&	.Item(1).Value

				End	With

End	Sub

Remarks

You	cannot	add	fields	to	the	ODSOColumns	collection.	All	data	fields	in	a	data
source	are	automatically	included	in	the	ODSOColumns	collection.

ODSOColumns	Object
									
OfficeDataSourceObject	 ODSOColumns

ODSOColumn

A	collection	of	ODSOColumn	objects	that	represent	the	data	fields	in	a	mail
merge	data	source.

Using	the	ODSOColumns	object

Use	the	Columns	property	to	return	the	ODSOColumns	collection.	The
following	example	displays	the	field	names	in	the	data	source	attached	to	the
active	publication.

Sub	ShowFieldNames()

				Dim	appOffice	As	OfficeDataSourceObject

				Dim	intCount	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Columns

								For	intCount	=	1	To	.Count

												MsgBox	"Column	Name:	"	&	.Item(intCount).Name

								Next

				End	With

End	Sub

Use	Columns(index),	where	index	is	the	data	field	name	or	the	index	number,	to
return	a	single	ODSOColumn	object.	The	index	number	represents	the	position
of	the	data	field	in	the	mail	merge	data	source.	This	example	retrieves	the	name
of	the	first	field	and	value	of	the	first	record	of	the	FirstName	field	in	the	data
source	attached	to	the	active	publication.

Sub	GetDataFromSource()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Columns

								MsgBox	"Field	Name:	"	&	.Columns(1).Name	&	_

												"Value:	"	&	.Columns("FirstName").Value

				End	With

End	Sub

ODSOFilter	Object
									
ODSOFilters	 ODSOFilter

Represents	a	filter	to	be	applied	to	an	attached	mail	merge	data	source.		The
ODSOFilter	object	is	a	member	of	the	ODSOFilters	object.

Using	the	ODSOFilter	object

Each	filter	is	a	line	in	a	query	string.	Use	the	Column,	Comparison,
CompareTo,	and	Conjunction	properties	to	return	or	set	the	data	source	query
criterion.	The	following	example	changes	an	existing	filter	to	remove	from	the
mail	merge	all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

Use	the	Add	method	of	the	ODSOFilters	object	to	add	a	new	filter	criterion	to
the	query.	This	example	adds	a	new	line	to	the	query	string	and	then	applies	the
combined	filter	to	the	data	source.

Sub	SetQueryCriterion()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

ODSOFilters	Object
									
OfficeDataSourceObject	 ODSOFilters

ODSOFilter

Represents	all	the	filters	to	apply	to	the	data	source	attached	to	the	mail	merge
publication.	The	ODSOFilters	object	is	comprised	of	ODSOFilter	objects.

Using	the	ODSOFilters	object

Use	the	Add	method	of	the	ODSOFilters	object	to	add	a	new	filter	criterion	to
the	query.	This	example	adds	a	new	line	to	the	query	string	and	then	applies	the
combined	filter	to	the	data	source.

Sub	SetQueryCriterion()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								.Add	Column:="Region",	_

												Comparison:=msoFilterComparisonIsBlank,	_

												Conjunction:=msoFilterConjunctionAnd

								.ApplyFilter

				End	With

End	Sub

Use	the	Item	method	to	access	an	individual	filter	criterion.	This	example	loops
through	all	the	filter	criterion	and	if	it	finds	one	with	a	value	of	"Region",
changes	it	to	remove	from	the	mail	merge	all	records	that	are	not	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

OfficeDataSourceObject	Object
									
OfficeDataSourceObject	 Multiple	objects

Represents	the	mail	merge	data	source	in	a	mail	merge	operation.

Using	the	OfficeDataSourceObject	object

To	work	with	the	OfficeDataSourceObject	object,	dimension	a	variable	as	an
OfficeDataSourceObject	object.	You	can	then	work	with	the	different
properties	and	methods	associated	with	the	object.	Use	the	SetSortOrder
method	to	specify	how	to	sort	the	records	in	a	data	source.	The	following
example	sorts	the	data	source	first	according	to	ZIP	code	in	descending	order,
then	on	last	name	and	first	name	in	ascending	order.

Sub	SetDataSortOrder()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				appOffice.SetSortOrder	SortField1:="ZipCode",	_

								SortAscending1:=False,	SortField2:="LastName",	_

								SortField3:="FirstName"

End	Sub

Use	the	Column,	Comparison,	CompareTo,	and	Conjunction	properties	to
return	or	set	the	data	source	query	criterion.	The	following	example	changes	an
existing	filter	to	remove	from	the	mail	merge	all	records	that	do	not	have	a
Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

PropertyTest	Object
									
FileSearch	 PropertyTests	(PropertyTest)
FoundFiles

Represents	a	single	file	search	criterion.	Search	criteria	are	listed	in	the
Advanced	Find	dialog	box	(File	menu,	Open	command,	Advanced	Find
button).	The	PropertyTest	object	is	a	member	of	the	PropertyTests	collection.

Using	the	PropertyTest	Object

Use	PropertyTests(index),	where	index	is	the	index	number,	to	return	a	single
PropertyTest	object.	The	following	example	displays	all	the	search	criteria	for
the	first	property	test	in	the	PropertyTests	collection.

With	Application.FileSearch.PropertyTests(1)

myString	=	"This	is	the	search	criteria:	"	_

				&	"	The	name	is:	"	&	.Name	&	".	The	condition	is:	"	_

				&	.Condition

If	.Value	<>	""	Then

				myString	=	myString	&	".	The	value	is:	"	&	.Value

				If	.SecondValue	<>	""	Then

								myString	=	myString	_

												&	".	The	second	value	is:	"	_

												&	.SecondValue	&	",	and	the	connector	is"	_

												&	.Connector

				End	If

End	If

MsgBox	myString

End	With

PropertyTests	Collection	Object
									
FileSearch	 PropertyTests	(PropertyTest)
FoundFiles

A	collection	of	PropertyTest	objects	that	represent	all	the	search	criteria	of	a	file
search.	Search	criteria	are	listed	in	the	Advanced	Find	dialog	box	(File	menu,
Open	command,	Advanced	Find	button).

Using	the	PropertyTests	Collection

Use	the	PropertyTests	property	to	return	the	PropertyTests	collection.	The
following	example	displays	the	number	of	advanced-find	search	criteria	that	will
be	used	for	one	file	search.

Application.FileSearch.PropertyTests.Count

Use	the	Add	method	to	add	a	new	PropertyTest	object	to	the	PropertyTests
collection.	The	following	example	adds	two	property	tests	to	the	search	criteria.
The	first	criterion	specifies	that	the	files	that	are	found	can	be	of	any	file	type,
and	the	second	criterion	specifies	that	these	files	must	have	been	modified
between	January	1,	1996,	and	June	30,	1996.	The	example	displays	the	number
of	files	found	and	displays	the	name	of	each	file	in	a	message	box.

Set	fs	=	Application.FileSearch

fs.NewSearch

	With	fs.PropertyTests

				.Add	Name:="Files	of	Type",	_

								Condition:=msoConditionFileTypeAllFiles,	_

								Connector:=msoConnectorOr

				.Add	Name:="Last	Modified",	_

								Condition:=msoConditionAnytimeBetween,	_

								Value:="1/1/96",	SecondValue:="6/1/96",	_

								Connector:=msoConnectorAnd

	End	With

				If	fs.Execute()	>	0	Then

								MsgBox	"There	were	"	&	fs.FoundFiles.Count	&	_

												"	file(s)	found."

								For	i	=	1	To	fs.FoundFiles.Count

												MsgBox	fs.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

Use	PropertyTests(index),	where	index	is	the	index	number,	to	return	a	single
PropertyTest	object.	The	following	example	displays	all	the	search	criteria	for
the	first	property	test	in	the	PropertyTests	collection.

With	Application.FileSearch.PropertyTests(1)

myString	=	"This	is	the	search	criteria:	"	_

				&	"	The	name	is:	"	&	.Name	&	".	The	condition	is:	"	_

				&	.Condition

If	.Value	<>	""	Then

				myString	=	myString	&	".	The	value	is:	"	&	.Value

				If	.SecondValue	<>	""	Then

								myString	=	myString	_

												&	".	The	second	value	is:	"	_

												&	.SecondValue	&	",	and	the	connector	is"	_

												&	.Connector

				End	If

End	If

MsgBox	myString

End	With

ScopeFolder	Object
									
Multiple	objects	 ScopeFolder

ScopeFolders

Corresponds	to	a	searchable	folder.	ScopeFolder	objects	are	intended	for	use
with	the	SearchFolders	collection.	The	SearchFolders	collection	defines	the
folders	that	are	searched	when	using	the	FileSearch	object.	When	you	want	to
search	specific	folders	you	can	use	the	methods	and	properties	of	the
SearchScope	object	and	ScopeFolders	collection	to	retrieve	ScopeFolder
objects	and	add	them	to	the	SearchFolders	collection.

Using	the	ScopeFolder	object

Use		the	ScopeFolder	property	of	the	SearchScope	object	to	return	the	root
ScopeFolder	object	of	a	search	scope;	for	example:

Set	sf	=	Application.FileSearch.SearchScopes.Item(1).ScopeFolder

Use	the	Item	method	of	the	ScopeFolders	collection	to	return	a	subfolder	of	a
root	ScopeFolder	object;	for	example:

Set	sf	=	Application.FileSearch.SearchScopes.Item(1).ScopeFolder.ScopeFolders.Item(1)

Use	the	Item	method	of	the	SearchFolders	collection	to	return	a	folder	that	will
be	searched	the	next	time	the	Execute	method	of	the	FileSearch	object	is	called;
for	example:

Set	sf	=	Application.FileSearch.SearchFolders.Item(1)

In	each	ScopeFolder	object	there	is	a	ScopeFolders	collection	that	contains	the
subfolders	of	the	parent	ScopeFolder	object.	You	can	traverse	the	entire	folder
structure	of	a	search	scope	(for	example,	all	local	drives)	by	looping	through
these	ScopeFolders	collections	and	returning	all	of	the	lower-level	ScopeFolder
objects.	A	ScopeFolder	object	with	no	subfolders	contains	an	empty
ScopeFolders	collection.

For	an	example	that	demonstrates	how	to	loop	through	all	of	the	ScopeFolder
objects	in	a	search	scope,	see	the	SearchFolders	collection	topic.

You	can	use	the	Add	method	of	the	SearchFolders	collection	to	add	a
ScopeFolder	object	to	the	SearchFolders	collection,	however,	it	is	usually
simpler	to	use	the	AddToSearchFolders	method	of	the	ScopeFolder	that	you
want	to	add,	as	there	is	only	one	SearchFolders	collection	for	all	searches.

For	an	example	that	demonstrates	how	to	add	a	ScopeFolder	to	the
SearchFolders	collection,	see	the	SearchFolders	collection	topic.

The	following	example	displays	the	root	path	of	each	directory	in	My	Computer.
To	retrieve	this	information,	the	example	first	gets	the	ScopeFolder	object	at	the
root	of	My	Computer.	The	path	of	this	ScopeFolder	object	will	always	be	"*".

As	with	all	ScopeFolder	objects,	the	root	object	contains	a	ScopeFolders
collection.	This	example	loops	through	this	ScopeFolders	collection	and
displays	the	path	of	each	ScopeFolder	object	in	it.	The	paths	of	these
ScopeFolder	objects	will	be	"A:\",	"C:\",	etc.

Sub	DisplayRootScopeFolders()

				'Declare	variables	that	reference	a

				'SearchScope	and	a	ScopeFolder	object.

				Dim	ss	As	SearchScope

				Dim	sf	As	ScopeFolder

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection

								'and	display	all	of	the	root	ScopeFolders	collections	in

								'the	My	Computer	scope.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				'Loop	through	each	ScopeFolder	object	in

																				'the	ScopeFolders	collection	of	the

																				'SearchScope	object	and	display	the	path.

																				For	Each	sf	In	ss.ScopeFolder.ScopeFolders

																								MsgBox	"ScopeFolder	object's	path:	"	&	sf.Path

																				Next	sf

																Case	Else

												End	Select

								Next

				End	With

End	Sub

ScopeFolders	Collection
									
ScopeFolder	 ScopeFolders

ScopeFolder

A	collection	of	ScopeFolder	objects.	Only	ScopeFolder	objects	contain
ScopeFolders	collections.	Each	ScopeFolders	collection	contains	the
ScopeFolder	objects	that	correspond	to	the	subfolders	of	the	parent
ScopeFolder	object.

Using	the	ScopeFolders	collection

Use	the	ScopeFolders	property	of	the	ScopeFolder	object	to	return	a
ScopeFolders	collection.

Dim	sfs	as	ScopeFolders

Set	sfs	=	Application.FileSearch.SearchScopes.Item(1).ScopeFolder.ScopeFolders

You	can't	add	or	remove	ScopeFolder	objects	from	a	ScopeFolders	collection.

Script	Object
									
Scripts	(Script)

Represents	a	block	of	HTML	script	in	a	Microsoft	Word	document,	on	a
Microsoft	Excel	spreadsheet,	or	on	a	Microsoft	PowerPoint	slide.	The	Script
object	is	a	member	of	the	Scripts	collection.

Using	the	Script	Object

Use	Scripts.Item(index),	where	index	is	the	name,	ID,	or	index	number	of	a
script,	to	return	a	single	Script	object.	Each	Script	object	is	identified	by	the	Id
property,	which	provides	a	convenient	name	you	can	use	to	access	the	script.	The
following	example	adds	a	single	script	to	the	Scripts	collection	for	the	active
document	and	displays	the	ID	of	the	script	at	index	value	1.

myScript	=	ActiveDocument.Scripts.Add(_

				,	msoScriptLocationInBody,	_

				msoScriptLanguageVisualBasic,	_

				"ScriptOne",	,	_

				"MsgBox	(""This	is	ScriptOne.	"")")

MsgBox	(ActiveDocument.Scripts(1).Id)

You	can	specify	the	scripting	language	used	in	the	script	by	changing	the
Language	property.	The	following	example	changes	the	scripting	language	of
script	one	to	Active	Server	Pages	(ASP).

ActiveDocument.Scripts.Item("ScriptOne")	_

				.Language	=	msoScriptLanguageASP

You	can	check	the	location	of	the	script	anchor	shape	within	an	HTML
document	by	using	the	Location	property.	The	following	example	checks	to
determine	whether	ScriptOne	is	in	the	body	of	the	active	HTML	document.

If	ActiveDocument.Scripts("ScriptOne").Location	=	_

				msoScriptLocationInBody	Then

				MsgBox	("Script	is	in	the	HTML	document	body.")

Else

				MsgBox	("Script	is	located	in	the	header.	")

End	If

You	can	check	or	set	attributes	added	to	the	<SCRIPT>	tag	(with	the	exception
of	the	LANGUAGE	and	ID	attributes)	by	using	the	Extended	property.	The
following	example	checks	for	additional	attributes	in	script	one	in	the	active
document.

If	ActiveDocument.Scripts(1).Extended	=	""	Then

				MsgBox	("No	additional	attributes	are	present	"	&	_

				"in	Script	"	&

					ActiveDocument.Scripts(1).Id)

You	can	check	or	set	the	script	text	associated	with	a	given	script	by	using	the
ScriptText	property.	The	following	example	displays	a	message	box	containing
the	script	text	associated	with	script	one	in	the	active	document.

MsgBox	(ActiveDocument.Scripts("ScriptOne").ScriptText)

Scripts	Collection	Object
									
Scripts	(Script)

A	collection	of	Script	objects	that	represent	the	collection	of	HTML	scripts	in
the	specified	document.

Using	the	Scripts	Collection

The	Scripts	collection	contains	all	of	the	Script	objects	in	a	given	document,	in
source	order	(the	order	in	which	Script	objects	were	added	to	the	source	file).
Source	order	isn’t	affected	by	the	location	(header	or	body	text)	of	the	script	in
the	document.	You	can	use	Script	objects	to	access	a	script	or	to	add	a	script	to	a
Microsoft	Word	document,	a	Microsoft	Excel	worksheet,	or	a	Microsoft
PowerPoint	slide.	You	can	also	use	the	Scripts	collection	to	access	any	HTML
page	or	script	that’s	opened	in	a	Microsoft	Office	application.

Note			Microsoft	Access	doesn’t	use	this	shared	Office	component.

Adding	a	Script

When	you	add	a	Script	object	to	the	Scripts	collection,	a	Shape	object	of	type
msoScriptAnchor	is	automatically	added	to	the	document.	On	an	Excel
worksheet	or	a	PowerPoint	slide,	the	shape	is	added	to	the	Shapes	collection;	in
a	Word	Document,	the	shape	is	added	to	the	InlineShapes	collection.	You	add	a
Script	to	a	document	by	using	the	Add	method.	The	following	example	adds	a
simple	script	to	the	active	Word	document.

myScript	=	ActiveDocument.Scripts.Add(_

				,	msoScriptLocationInBody,	_

				msoScriptLanguageVisualBasic,	_

				"ScriptOne",	,	_

				"MsgBox	""This	is	ScriptOne.""")

To	access	a	particular	item	in	the	Scripts	collection,	use	the	Item	method,	and
supply	either	the	ID	attribute	of	the	<SCRIPT>	tag	or	the	index	number	that
indicates	the	position	of	the	script	in	the	collection.	The	ID	must	be	unique
within	the	document.	In	the	case	of	duplicate	ID	attributes,	the	first	script	found
that	has	that	ID	is	returned.	The	following	example	displays	a	message	box
indicating	the	language	of	the	first	script	found	that	uses	the	ID	"ScriptOne".

MsgBox	(ActiveDocument.Scripts.Item("ScriptOne").Language)

Use	the	Count	property	to	determine	the	number	of	Script	objects	in	the
specified	document.	The	following	example	displays	the	number	of	scripts	in	the
active	document.

If	ActiveDocument.Scripts.Count	=	0	Then

				MsgBox	("There	are	no	"	&	_

				"scripts	in	this	document.	")

End	If

If	ActiveDocument.Scripts.Count	=	1	Then

				MsgBox	("There	is	"	&	_

				ActiveDocument.Scripts.Count	&	_

				"	script	in	this	document.	")

End	If

If	ActiveDocument.Scripts.Count	>	1	Then

				MsgBox	("There	are	"	&	_

				ActiveDocument.Scripts.Count	&	_

				"	scripts	in	this	document.	")

End	If

Use	the	Delete	method	to	remove	a	script	from	the	Scripts	collection,	as	in	the
following	example.

ActiveDocument.Scripts("ScriptOne").Delete

SearchFolders	Collection
									
FileSearch	 SearchFolders

ScopeFolder

A	collection	of	ScopeFolder	objects	that	determines	which	folders	are	searched
when	the	Execute	method	of	the	FileSearch	object	is	called.

Using	the	SearchFolders	collection

Use	the	SearchFolders	property	with	the	FileSearch	object	to	return	the
SearchFolders	collection;	for	example:

Set	sfs	=	Application.FileSearch.SearchFolders

For	each	application	there	is	only	a	single	SearchFolders	collection.	The
contents	of	the	collection	remains	after	the	code	that	calls	it	has	finished
executing.	Consequently,	it	is	important	to	clear	the	collection	unless	you	want
to	include	folders	from	previous	searches	in	your	search.

You	can	use	the	Add	method	of	the	SearchFolders	collection	to	add	a
ScopeFolder	object	to	the	SearchFolders	collection,	however,	it	is	usually
simpler	to	use	the	AddToSearchFolders	method	of	the	ScopeFolder	that	you
want	to	add,	as	there	is	only	one	SearchFolders	collection	for	all	searches.

The	SearchFolders	collection	can	be	seen	as	a	compliment	to	the	LookIn
property	of	the	FileSearch	object.	Both	specify	the	folders	to	search	and	both
are	used	when	the	search	is	executed.	However,	if	you	only	want	to	use	the
LookIn	property,	you	should	make	sure	that	the	SearchFolders	collection	is
empty.	Conversely,	if	you	only	want	to	use	the	SearchFolders	collection,	set	the
LookIn	property	to	the	path	of	the	first	member	of	the	SearchFolders	collection
before	you	call	the	Execute	method.

The	following	example	searches	every	folder	named	"1033"	on	the	local
machine	for	all	HTML	and	Microsoft	Excel	files.	The	example	makes	use	of	the
SearchFolders	collection,		SearchScopes	collection,	and	ScopeFolders
collection.

This	example	consists	of	two	routines.	The	SearchEveryFolder	routine	is	the	
routine	that	you	should	run.	The	OutputPaths	routine	is	separate	from	the	main
routine	because	it	calls	itself	recursively	in	order	to	traverse	the	entire	directory
structure	of	the	local	machine.

Sub	SearchEveryFolder()

				'Declare	variables	that	reference	a

				'SearchScope	and	a	ScopeFolder	object.

				Dim	ss	As	SearchScope

				Dim	sf	As	ScopeFolder

				'Declare	a	variable	to	act	as	a	generic	counter.

				Dim	lngCount	As	Long

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Clear	all	the	parameters	of	the	previous	searches.

								'This	method	doesn't	clear	the	LookIn	property	or

								'the	SearchFolders	collection.

								.NewSearch

								'Specify	the	type	of	file	for	which	to	search.

								'Use	the	FileType	property	to	specify	the	first	type

								'and	then	add	additional	types	to	the	FileTypes	collection.

								.FileType	=	msoFileTypeWebPages

								.FileTypes.Add	msoFileTypeExcelWorkbooks

								'Clear	the	SearchFolder	collection	by

								'looping	through	each	ScopeFolder	object

								'and	removing	it.

								For	lngCount	=	1	To	.SearchFolders.Count

												.SearchFolders.Remove	lngCount

								Next	lngCount

								'Loop	through	the	SearchScopes	collection	to	find

								'the	scope	in	which	you	want	to	search.	In	this

								'case	the	scope	is	the	local	machine.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				'Loop	through	each	ScopeFolder	in

																				'the	ScopeFolders	collection	of	the

																				'SearchScope	object.

																				For	Each	sf	In	ss.ScopeFolder.ScopeFolders

																								'Call	a	function	that	loops	through	all

																								'of	the	subfolders	of	the	root	ScopeFolder.

																								'This	function	adds	any	folders	named	"1033"	to	the

																								'SearchFolders	collection.

																								Call	OutputPaths(sf.ScopeFolders,	"1033")

																				Next	sf

																Case	Else

												End	Select

								Next	ss

								'Test	to	see	if	any	ScopeFolders	collections	were	added	to

								'the	SearchFolders	collection.

								If	.SearchFolders.Count	>	0	Then

												'Set	the	LookIn	property	to	the	path	of

												'the	first	ScopeFolder	object	in	the	SearchFolders

												'collection.	This	is	here	so	that	any	previous

												'setting	of	the	LookIn	property	doesn't	affect

												'the	search.

												.LookIn	=	.SearchFolders.Item(1).Path

												'Execute	the	search	and	test	to	see	if	any	files

												'were	found.

												If	.Execute	<>	0	Then

																'Display	the	number	of	files	found.

																MsgBox	"Files	found:	"	&	.FoundFiles.Count

																'Loop	through	the	list	of	found	files	and

																'display	the	path	of	each	one	in	a	message	box.

																For	lngCount	=	1	To	.FoundFiles.Count

																				If	MsgBox(.FoundFiles.Item(lngCount),	vbOKCancel,	_

																								"Found	files")	=	vbCancel	Then

																								'Break	out	of	the	loop

																								lngCount	=	.FoundFiles.Count

																				End	If

																Next	lngCount

												End	If

								End	If

				End	With

End	Sub

'This	subroutine	loops	through	all	of	the	ScopeFolders	collections

'in	a	given	ScopeFolders	collection.	It	adds	any	folder

'that	has	the	same	name	as	the	value	of	strFolder

'to	the	SearchFolders	collection.

Sub	OutputPaths(ByVal	sfs	As	ScopeFolders,	_

				ByRef	strFolder	As	String)

				'Declare	a	variable	as	a	ScopeFolder	object

				Dim	sf	As	ScopeFolder

				'Loop	through	each	ScopeFolder	object	in	the

				'ScopeFolders	collection.

				For	Each	sf	In	sfs

								'Test	to	see	if	the	folder	name	of	the	ScopeFolder

								'matches	the	value	of	strFolder.	Use	LCase	to	ensure

								'that	case	does	not	affect	the	match.

								If	LCase(sf.Name)	=	LCase(strFolder)	Then

												'Add	the	ScopeFolder	to	the	SearchFolders	collection.

												sf.AddToSearchFolders

								End	If

								'Include	a	DoEvents	call	because	there	is	the	potential	for	this

								'loop	to	last	a	long	time.	The	DoEvents	call	allows	this	process	to

								'continue	handling	events.

								DoEvents

								'Test	to	see	if	the	ScopeFolders	collection	in	the

								'current	ScopeFolder	is	empty.	If	it	isn't	empty,	then

								'that	means	that	the	current	ScopeFolder	object	contains	subfolders.

								If	sf.ScopeFolders.Count	>	0	Then

												'This	subroutine	recursively	calls	itself	so	that

												'it	can	add	the	subfolders	of	the	current	ScopeFolder	object

												'to	the	SearchFolders	collection.

												Call	OutputPaths(sf.ScopeFolders,	strFolder)

								End	If

				Next	sf

End	Sub

SearchScope	Object
									
SearchScopes	 SearchScope

ScopeFolder

Corresponds	to	a	type	of	folder	tree	that	can	be	searched	by	using	the	FileSearch
object.	For	example,	the	local	drives	on	this	computer	represent	a	single	search
scope.	Network	folders	and	Microsoft	Outlook	folders	are	also	separate	search
scopes	that	may	be	available.	Each	SearchScope	object	contains	a	single
ScopeFolder	object	that	corresponds	to	the	root	folder	of	the	search	scope.

Using	the	SearchScope	object

Use	the	Item	method	of	the	SearchScopes	collection	to	return	a	SearchScope
object;	for	example:

Dim	ss	As	SearchScope

Set	ss	=	Application.FileSearch.SearchScopes.Item(1)

Ultimately,	the	SearchScope	object	is	intended	to	provide	access	to
ScopeFolder	objects	that	can	be	added	to	the	SearchFolders	collection.	For	an
example	that	demonstrates	how	this	is	accomplished,	see	the	SearchFolders
collection	topic.

See	the	ScopeFolder	object	topic	to	see	a	simple	example	of	how	to	return	a
ScopeFolder	object	from	a	SearchScope	object.

The	following	example	displays	all	of	the	currently	available	SearchScope
objects.

Sub	DisplayAvailableScopes()

				'Declare	a	variable	that	references	a

				'SearchScope	object.

				Dim	ss	As	SearchScope

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				MsgBox	"My	Computer	is	an	available	search	scope."

																Case	msoSearchInMyNetworkPlaces

																				MsgBox	"My	Network	Places	is	an	available	search	scope."

																Case	msoSearchInOutlook

																				MsgBox	"Outlook	is	an	available	search	scope."

																Case	msoSearchInCustom

																				MsgBox	"A	custom	search	scope	is	available."

																Case	Else

																				MsgBox	"Can't	determine	search	scope."

												End	Select

								Next	ss

				End	With

End	Sub

SearchScopes	Collection
									
FileSearch	 SearchScopes

SearchScope

A	collection	of	SearchScope	objects.

Using	the	SearchScopes	collection

Use	the	SearchScopes	property	of	the	FileSearch	object	to	return	a
SearchScopes	collection;	for	example:

Dim	sss	As	SearchScopes

Set	sss	=	Application.FileSearch.SearchScopes

You	can't	add	or	remove	SearchScope	objects	from	the	SearchScopes
collection.

Signature	Object
									
SignatureSet	 Signature

Corresponds	to	a	digital	signature	that	is	attached	to	a	document.	Signature
objects	are	contained	in	the	SignatureSet	collection	of	the	Document	object.

Using	the	Signature	object

You	can	add	a	Signature	object	to	a	SignatureSet	collection	using	the	Add
method	and	you	can	return	an	existing	member	using	the	Item	method.	To
remove	a	Signature	from	a	SignatureSet	collection,	use	the	Delete	method	of
the	Signature	object.

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

SignatureSet	Collection
									
SignatureSet	 Signature

A	collection	of	Signature	objects	that	correspond	to	the	digital	signatures
attached	to	a	document.

Using	the	SignatureSet	collection

Use	the	Signatures	property	of	the	Document	object	to	return	a	SignatureSet
collection;	for	example:

Set	sigs	=	ActiveDocument.Signatures

Note				Changes	that	you	make	to	the	SignatureSet	collection	of	a	document
will	not	persist	unless	you	call	the	Commit	method.

You	can	add	a	Signature	object	to	a	SignatureSet	collection	using	the	Add
method	and	you	can	return	an	existing	member	using	the	Item	method.	To
remove	a	Signature	from	a	SignatureSet	collection,	use	the	Delete	method	of
the	Signature	object.

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	committing	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

WebPageFont	Object
									
WebPageFonts	(WebPageFont)

Represents	the	default	font	used	when	documents	are	saved	as	Web	pages	for	a
particular	character	set.

Using	the	WebPageFont	Object

Use	the	WebPageFont	object	to	describe	the	proportional	font,	proportional	font
size,	fixed-width	font,	and	fixed-width	font	size	for	any	available	character	set.

The	following	character	sets	are	supported.
msoCharacterSetArabic
msoCharacterSetCyrillic
msoCharacterSetEnglishWesternEuropeanOtherLatinScript
msoCharacterSetGreek
msoCharacterSetHebrew
msoCharacterSetJapanese
msoCharacterSetKorean
msoCharacterSetMultilingualUnicode
msoCharacterSetSimplifiedChinese
msoCharacterSetThai
msoCharacterSetTraditionalChinese
msoCharacterSetVietnamese

The	following	example	sets	the	proportional	font	and	proportional	font	size	for
the	WebPageFont	object	myFont.

With	myFont

				ProportionalFont	=	Verdana

				ProportionalFontSize	=	14

WebPageFonts	Collection	Object
									
WebPageFonts	(WebPageFont)

A	collection	of	WebPageFont	objects	that	describe	the	proportional	font,
proportional	font	size,	fixed-width	font,	and	fixed-width	font	size	used	when
documents	are	saved	as	Web	pages.	You	can	specify	a	different	set	of	Web	page
font	properties	for	each	available	character	set.

Using	the	WebPageFonts	Collection

The	WebPageFonts	collection	contains	one	WebPageFont	object	for	each
character	set.

The	following	character	sets	are	supported.
msoCharacterSetArabic
msoCharacterSetCyrillic
msoCharacterSetEnglishWesternEuropeanOtherLatinScript
msoCharacterSetGreek
msoCharacterSetHebrew
msoCharacterSetJapanese
msoCharacterSetKorean
msoCharacterSetMultilingualUnicode
msoCharacterSetSimplifiedChinese
msoCharacterSetThai
msoCharacterSetTraditionalChinese
msoCharacterSetVietnamese

The	following	example	uses	the	Item	property	to	set	myFont	to	the
WebPageFont	object	for	the	English/Western	European/Other	Latin	Script
character	set	in	the	current	application.

Dim	myFont	As	WebPageFont

Set	myFont	=	_

		Application.DefaultWebOptions.Fonts.Item_

		(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)

ActivateWizard	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Resumes	or	suspends	Office	Assistant	Help	during	a	custom	wizard.

Note			You	should	use	this	method	only	with	the	StartWizard	method.

expression.ActivateWizard(WizardID,	Act,	Animation)

expression			Required.	An	expression	that	returns	an	Assistant	object.

WizardID			Required	Long.	The	number	returned	by	the	StartWizard	method.

Act			Required	MsoWizardActType.	Specifies	the	change	to	the	Office
Assistant	Help	session.

MsoWizardActType	can	be	one	of	these	MsoWizardActType	constants.
msoWizardActActive
msoWizardActInactive
msoWizardActResume
msoWizardActSuspend

Animation			Optional	Variant.	The	animation	the	Office	Assistant	performs
when	it	is	suspended	or	resumed.

Example

This	example	suspends	the	wizard	session	that	was	started	with	the	StartWizard
method.	The	variable	lHelpForWiz	was	set	to	the	return	value	of	the
StartWizard	method.

Assistant.ActivateWizard	WizardID:=lHelpForWiz,	_

			Act:=msoWizardActSuspend,	Animation:=msoAnimationGoodbye

Show	All

Add	Method
							

Add	method	as	it	applies	to	the	NewFile	object.

Adds	a	new	item	to	the	New	Item	task	pane.	Returns	a	Boolean.	True	if	the	item
was	successfully	added.

expression.Add(FileName,	Section,	DisplayName,	Action)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	The	name	of	the	file	to	add	to	the	list	of	files	on	the
task	pane.

Section		Optional	Variant.	The	section	to	which	to	add	the	file.	Can	be	any
msoFileNewSection	constant.

DisplayName		Optional	Variant.	The	text	to	display	in	the	task	pane.

Action		Optional	Variant.	The	action	to	take	when	a	user	clicks	on	the	item.	Can
be	any	msoFileNewAction	constant.

Add	method	as	it	applies	to	the	CommandBars	object.

Creates	a	new	command	bar	and	adds	it	to	the	collection	of	command	bars.
Returns	a	CommandBar	object.

expression.Add(Name,	Position,	MenuBar,	Temporary)

expression			Required.	An	expression	that	returns	a	CommandBars	object.

Name		Optional	Variant.	The	name	of	the	new	command	bar.	If	this	argument	is
omitted,	a	default	name	is	assigned	to	the	command	bar	(such	as	Custom	1).

Position		Optional	Variant.	The	position	or	type	of	the	new	command	bar.	Can
be	one	of	the	MsoBarPosition	constants	listed	in	the	following	table.

Constant Description
msoBarLeft,	msoBarTop,
msoBarRight,	msoBarBottom

Indicates	the	left,	top,	right,	and	bottom
coordinates	of	the	new	command	bar

msoBarFloating Indicates	that	the	new	command	bar
won't	be	docked

msoBarPopup Indicates	that	the	new	command	bar
will	be	a	shortcut	menu

msoBarMenuBar Macintosh	only

MenuBar		Optional	Variant.	True	to	replace	the	active	menu	bar	with	the	new
command	bar.	The	default	value	is	False.

Temporary		Optional	Variant.	True	to	make	the	new	command	bar	temporary.
Temporary	command	bars	are	deleted	when	the	container	application	is	closed.
The	default	value	is	False.

Add	method	as	it	applies	to	the	CommandBarControls	object.

Creates	a	new	CommandBarControl	object	and	adds	it	to	the	collection	of
controls	on	the	specified	command	bar.

expression.Add(Type,	Id,	Parameter,	Before,	Temporary)

expression			Required.	An	expression	that	returns	a	CommandBarControls
object.

Type		Optional	Variant.	The	type	of	control	to	be	added	to	the	specified
command	bar.	Can	be	one	of	the	following	MsoControlType	constants:
msoControlButton,	msoControlEdit,	msoControlDropdown,
msoControlComboBox,	or	msoControlPopup.

Id		Optional	Variant.	An	integer	that	specifies	a	built-in	control.	If	the	value	of
this	argument	is	1,	or	if	this	argument	is	omitted,	a	blank	custom	control	of	the
specified	type	will	be	added	to	the	command	bar.

Parameter		Optional	Variant.	For	built-in	controls,	this	argument	is	used	by	the
container	application	to	run	the	command.	For	custom	controls,	you	can	use	this
argument	to	send	information	to	Visual	Basic	procedures,	or	you	can	use	it	to
store	information	about	the	control	(similar	to	a	second	Tag	property	value).

Before		Optional	Variant.	A	number	that	indicates	the	position	of	the	new
control	on	the	command	bar.	The	new	control	will	be	inserted	before	the	control
at	this	position.	If	this	argument	is	omitted,	the	control	is	added	at	the	end	of	the
specified	command	bar.

Temporary		Optional	Variant.	True	to	make	the	new	control	temporary.
Temporary	controls	are	automatically	deleted	when	the	container	application	is
closed.	The	default	value	is	False.

Add	method	as	it	applies	to	the	DocumentProperties	object.

Creates	a	new	custom	document	property.	You	can	only	add	a	new	document
property	to	the	custom	DocumentProperties	collection.

expression.Add(Name,	LinkToContent,	Type,	Value,	LinkSource)

expression			Required.	The	custom	DocumentProperties	object.

Name		Required	String.	The	name	of	the	property.

LinkToContent		Required	Boolean.	Specifies	whether	the	property	is	linked	to
the	contents	of	the	container	document.	If	this	argument	is	True,	the	LinkSource
argument	is	required;	if	it's	False,	the	value	argument	is	required.

Type		Optional	Variant.	The	data	type	of	the	property.	Can	be	one	of	the
following	MsoDocProperties	constants:	msoPropertyTypeBoolean,
msoPropertyTypeDate,	msoPropertyTypeFloat,	msoPropertyTypeNumber,
or	msoPropertyTypeString.

Value		Optional	Variant.	The	value	of	the	property,	if	it's	not	linked	to	the
contents	of	the	container	document.	The	value	is	converted	to	match	the	data
type	specified	by	the	type	argument,	if	it	can't	be	converted,	an	error	occurs.	If
LinkToContent	is	True,	the	Value	argument	is	ignored	and	the	new	document
property	is	assigned	a	default	value	until	the	linked	property	values	are	updated
by	the	container	application	(usually	when	the	document	is	saved).

LinkSource		Optional	Variant.	Ignored	if	LinkToContent	is	False.	The	source
of	the	linked	property.	The	container	application	determines	what	types	of	source
linking	you	can	use.

Remarks

If	you	add	a	custom	document	property	to	the	DocumentProperties	collection
that’s	linked	to	a	given	value	in	a	Microsoft	Office	document,	you	must	save	the
document	to	see	the	change	to	the	DocumentProperty	object.

Add	method	as	it	applies	to	the	FileDialogFilters	object.

Adds	a	new	file	filter	to	the	list	of	filters	in	the	Files	of	type	drop	down	list	box
in	the	File	dialog	box.	Returns	a	FileDialogFilter	object	that	represents	the
newly	added	file	filter.

expression.Add(Description,	Extensions,	Position)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Description		Required	String.	The	text	representing	the	description	of	the	file
extension	you	want	to	add	to	the	list	of	filters.

Extensions		Required	String.	The	text	representing	the	file	extension	you	want
to	add	to	the	list	of	filters.	More	than	one	extension	may	be	specified	and	each
must	be	separated	by	a	semi-colon	(;).	For	example,	the	Extensions	argument
can	be	assigned	to	the	string:	"*.txt;	*.htm".	Note	Parentheses	do	not	need	to	be
added	around	the	extensions.	Office	will	automatically	add	parentheses	around
the	extensions	string	when	the	description	and	extensions	strings	are
concatenated	into	one	file	filter	item.

Position		Optional	Variant.	A	number	that	indicates	the	position	of	the	new
control	in	the	filter	list.	The	new	filter	will	be	inserted	before	the	filter	at	this
position.	If	this	argument	is	omitted,	the	filter	is	added	at	the	end	of	the	list.

Remarks

Each	filter	in	a	list	is	made	up	of	two	parts:	the	file	extension	(e.g.	.txt)	and	the
text	description	of	the	file	extension	(e.g.	Text	Files).	Together,	the	file	filter
would	appear	in	the	Files	of	type	drop	down	list	box	as:	Text	Files	(*.txt).

Note	that	when	a	filter	is	added	to	the	list,	the	default	filters	are	not	removed.

Filters	are	only	displayed	when	the	Windows	option	is	checked.

If	Position	is	invalid,	an	out	of	range	runtime	error	is	displayed.	If	the
Description	and	Extensions	value	are	invalid,	a	runtime	error	(parse)	is
displayed.

Folder	picker	dialogs	do	not	have	filters,	therefore,	filter	methods	do	not	apply	to
the	folder	picker.

Add	method	as	it	applies	to	the	Scripts	object.

Adds	a	Script	object	to	the	Scripts	collection	of	one	of	the	following	objects:	a
Document	or	Range	object	in	Microsoft	Word;	a	Worksheet	or	Chart	object	in
Microsoft	Excel;	or	a	Slide,	SlideRange,	slide	Master,	or	title	Master	object	in
Microsoft	PowerPoint.	Returns	a	Script	object.

expression.Add(Anchor,	Location,	Language,	Id,	Extended,	ScriptText)

expression			Required.	The	Scripts	collection.

Anchor		Optional	Range	(Microsoft	Excel	only).	The	Anchor	argument	accepts
an	Excel	Range	object,	which	specifies	the	placement	of	the	script	anchor	on	an
Excel	Worksheet.	You	cannot	insert	script	anchors	into	Excel	charts.

Location		Optional	MsoScriptLocation.	Specifies	the	location	of	the	script
anchor	in	a	document.	If	you’ve	specified	the	Anchor	argument,	the	Location
argument	isn’t	used;	the	location	of	the	Anchor	argument	determines	the
location	of	the	script	anchor.

MsoScriptLocation	can	be	one	of	these	MsoScriptLocation	constants.

msoScriptLocationInBody	default
msoScriptLocationInHead

Language		Optional	MsoScriptLanguage.	Specifies	the	script	language.

MsoScriptLanguage	can	be	one	of	these	MsoScriptLanguage	constants.
msoScriptLanguageASP
msoScriptLanguageJava
msoScriptLanguageOther
msoScriptLanguageVisualBasic	default

Id		Optional	String.	The	ID	of	the	<SCRIPT>	tag	in	HTML.	The	Id	argument
specifies	an	SGML	identifier	used	for	naming	elements.	Valid	identifiers	include
any	string	that	begins	with	a	letter	and	is	composed	of	alphanumeric	characters;
the	string	can	also	include	the	underscore	character	(_).	The	ID	must	be	unique
within	the	HTML	document.	This	parameter	is	exported	as	the	ID	attribute	in	the
<SCRIPT>	tag.

Extended		Optional	String.	Specifies	attributes	that	are	to	be	added	to	the
<SCRIPT>	tag	(LANGUAGE	and	ID	attributes	are	exported	through	the
Language	and	Id	parameters	and	should	not	be	exported	through	the	Extended
parameter).	The	default	is	the	empty	string.	Attributes	are	separated	by	spaces,
the	same	as	in	HTML.	The	Microsoft	Office	host	application	doesn’t	provide
any	means	of	checking	the	syntax	of	passed	attributes.

ScriptText		Optional	String.	Specifies	the	text	contained	in	a	block	of	script.	The
default	is	the	empty	string.	The	Microsoft	Office	host	application	doesn’t	check
the	syntax	of	the	script.

Remarks

A	shape	associated	with	a	script	block	isn’t	exported	or	printed	as	a	shape	in
HTML;	only	the	script	block	gets	exported.

You	cannot	use	the	Add	method	to	add	a	script	anchor	to	a	PowerPoint	slide
range	that	contains	more	than	one	slide.

Add	method	as	it	applies	to	the	SignatureSet	object.

Returns	a	Signature	object	that	represents	a	new	e-mail	signature.

expression.Add

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Add	method	as	it	applies	to	the	ODSOFilters	object.

Adds	a	new	filter	to	the	ODSOFilters	collection.

expression.Add(Column,	Comparison,	Conjunction,	bstrCompareTo,
DeferUpdate)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Column		Required	String.	The	name	of	the	table	in	the	data	source.

Comparison		Required	MsoFilterComparison.	How	the	data	in	the	table	is
filtered.

MsoFilterComparison	can	be	one	of	these	MsoFilterComparison	constants.
msoFilterComparisonContains
msoFilterComparisonEqual
msoFilterComparisonGreaterThan
msoFilterComparisonGreaterThanEqual
msoFilterComparisonIsBlank
msoFilterComparisonIsNotBlank

msoFilterComparisonLessThan
msoFilterComparisonLessThanEqual
msoFilterComparisonNotContains
msoFilterComparisonNotEqual

Conjunction		Required	MsoFilterConjunction.	Determines	how	this	filter
relates	to	other	filters	in	the	ODSOFilters	object.

MsoFilterConjunction	can	be	one	of	these	MsoFilterConjunction	constants.
msoFilterConjunctionAnd
msoFilterConjunctionOr

bstrCompareTo		Optional	String.	If	the	Comparison	argument	is	something
other	than	msoFilterComparisonIsBlank	or
msoFilterComparisonIsNotBlank,	a	string	to	which	the	data	in	the	table	is
compared.

DeferUpdate		Optional	Boolean.	Default	is	False.

Add	method	as	it	applies	to	the	AnswerWizardFiles	object.

Creates	a	new	reference	(a	String	value)	to	an	Answer	Wizard	file	and	adds	it	to
the	AnswerWizardFiles	collection.

expression.Add(FileName)

expression			Required.	An	expression	that	returns	an	AnswerWizardFiles
collection.

FileName		Required	String.	The	fully	qualified	path	to	the	specified	Answer
Wizard	file.

Add	method	as	it	applies	to	the	FileTypes	object.

Adds	a	new	file	type	to	a	file	search.

expression.Add(FileType)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileType		Required	MsoFileType.	Specifies	the	type	of	file	for	which	to	search.

MsoFileType	can	be	one	of	these	MsoFileType	constants.
msoFileTypeAllFiles
msoFileTypeBinders
msoFileTypeCalendarItem
msoFileTypeContactItem
msoFileTypeCustom
msoFileTypeDatabases
msoFileTypeDataConnectionFiles
msoFileTypeDesignerFiles
msoFileTypeDocumentImagingFiles
msoFileTypeExcelWorkbooks
msoFileTypeJournalItem
msoFileTypeMailItem
msoFileTypeNoteItem
msoFileTypeOfficeFiles
msoFileTypeOutlookItems
msoFileTypePhotoDrawFiles
msoFileTypePowerPointPresentations
msoFileTypeProjectFiles
msoFileTypePublisherFiles
msoFileTypeTaskItem
msoFileTypeTemplates
msoFileTypeVisioFiles
msoFileTypeWebPages
msoFileTypeWordDocuments

Add	method	as	it	applies	to	the	PropertyTests	object.

Adds	a	PropertyTest	object	to	the	PropertyTests	collection.

expression.Add(Name,	Condition,	Value,	SecondValue,	Connector)

expression			Required.	An	expression	that	returns	a	PropertyTests	object.

Name		Required	String.	The	name	of	the	property	criterion.	The	name
corresponds	to	a	value	in	the	Property	box	in	the	Find	dialog	box,	which	you
open	from	the	Tools	menu	in	the	application's	Open	dialog	box	(File	menu).

Condition		Required	MsoCondition.	The	condition	of	the	search	criteria.

MsoCondition	can	be	one	of	these	MsoCondition	constants.
msoConditionAnyNumberBetween
msoConditionAnytime
msoConditionAnytimeBetween
msoConditionAtLeast
msoConditionAtMost
msoConditionBeginsWith
msoConditionDoesNotEqual
msoConditionEndsWith
msoConditionEquals
msoConditionEqualsCompleted
msoConditionEqualsDeferred
msoConditionEqualsHigh
msoConditionEqualsInProgress
msoConditionEqualsLow
msoConditionEqualsNormal
msoConditionEqualsNotStarted
msoConditionEqualsWaitingForSomeoneElse
msoConditionFileTypeAllFiles
msoConditionFileTypeBinders
msoConditionFileTypeCalendarItem
msoConditionFileTypeContactItem
msoConditionFileTypeDatabases
msoConditionFileTypeDataConnectionFiles
msoConditionFileTypeDesignerFiles
msoConditionFileTypeDocumentImagingFiles
msoConditionFileTypeExcelWorkbooks
msoConditionFileTypeJournalItem

msoConditionFileTypeMailItem
msoConditionFileTypeNoteItem
msoConditionFileTypeOfficeFiles
msoConditionFileTypeOutlookItems
msoConditionFileTypePhotoDrawFiles
msoConditionFileTypePowerPointPresentations
msoConditionFileTypeProjectFiles
msoConditionFileTypePublisherFiles
msoConditionFileTypeTaskItem
msoConditionFileTypeTemplates
msoConditionFileTypeVisioFiles
msoConditionFileTypeWebPages
msoConditionFileTypeWordDocuments
msoConditionFreeText
msoConditionIncludes
msoConditionIncludesFormsOf
msoConditionIncludesNearEachOther
msoConditionIncludesPhrase
msoConditionInTheLast
msoConditionInTheNext
msoConditionIsExactly
msoConditionIsNo
msoConditionIsNot
msoConditionIsYes
msoConditionLastMonth
msoConditionLastWeek
msoConditionLessThan
msoConditionMoreThan
msoConditionNextMonth
msoConditionNextWeek
msoConditionNotEqualToCompleted
msoConditionNotEqualToDeferred
msoConditionNotEqualToHigh

msoConditionNotEqualToInProgress
msoConditionNotEqualToLow
msoConditionNotEqualToNormal
msoConditionNotEqualToNotStarted
msoConditionNotEqualToWaitingForSomeoneElse
msoConditionOn
msoConditionOnOrAfter
msoConditionOnOrBefore
msoConditionThisMonth
msoConditionThisWeek
msoConditionToday
msoConditionTomorrow
msoConditionYesterday

Value		Optional	Variant.	The	value	of	the	search	criterion.

SecondValue		Optional	Variant.	An	upper	value	for	the	search	range.	You	can
use	this	argument	only	if	Condition	is	msoConditionAnyTimeBetween	or
msoConditionAnyNumberBetween.

Connector		Optional	MsoConnector.	Specifies	the	way	two	search	criteria	are
combined.

MsoConnector	can	be	one	of	these	MsoConnector	constants.
msoConnectorAnd	default
msoConnectorOr

Add	method	as	it	applies	to	the	SearchFolders	object.

Adds	a	search	folder	to	a	file	search.

expression.Add(ScopeFolder)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

ScopeFolder		Required	ScopeFolder	object.	The	folder	to	add	to	the	search.

Example

As	it	applies	to	the	AnswerWizardFiles	object.

This	example	prepares	the	Answer	Wizard	to	accept	a	custom	file	list	and	adds
two	custom	Answer	Wizard	files.	First,	the	example	clears	the	file	list,	and	then
it	adds	two	custom	Answer	Wizard	files	and	checks	the	file	count	and	the	file
names	to	ensure	that	the	files	were	added	correctly.

Dim	customAnswerWizard	As	AnswerWizard

Set	customAnswerWizard	=	Application.AnswerWizard

customAnswerWizard.ClearFileList

customAnswerWizard.Files.Add	("c:\awfiles\custom_1.aw")

customAnswerWizard.Files.Add	("c:\awfiles\custom_2.aw")

If	customAnswerWizard.Files.Count	=	2	Then

				MsgBox	"Files	"	&	customAnswerWizard.Files.Item(1)	&	_

				"	and	"	&	customAnswerWizard.Files(2)	&	_

				"	were	added	sucessfully."

End	If

As	it	applies	to	the	CommandBarControls	object.

This	example	creates	a	custom	editing	toolbar	that	contains	buttons	(controls)	for
cutting,	copying,	and	pasting.

Dim	customBar	As	CommandBar

Dim	newButton	As	CommandBarButton

Set	customBar	=	CommandBars.Add("Custom")

Set	newButton	=	customBar.Controls	_

				.Add(msoControlButton,	CommandBars("Edit")	_

				.Controls("Cut").Id)

Set	newButton	=	customBar.Controls	_

				.Add(msoControlButton,	CommandBars("Edit")	_

				.Controls("Copy").Id)

Set	newButton	=	customBar.Controls	_

				.Add(msoControlButton,	CommandBars("Edit")	_

				.Controls("Paste").Id)

customBar.Visible	=	True

As	it	applies	to	the	DocumentProperties	object.

This	example,	which	is	designed	to	run	in	Microsoft	Word,	adds	three	custom
document	properties	to	the	DocumentProperties	collection.

With	ActiveDocument.CustomDocumentProperties

				.Add	Name:="CustomNumber",	_

								LinkToContent:=False,	_

								Type:=msoPropertyTypeNumber,	_

								Value:=1000

				.Add	Name:="CustomString",	_

								LinkToContent:=False,	_

								Type:=msoPropertyTypeString,	_

								Value:="This	is	a	custom	property."

				.Add	Name:="CustomDate",	_

								LinkToContent:=False,	_

								Type:=msoPropertyTypeDate,	_

								Value:=Date

End	With

As	it	applies	to	the	PropertyTests	object.

This	example	adds	two	property	tests	to	the	search	criteria.	The	first	test	is	that
the	files	must	be	Microsoft	Word	documents,	and	the	second	test	is	that	they
must	have	been	modified	between	January	1,	1996,	and	June	30,	1996.	The
example	also	displays	a	message	box	that	shows	the	total	number	of	files	found,
if	any,	and	the	name	of	each	file	found.

Set	fs	=	Application.FileSearch

fs.NewSearch

With	fs.PropertyTests

				.Add	Name:="Files	of	Type",	_

								Condition:=msoConditionFileTypeWordDocuments,	_

								Connector:=msoConnectorOr

				.Add	Name:="Last	Modified",	_

								Condition:=msoConditionAnytimeBetween,	_

								Value:="1/1/98",	SecondValue:="6/30/98",	_

								Connector:=msoConnectorAnd

End	With

If	fs.Execute()	>	0	Then

								For	i	=	1	To	fs.FoundFiles.Count

												strFound	=	strFound	&	fs.FoundFiles(i)	&	vbCrLf

								Next	i

								MsgBox	"Search	found	the	following	"	_

												&	fs.FoundFiles.Count	&	_

												"	file(s):"	&	vbCrLf	&	strFound

Else

				MsgBox	"There	were	no	files	found."

End	If

As	it	applies	to	the	Scripts	object.

This	example	adds	a	new	Script	to	the	specified	range	on	worksheet	one	in	the
active	workbook.

Dim	rngScriptAnchorRange	As	Range

Dim	objNewScript	As	Script

Set	rngScriptAnchorRange	=	ActiveWorkbook.	_

				Worksheets(1).Range("B5")

Set	objNewScript	=	ActiveWorkbook.	_

				Worksheets(1).Scripts.Add(rngScriptAnchorRange,	_

						msoScriptLocationInBody,	_

						msoScriptLanguageVisualBasic,	_

						"MyNewScript",	,	_

						"MsgBox	(""Added	Script	object	MyNewScript"")")

Show	All

AddItem	Method
							

Adds	a	list	item	to	the	specified	command	bar	combo	box	control.	The	combo
box	control	must	be	a	custom	control	and	must	be	a	drop-down	list	box	or	a
combo	box.

Note			This	method	will	fail	if	it's	applied	to	an	edit	box	or	a	built-in	combo	box
control.

expression.AddItem(Text,	Index)

expression			Required.	An	expression	that	returns	a	CommandBarComboBox
object.

Text			Required	String.	The	text	added	to	the	control.

Index			Optional	Variant.	The	position	of	the	item	in	the	list.	If	this	argument	is
omitted,	the	item	is	added	to	the	end	of	the	list.

Example

This	example	adds	a	combo	box	control	to	a	command	bar.	Two	items	are	added
to	the	control,	and	the	number	of	line	items	and	the	width	of	the	combo	box	are
set.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls.Add(Type:=msoControlComboBox,	Id:=1)

With	myControl

				.AddItem	"First	Item",	1

				.AddItem	"Second	Item",	2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListHeaderCount	=	0

End	With

AddToSearchFolders	Method
							

Adds	a	ScopeFolder	object	the	SearchFolders	collection.

expression.AddToSearchFolders

expression			Required.	An	expression	that	returns	a	ScopeFolder	object.

Remarks

Although	you	can	use	the	SearchFolders	collection's	Add	method	to	add	a
ScopeFolder	object	to	the	SearchFolders	collection,	it	is	usually	simpler	to	use
the	AddToSearchFolders	method	of	the	ScopeFolder	object	that	you	want	to
add,	because	there	is	only	one	SearchFolders	collection	for	all	searches.

Example

The	following	example	adds	the	root	ScopeFolder	object	to	the	SearchFolders
collection.	For	a	longer	example	that	uses	the	AddToSearchFolders	method,	see
the	SearchFolders	collection	topic.

Application.FileSearch.SearchScopes(1).ScopeFolder.AddToSearchFolders

ApplyFilter	Method
							

Applies	a	filter	to	a	mail	merge	data	source	to	filter	specified	records	meeting
specified	criteria.

expression.ApplyFilter

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	new	filter	that	removes	all	records	with	a	blank	Region
field	and	then	applies	the	filter	to	the	active	publication.

Sub	OfficeFilters()

				Dim	appOffice	As	OfficeDataSourceObject

				Dim	appFilters	As	ODSOFilters

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				Set	appFilters	=	appOffice.Filters

				MsgBox	appOffice.RowCount

				appFilters.Add	Column:="Region",	Comparison:=msoFilterComparisonEqual,	_

								Conjunction:=msoFilterConjunctionAnd,	bstrCompareTo:="WA"

				appOffice.ApplyFilter

				MsgBox	appOffice.RowCount

End	Sub

Show	All

Clear	Method
							

Removes	all	list	items	from	a	command	bar	combo	box	control	(drop-down	list
box	or	combo	box)	and	clears	the	text	box	(edit	box	or	combo	box).

Note			This	method	will	fail	if	it's	applied	to	a	built-in	command	bar	control.

expression.Clear

expression			Required.	An	expression	that	returns	a	CommandBarComboBox
object.

Example

This	example	checks	the	number	of	items	in	the	combo	box	control	on	the
command	bar	named	"Custom."	If	there	are	fewer	than	three	items	in	the	list	in
the	combo	box,	the	example	clears	the	list,	adds	a	new	first	item	to	the	list,	and
then	displays	this	new	item	as	the	default	for	the	combo	box	control.

Set	myBar	=	CommandBars("Custom	Bar")

Set	myControl	=	myBar.Controls	_

				Type:=msoControlComboBox)

With	myControl

				.AddItem	"First	Item",	1

				.AddItem	"Second	Item",	2

End	With

If	myControl.ListCount	<	3	Then

				myControl.Clear

				myControl.AddItem	Text:="New	Item",	Index:=1

End	If

ClearFileList	Method
							

Clears	the	list	of	files	for	the	current	AnswerWizard,	including	the	default	list	of
files	for	the	Microsoft	Office	host	application.

expression.ClearFileList

expression			An	expression	that	returns	an	AnswerWizard	object.

Remarks

Use	this	method	to	remove	all	entries	from	the	current	file	list	for	the	specified
application.	You	can	also	use	it	to	ensure	that	none	of	the	default	AnswerWizard
files	for	the	host	application	are	available	to	users.	You	can	then	build	a	custom
list	of	files	by	using	the	Add	method	of	the	AnswerWizardFiles	collection.

To	restore	the	default	AnswerWizard	file	set	for	the	host	application,	use	the
ResetFileList	method.

Example

This	example	prepares	the	AnswerWizard	to	accept	a	custom	file	list	and	then
adds	two	custom	AnswerWizard	files.	First,	the	example	clears	the	file	list,	and
then	it	adds	two	custom	AnswerWizard	files	and	checks	the	file	count	and	the
file	names	to	ensure	that	the	files	were	added	correctly.

Dim	customAnswerWizard	As	AnswerWizard

Set	customAnswerWizard	=	Application.AnswerWizard

customAnswerWizard.ClearFileList

customAnswerWizard.Files.Add	("c:\awfiles\custom_1.aw")

customAnswerWizard.Files.Add	("c:\awfiles\custom_2.aw")

If	customAnswerWizard.Files.Count	=	2	Then

				MsgBox	"Files	"	&	customAnswerWizard.Files.Item(1)	&	_

				"	and	"	&	customAnswerWizard.Files(2)	&	_

				"	were	added	sucessfully."

End	If

Close	Method
							

Closes	the	active	modeless	balloon.	You	should	use	this	method	only	in	callback
procedures.

expression.Close

expression			Required.	An	expression	that	returns	a	Balloon	object.

Example

This	example	displays	a	balloon	that	contains	a	button	for	each	of	three	printers.
Whenever	the	user	clicks	one	of	these	buttons,	the	ProcessPrinter	callback
procedure	is	run	and	the	balloon	is	closed.

Sub	selectPrinter()

Set	bln	=	Assistant.NewBalloon

With	bln

				.Heading	=	"Select	a	Printer."

				.Labels(1).Text	=	"Network	Printer"

				.Labels(2).Text	=	"Local	Printer"

				.Labels(3).Text	=	"Local	Color	Printer"

				.BalloonType	=	msoBalloonTypeButtons

				.Mode	=	msoModeModeless

				.Callback	=	"ProcessPrinter"

				.Show

End	With

End	Sub

Sub	ProcessPrinter(bln	As	Balloon,	lbtn	As	Long,	_

	lPriv	As	Long)

				Assistant.Animation	=	msoAnimationPrinting

				Select	Case	lbtn

				Case	-1

								'	Insert	network	printer-specific	code.

				Case	-2

								'	Insert	local	printer-specific	code.

				Case	-3

								'	Insert	color	printer-specific	code.

				End	Select

				bln.Close

End	Sub

Commit	Method
							

Commits	all	changes	of	the	specified	SignatureSet	collection	to	disk.	Until	the
Commit	method	is	executed,	none	of	the	changes	to	the	SignatureSet	collection
are	saved.

expression.Commit

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	call	this	function.	The	function	will	test	to	make	sure	that
the	digital	signature	that	the	user	selects	will	not	expire	in	less	than	12	months.	If
it	will	expire,	the	certificate	isn't	attached.

Function	AddSignature()	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	to	make	sure	that	the	new	Signature	object

				'doesn't	expire	too	soon.	This	expression	calculates

				'the	number	of	months	until	the	Signature	object	expires.

				If	DateDiff("m",	sig.SignDate,	sig.ExpireDate)	<	12	Then

								MsgBox	"This	certificate	will	expire	in	less	than	1	year."	&	vbCrLf	&	_

								"Please	use	a	newer	certificate."

								AddSignature	=	False

								sig.Delete

				Else

								AddSignature	=	True

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

Show	All

Copy	Method
							

Copies	a	command	bar	control	to	an	existing	command	bar.

expression.Copy(Bar,	Before)

expression			Required.	An	expression	that	returns	a	CommandBarControl,
CommandBarButton,	CommandBarPopup,	or	CommandBarComboBox
object.

Bar			Optional	Variant.	A	CommandBar	object	that	represents	the	destination
command	bar.	If	this	argument	is	omitted,	the	control	is	copied	to	the	command
bar	where	the	control	already	exists.

Before			Optional	Variant.	A	number	that	indicates	the	position	for	the	new
control	on	the	command	bar.	The	new	control	will	be	inserted	before	the	control
at	this	position.	If	this	argument	is	omitted,	the	control	is	copied	to	the	end	of	the
command	bar.

Example

This	example	copies	the	first	control	from	the	command	bar	named	"Standard"
to	the	first	control	on	the	command	bar	named	"Custom”.

Set	myCustomBar	=	CommandBars("Custom")

Set	myControl	=	CommandBars("Standard").Controls(1)

With	myControl

				.Copy	Bar:=myCustomBar,	Before:=1

				.SetFocus

End	With

Show	All

CopyFace	Method
							

Copies	the	face	of	a	command	bar	button	control	to	the	Clipboard.

expression.CopyFace

expression			Required.	An	expression	that	returns	a	CommandBarButton
object.

Remarks

Use	the	PasteFace	method	to	paste	the	contents	of	the	Clipboard	onto	a	button
face.

Example

This	example	finds	the	built-in	Open	button,	copies	the	button	face	to	the
Clipboard,	and	then	pastes	the	face	onto	the	Spelling	and	Grammar	button.

Set	myControl	=	CommandBars.FindControl(Type:=msoControlButton,	Id:=23)

myControl.CopyFace

Set	myControl	=	CommandBars.FindControl(Type:=msoControlButton,	ID:=2)

myControl.PasteFace

Show	All

Delete	Method
							

Delete	method	as	it	applies	to	the	DocumentProperty	object.

Removes	a	custom	document	property.

expression.Delete

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

You	cannot	delete	a	built-in	document	property.

Delete	method	as	it	applies	to	the	AnswerWizardFiles	object.

Deletes	the	specified	object	from	its	collection.

expression.Delete(FileName)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

FileName		Required	String.	The	name	of	the	file	to	be	deleted,	including	the
fully-qualified	path,	file	name,	and	extension.

Delete	method	as	it	applies	to	the	FileDialogFilters	object.

Removes	a	file	dialog	filter.

expression.Delete(filter)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

filter		Optional	Variant.	The	filter	to	be	removed.

Delete	method	as	it	applies	to	the	ODSOFilters	object.

Deletes	a	filter	object	from	the	ODSOFilters	collection.

expression.Delete(Index,	DeferUpdate)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	number	of	the	filter	to	delete.

DeferUpdate		Optional	Boolean.

Delete	method	as	it	applies	to	the	CommandBar,	Script,	Scripts,	and
Signature	objects.

Deletes	the	specified	object	from	the	collection.

expression.Delete

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	the	Scripts	collection,	using	the	Delete	method	removes	all	scripts	from	the
specified	Word	document,	Excel	worksheet,	or	PowerPoint	slide.	A	script	anchor
is	represented	by	a	shape	in	the	host	application.	Therefore,	the	Shape	object
associated	with	each	script	anchor	of	type	msoScriptAnchor	is	deleted	from	the
Shapes	collection	in	Excel	and	PowerPoint	and	from	the	InlineShapes	and
Shapes	collections	in	Word.

Delete	method	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	and	CommandBarPopup
objects.

Deletes	the	specified	object	from	its	collection.

expression.Delete(Temporary)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Temporary		Optional	Variant.	True	to	delete	the	control	for	the	current	session.
The	application	will	display	the	control	again	in	the	next	session.

Example

As	it	applies	to	the	CommandBar	object.

This	example	deletes	all	custom	command	bars	that	aren't	visible.

foundFlag	=	False

delBars	=	0

For	Each	bar	In	CommandBars

				If	(bar.BuiltIn	=	False)	And	_

				(bar.Visible	=	False)	Then

								bar.Delete

								foundFlag	=	True

								delBars	=	delBars	+	1

				End	If

Next	bar

If	Not	foundFlag	Then

				MsgBox	"No	command	bars	have	been	deleted."

Else

				MsgBox	delBars	&	"	custom	bar(s)	deleted."

End	If

As	it	applies	to	the	DocumentProperty	object.

This	example	deletes	a	custom	document	property.	For	this	example	to	run
properly,	you	must	have	a	custom	DocumentProperty	object	named
"CustomNumber".

ActiveDocument.CustomDocumentProperties("CustomNumber").Delete

Show	All

DoAlert	Method
							

Displays	an	alert	and	returns	a	Long	that	indicates	which	button	the	user
pressed.	You	can	choose	to	display	this	alert	either	through	the	Microsoft	Office
Assistant	or	as	a	normal	message	box.

expression.DoAlert(bstrAlertTitle,	bstrAlertText,	alb,	alc,	ald,	alq,
varfSysAlert)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

bstrAlertTitle		Required	String.	Sets	the	title	of	the	alert.

bstrAlertText		Required	String.	Sets	the	text	of	the	alert.

alb		Required	MsoAlertButtonType.	Determines	which	buttons	are	displayed
on	the	alert.

MsoAlertButtonType	can	be	one	of	these	MsoAlertButtonType	constants.
msoAlertButtonAbortRetryIgnore
msoAlertButtonOK
msoAlertButtonOKCancel
msoAlertButtonRetryCancel
msoAlertButtonYesAllNoCancel	Only	use	this	when	the	varfSysAlert
argument	is	set	to	False.
msoAlertButtonYesNo
msoAlertButtonYesNoCancel

alc		Required	MsoAlertIconType.	Determines	the	icon	that	is	displayed	on	the
alert.

MsoAlertIconType	can	be	one	of	these	MsoAlertIconType	constants.
msoAlertIconCritical

msoAlertIconInfo
msoAlertIconNoIcon
msoAlertIconQuery
msoAlertIconWarning

ald		Required	MsoAlertDefaultType.	Determines	which	button	is	set	as	the
default	button	of	the	alert.	If	this	argument	is	set	to	a	value	greater	than	the
number	of	buttons,	an	error	is	returned.

MsoAlertDefaultType	can	be	one	of	these	MsoAlertDefaultType	constants.
msoAlertDefaultFifth
msoAlertDefaultFirst
msoAlertDefaultFourth
msoAlertDefaultSecond
msoAlertDefaultThird

alq		Required	MsoAlertCancelType.	Always	set	this	to
msoAlertCancelDefault.	Any	other	setting	may	return	an	error.

MsoAlertCancelType	can	be	one	of	these	MsoAlertCancelType	constants.
msoAlertCancelDefault
msoAlertCancelFifth
msoAlertCancelFirst
msoAlertCancelFourth
msoAlertCancelSecond
msoAlertCancelThird

varfSysAlert		Required	Boolean.	True	if	the	alert	is	displayed	in	a	message	box
or	False	if	the	alert	is	displayed	through	the	Office	Assistant.

Remarks

The	return	values	of	the	DoAlert	method	corresponds	to	the	values	of	the
vbMsgBoxResult	enumerated	type	(for	example,	vbYes,	vbNo,	or	vbCancel).
In	addition	to	these	values,	the	following	values	may	also	be	returned:

"Yes	to	all"	=	8
"Try	again"	=	10
"Continue"	=	11

Example

The	following	example	displays	an	alert	through	the	Office	Assistant	and
displays	a	message	box	indicating	which	button	the	user	pressed.	If	the	assistant
is	disabled,	the	alert	is	displayed	in	a	normal	message	box.

Sub	AssistantAlert()

				With	Application.Assistant

								Select	Case	_

												.DoAlert(_

												"Test",	_

												"Click	a	button.",	_

												msoAlertButtonYesAllNoCancel,	_

												msoAlertIconCritical,	_

												msoAlertDefaultSecond,	_

												msoAlertCancelFirst,	_

												False)

												Case	vbYes:	MsgBox	"The	user	clicked	Yes."

												Case	vbNo:	MsgBox	"The	user	clicked	No."

												Case	vbCancel:	MsgBox	"The	user	clicked	Cancel."

												Case	8:	MsgBox	"The	user	clicked	Yes	To	All"	'This	is	the	return	value	for	YesToAll

												Case	Else

								End	Select

				End	With

End	Sub

EndWizard	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Releases	the	variable	returned	by	the	StartWizard	method.

Note			You	should	use	this	method	only	with	the	StartWizard	method.

expression.EndWizard(WizardID,	varfSuccess,	Animation)

expression				Required.	An	expression	that	returns	an	Assistant	object.

WizardID			Required	Long.	The	number	returned	by	the	StartWizard	method.

varfSuccess			Required	Boolean.	True	to	indicate	that	the	user	completed	the
wizard	successfully.

Animation			Optional	Variant.	The	animation	the	Office	Assistant	performs	if
varfSuccess	is	set	to	True.	The	default	value	is
msoAnimationCharacterSuccessMajor.

Example

This	example	closes	the	Office	Assistant	for	a	wizard	session	that	was	completed
successfully	by	the	user.	The	variable	lHelpForWiz	was	assigned	the	return
value	of	the	StartWizard	method.

Assistant.EndWizard	WizardId:=lHelpForWiz,	_

				varfSuccess:=True,	Animation:=msoAnimationGoodbye

Show	All

Execute	Method
							

Execute	method	as	it	applies	to	the	FileSearch	object.

Begins	the	search	for	the	specified	file(s).	Returns	a	Long;	zero	(0)	if	no	files	are
found,	or	a	positive	number	if	one	or	more	files	are	found.

expression.Execute(SortBy,	SortOrder,	AlwaysAccurate)

expression			Required.	An	expression	that	returns	a	FileSearch	object.

SortBy		Optional	MsoSortBy.	The	method	used	to	sort	the	returned	file(s).

MsoSortBy	can	be	one	of	these	MsoSortBy	constants.
msoSortByFileName	default
msoSortByFileType
msoSortByLastModified
msoSortByNone
msoSortBySize

SortOrder		Optional	MsoSortOrder.	The	order	in	which	the	returned	file(s)	are
sorted.

MsoSortOrder	can	be	one	of	these	MsoSortOrder	constants.
msoSortOrderAscending	default
msoSortOrderDescending

AlwaysAccurate		Optional	Boolean.	True	to	have	the	file	search	include	files
that	have	been	added,	modified,	or	deleted	since	the	file	index	was	last	updated.
The	default	value	is	True.

Execute	method	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	CommandBarPopup,	and
FileDialog	objects.

For	the	command	bar	objects,	runs	the	procedure	or	built-in	command	assigned
to	the	specified	command	bar	control.	For	custom	controls,	use	the	OnAction
property	to	specify	the	procedure	to	be	run.

For	FileDialog	objects	of	type	msoFileDialogOpen	or	msoFileDialogSaveAs,
carries	out	a	user's	action	right	after	the	Show	method	is	invoked.

expression.Execute

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	FileSearch	object.

This	example	searches	for	all	files	in	the	My	Documents	folder	that	end	with	the
file	name	extension	“.doc”	and	then	displays	the	location	and	name	of	each	file
found.	The	example	also	sorts	the	list	of	returned	file	names	in	ascending
alphabetic	order.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.FileName	=	"*.doc"

				If	.Execute(SortBy:=msoSortbyFileName,	_

												SortOrder:=msoSortOrderAscending)	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

												"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

As	it	applies	to	the	CommandBarButton,	CommandBarComboBox,
CommandBarControl,	and	CommandBarPopup	objects.

This	Microsoft	Excel	example	creates	a	command	bar	and	then	adds	a	built-in
command	bar	button	control	to	it.	The	button	executes	the	Excel	AutoSum
function.	This	example	uses	the	Execute	method	to	total	the	selected	range	of
cells	when	the	command	bar	appears.

Dim	cbrCustBar	As	CommandBar

Dim	ctlAutoSum	As	CommandBarButton

Set	cbrCustBar	=	CommandBars.Add("Custom")

Set	ctlAutoSum	=	cbrCustBar.Controls	_

				.Add(msoControlButton,	CommandBars("Standard")	_

				.Controls("AutoSum").Id)

cbrCustBar.Visible	=	True

ctlAutoSum.Execute

FindControl	Method
							

Returns	a	CommandBarControl	object	that	fits	a	specified	criteria.

expression.FindControl(Type,	Id,	Tag,	Visible,	Recursive)

expression			Required.	An	expression	that	returns	a	CommandBars	object.

Type			Optional	MsoControlType.	The	type	of	control.

MsoControlType	type	can	be	one	of	these	MsoControlType	constants.
msoControlActiveX
msoControlCustom
msoControlButton
msoControlEdit
msoControlDropdown
msoControlComboBox
msoControlButtonDropdown
msoControlSplitDropdown
msoControlGenericDropdown
msoControlGraphicCombo
msoControlSplitButtonMRUPopup
msoControlSplitExpandingGrid
msoControlGraphicDropdown
msoControlPopup
msoControlGraphicPopup
msoControlButtonPopup
msoControlGauge
msoControlLabel
msoControlExpandingGrid
msoControlGrid

msoControlOCXDropDown
msoControlSplitButtonPopup
msoControlPane

Id			Optional	Variant.	The	identifier	of	the	control.

Tag			Optional	Variant.	The	tag	value	of	the	control.

Visible				Optional	Variant.	True	to	include	only	visible	command	bar	controls
in	the	search.	The	default	value	is	False.	Visible	command	bars	include	all
visible	toolbars	and	any	menus	that	are	open	at	the	time	the	FindControl
method	is	executed.

Recursive				Optional	Boolean.	True	to	include	the	command	bar	and	all	of	its
pop-up	subtoolbars	in	the	search.	This	argument	only	applies	to	the
CommandBar	object.	The	default	value	is	False.

Remarks

If	the	CommandBars	collection	contains	two	or	more	controls	that	fit	the	search
criteria,	FindControl	returns	the	first	control	that's	found.	If	no	control	that	fits
the	criteria	is	found,	FindControl	returns	Nothing.

Example

This	example	finds	the	first	control	on	the	command	bar	named	“Custom”.	If	the
control	is	a	button,	the	example	uses	the	FindControl	method	to	find	the	Copy
button	(on	the	Standard	toolbar)	and	then	copies	the	face	from	the	Copy	button
and	pastes	it	onto	the	control.

Set	oldCtrl	=	CommandBars("Custom").Controls(1)

If	oldCtrl.Type	=	1	Then

				Set	newCtrl	=	CommandBars.FindControl(Type:=	_

								MsoControlButton,	ID:=	_

								CommandBars("Standard").Controls("Copy").ID)

				NewCtrl.CopyFace

				OldCtrl.PasteFace

End	If

FindControls	Method
							

Returns	the	CommandBarControls	collection	that	fits	the	specified	criteria.

expression.FindControls(Type,	Id,	Tag,	Visible)

expression			Required.	An	expression	that	returns	a	CommandBarControls
collection.

Type			Optional	MsoControlType.	The	type	of	control.

MsoControlType	type	can	be	one	of	these	MsoControlType	constants.
msoControlActiveX
msoControlCustom
msoControlButton
msoControlEdit
msoControlDropdown
msoControlComboBox
msoControlButtonDropdown
msoControlSplitDropdown
msoControlGenericDropdown
msoControlGraphicCombo
msoControlSplitButtonMRUPopup
msoControlSplitExpandingGrid
msoControlGraphicDropdown
msoControlPopup
msoControlGraphicPopup
msoControlButtonPopup
msoControlGauge
msoControlLabel
msoControlExpandingGrid

msoControlGrid
msoControlOCXDropDown
msoControlSplitButtonPopup
msoControlPane
Id			Optional	Variant.	The	control’s	identifier.

Tag			Optional	Variant.	The	control’s	tag	value.

Visible				Optional	Variant.	True	to	include	only	visible	command	bar	controls
in	the	search.	The	default	value	is	False.

Remarks

If	no	controls	that	fits	the	criteria	are	found,	the	FindControls	method	returns
Nothing.

Example

This	example	uses	the	FindControls	method	to	return	all	members	of	the
CommandBars	collection	that	have	an	ID	of	18	and	displays	(in	a	message	box)
the	number	of	controls	that	meet	the	search	criteria.

Dim	myControls	As	CommandBarControls

Set	myControls	=	CommandBars.FindControls(Type:=msoControlButton,	ID:=18)

MsgBox	"There	are	"	&	myControls.Count	&	_

				"	controls	that	meet	the	search	criteria."

Help	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Displays	the	Office	Assistant	and	the	built-in	"What	would	you	like	to	do?"
Assistant	balloon	for	standard	Office	online	Help.

expression.Help

expression			Required.	An	expression	that	returns	an	Assistant	object.

Example

This	example	displays	the	built-in	"What	would	you	like	to	do?"	Assistant
balloon	when	the	user	checks	the	"I	need	more	information"	check	box.

Set	b	=	Assistant.NewBalloon

With	b

				.Heading	=	"User	Information"

				.Text	=	"Select	your	skill	level"

				.CheckBoxes(1).Text	=	"Beginner."

				.CheckBoxes(2).Text	=	"Advanced."

				.CheckBoxes(3).Text	=	"I	need	more	information."

				.Show

End	With

If	b.CheckBoxes(3).Checked	=	True	Then

				Assistant.Help

End	If

Show	All

Item	Method
							

Item	method	as	it	applies	to	the	COMAddIns	object.

Returns	a	member	of	the	specified	COMAddIns	collection.

expression.Item(Index)

expression			Required.	The	specified	COMAddIns	collection.

Index		Required	Variant.	Either	an	ordinal	value	that	returns	the	COM	add-in	at
that	position	in	the	COMAddIns	collection,	or	a	String	value	that	represents	the
ProgID	of	the	specified	COM	add-in.

Item	method	as	it	applies	to	the	FileDialogFilters	object.

Returns	a	FileDialogFilter	object	that	is	a	member	of	the	specified
FileDialogFilters	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of	the	FileDialogFilter	object	to	be
returned.

Item	method	as	it	applies	to	the	HTMLProjectItems	object.

Returns	the	HTMLProjectItem	object	that	represents	a	particular	project	in	the
Microsoft	Script	Editor.

expression.Item(Index)

expression			Required.	An	HTMLProjectItems	collection.

Index		Required	Variant.	The	name	or	index	number	of	the	HTML	project	item

to	be	returned.

Item	method	as	it	applies	to	the	Scripts	object.

Returns	a	member	of	the	Scripts	collection.	Accepts	the	index	number	or	ID	of
the	script	you	want	the	Microsoft	Office	application	to	return.	The	Item	method
accepts	a	Variant	value	that	can	accept	either	an	ordinal	number	(index	value),
which	returns	the	script	stored	at	that	position	in	the	Scripts	collection,	or	a
String	value	that	represents	the	name	or	ID	of	the	script.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	Scripts	object.

Index		Required	Variant.	The	ID	or	index	number	of	the	script	to	be	returned.

Remarks

The	Scripts	collection	contains	all	of	the	scripts	in	a	given	document,	in	source
order	(the	order	in	which	Script	objects	appear	in	the	source	file).	Scripts	are
maintained	in	source	order	regardless	of	their	location	in	the	document—that	is,
whether	they’re	in	the	header	or	the	body	text.

You	can	use	the	Item	method	to	access	a	script	in	the	Scripts	collection	by	using
the	ID	of	the	<SCRIPT>	tag.	The	ID	attribute	of	the	<SCRIPT>	tag	is	identical
to	the	Id	property	of	the	Script	object.	If	there	are	duplicate	or	multiple	IDs	in
the	document	and	you	use	the	Id	property	of	a	Script	object	to	access	a	script	by
using	the	Item	method,	Office	returns	the	first	script	that	matches	the	ID;
additional	scripts	with	the	same	ID	are	ignored.

New	script	anchors	added	to	the	collection	are	appended	to	the	end	of	the
Scripts	collection	in	the	order	in	which	they	were	added	to	the	document.	The
script	anchors	remain	in	this	order	until	the	document	is	saved	as	HTML,	closed,
and	then	opened	again	in	the	host	application.	Following	these	steps	causes	the
Scripts	collection	to	be	indexed	in	the	order	in	which	the	script	anchors	appear
in	the	document,	which	may	be	different	than	the	order	in	which	they	were
added	to	it.	Therefore,	you’re	advised	to	use	the	Id	property	of	the	Script	object,
rather	than	the	script’s	position	in	the	collection,	to	ensure	positive	identification
of	the	script.

Item	method	as	it	applies	to	the	FileDialogSelectedItems	object.

Returns	a	String	that	corresponds	to	the	path	of	one	of	the	files	that	the	user
selected	from	a	file	dialog	box	that	was	displayed	using	the	Show	method	of	the
FileDialog	object.	The	FileDialogSelectedItems	collection	is	a	collection	of
strings.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of		the	string	to	be	returned.

LoadFromFile	Method
							

Updates	the	text	in	the	Microsoft	Script	Editor	with	text	from	the	specified	file
(on	disk).

expression.LoadFromFile(Filename)

expression			An	HTMLProjectItem	object.

Filename			Required	String.	The	fully	qualified	path	of	the	text	file	that	contains
the	text	to	be	loaded.

Example

This	example	determines	whether	the	specified	HTML	project	item	is	open;	if
the	item	is	open,	the	example	then	loads	script	from	the	specified	file.

If	ActiveWorkbook.HTMLProject.HTMLProjectItems	_

				.Item(1).IsOpen	Then

				ActiveWorkbook.HTMLProject.HTMLProjectItems	_

								.Item(1).LoadFromFile	("C:\MyScript.txt")

Else

				MsgBox	"The	HTMLProjectItem	is	not	open."

End	If

Show	All

Move	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Move	method	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	and	CommandBarPopup
objects.

Moves	the	specified	command	bar	control	to	an	existing	command	bar.

expression.Move(Bar,	Before)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Bar		Optional	Variant.	A	CommandBar	object	that	represents	the	destination
command	bar	for	the	control.	If	this	argument	is	omitted,	the	control	is	moved	to
the	end	of	the	command	bar	where	the	control	currently	resides.

Before		Optional	Variant.	A	number	that	indicates	the	position	for	the	control.
The	control	is	inserted	before	the	control	currently	occupying	this	position.	If
this	argument	is	omitted,	the	control	is	inserted	on	the	same	command	bar.

Move	method	as	it	applies	to	the	Assistant	object.

Moves	the	Office	Assistant	to	the	specified	location.

expression.Move(xLeft,	yTop)

expression			Required.	An	expression	that	returns	an	Assistant	object.

xLeft		Required	Integer.	The	left	position	of	the	Office	Assistant	window,	in
points.

yTop		Required	Integer.	The	top	position	of	the	Office	Assistant	window,	in
points.

Example

As	it	applies	to	the	CommandBarButton,	CommandBarComboBox,
CommandBarControl,	and	CommandBarPopup	objects.

This	example	moves	the	first	combo	box	control	on	the	command	bar	named
Custom	to	the	position	before	the	seventh	control	on	that	command	bar.	The
example	sets	the	tag	to	"Selection	box"	and	assigns	the	control	a	low	priority	so
that	it	will	likely	be	dropped	from	the	command	bar	if	all	the	controls	don't	fit	in
one	row.

Set	allcontrols	=	CommandBars("Custom").Controls

For	Each	ctrl	In	allControls

				If	ctrl.Type	=	msoControlComboBox	Then

								With	ctrl

												.Move	Before:=7

													.Tag	=	"Selection	box"

													.Priority	=	5

									End	With

									Exit	For

				End	If

Next

As	it	applies	to	the	Assistant	object.

This	example	displays	the	Office	Assistant	in	the	specified	location	and	sets
several	options	before	making	it	visible.

With	Assistant

				.Reduced	=	True

				.Move	xLeft:=	400,	yTop:=	300

				.MoveWhenInTheWay	=	True

				.TipOfDay	=	True

				.Visible	=	True

				.Animation	=	msoAnimationGreeting

End	With

NewSearch	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Resets	all	the	search	criteria	settings	to	their	default	settings.

expression.NewSearch

expression			Required.	An	expression	that	returns	a	FileSearch	object.

Remarks

Search	criteria	settings	are	retained	throughout	an	application	session.	Use	this
method	every	time	you	change	search	criteria.	This	method	will	not	reset	the
value	of	the	LookIn	property.

Example

This	example	uses	the	NewSearch	method	to	reset	the	default	search	criteria
before	beginning	a	new	search.

With	Application.FileSearch

				.NewSearch

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.FileName	=	"run"

				.TextOrProperty	=	"San*"

				.MatchAllWordForms	=	True

				.FileType	=	msoFileTypeAllFiles

				If	.Execute()	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

								"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

Show	All

Open	Method
							

Opens	the	specified	HTML	project	or	HTML	project	item	in	the	Microsoft	Script
Editor	in	one	of	the	views	specified	by	the	optional	MsoHTMLProjectOpen
constants	listed	below.	If	one	of	the	constants	is	not	specified,	the	project	item	is
opened	in	the	default	view.

expression.Open(OpenKind)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

OpenKind		Optional	MsoHTMLProjectOpen.	The	view	in	which	the	specified
project	or	project	item	is	opened.

MsoHTMLProjectOpen	can	be	one	of	these	MsoHTMLProjectOpen	constants.
msoHTMLProjectOpenSourceView
msoHTMLProjectOpenTextView

Remarks

The	default	view	is	determined	by	whether	or	not	the	Microsoft	Script	Editor	is
open	when	the	Open	method	is	executed.	If	the	Script	Editor	is	not	open,	the
Open	method	starts	the	Script	Editor	in	source	view.	If	the	Script	Editor	is
already	open,	the	Open	method	activates	the	Script	Editor	and	displays	the	script
in	the	current	view.

Example

This	example	opens	the	HTML	project	in	the	active	workbook	in	source	view.

AppActiveWorkbook.HTMLProject.Open	_

				(msoHTMLProjectOpenSourceView)

This	example	opens	the	first	HTML	project	item	in	the	active	workbook	in	text
view.

ActiveWorkbook.HTMLProject.HTMLProjectItems	_

				Item(1).Open	(msoHTMLProjectOpenTextView)

Show	All

PasteFace	Method
							

Pastes	the	contents	of	the	Clipboard	onto	a	command	bar	button	control.

expression.PasteFace

expression			Required.	An	expression	that	returns	a	CommandBarButton
object.

Example

This	example	finds	the	built-in	FileOpen	button	and	pastes	the	face	from	the
Spelling	and	Grammar	button	onto	it	from	the	Clipboard.

Set	myControl	=	CommandBars.FindControl(Type:=msoControlButton,	Id:=2)

myControl.CopyFace

Set	myControl	=	CommandBars.FindControl(Type:=msoControlButton,	Id:=23)

myControl.PasteFace

RefreshDocument	Method
							

Refreshes	the	specified	HTML	project	in	the	Microsoft	Office	host	application.

expression.RefreshDocument(Refresh)

expression			An	expression	that	returns	an	HTMLProject	object.

Refresh			Required	Boolean.	True	if	all	changes	are	to	be	saved;	False	if	all
changes	are	to	be	ignored.

Remarks

Using	this	method	is	equivalent	to	clicking	the	Refresh	button	on	the	Refresh
toolbar	in	the	Office	host	application.	If	you	refresh	the	document	by	setting	the
RefreshDocument	method	to	True,	all	changes	to	the	HTML	source	made	in
the	Microsoft	Script	Editor	are	saved	in	the	Office	host	application.	If	you	set
RefreshDocument	to	False,	all	changes	to	the	HTML	source	are	ignored.	Note
that	the	value	returned	by	the	State	method	is	affected	by	the	RefreshDocument
method.	If	you	call	RefreshDocument	(True),	the	State	method	returns
msoHTMLProjectStateDocumentProjectUnlocked	if	it	is	called	after	the
refresh	operation.

Example

This	example	refreshes	the	HTML	project	in	the	active	workbook	in	the	host
application.

ActiveWorkbook.HTMLProject.RefreshDocument	(True)

RefreshProject	Method
							

Refreshes	the	specified	HTML	project	in	the	Microsoft	Script	Editor.

expression.RefreshProject

expression			An	expression	that	returns	an	HTMLProject	object.

Remarks

Using	this	method	is	equivalent	to	clicking	the	Refresh	button	on	the	Refresh
toolbar	in	the	Microsoft	Script	Editor.	If	you	refresh	the	document	by	setting
RefreshDocument	to	True,	all	changes	to	the	HTML	source	made	in	the	Office
host	application	are	saved	to	the	HTML	project	in	the	Microsoft	Script	Editor.	If
you	set	RefreshDocument	to	False,	all	changes	to	the	HTML	source	are
ignored.

Example

This	example	refreshes	the	HTML	project	in	the	Microsoft	Script	Editor.

ActiveWorkbook.HTMLProject.RefreshProject	(True)

RefreshScopes	Method
							

Refreshes	the	list	of	currently	available	ScopeFolder	objects.

expression.RefreshScopes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	all	of	the	currently	available	ScopeFolder
objects	on	the	C:\	drive	in	the	My	Computer	scope.

Sub	TestRefreshScopesMethod()

'	Displays	what	happens	before	and	after	the	RefreshScopes

'	method	is	called	when	a	new	folder	is	added	to	the	list

'	of	scope	folders.

				'	List	before	the	folder	is	created.

				Call	ListFolderNames

				

				'	Create	a	new	folder	on	the	C:\	drive	in	My	Computer.

				'	An	error	will	occur	if	this	folder	already	exists.

				MkDir	Path:="C:\Delete_After_Using"

				

				'	List	after	the	folder	is	created.

				Call	ListFolderNames

				

				'	Refresh	the	list	of	folders.

				Application.FileSearch.RefreshScopes

				

				'	The	newly-created	folder	now	appears	in	the	list.

				Call	ListFolderNames

				

End	Sub

Sub	ListFolderNames()

				Dim	strResults	As	String

				

				'	Loop	through	all	the	folder	names	on	the	C:\	drive

				'	in	My	Computer	and	report	the	results.

				'	.SearchScopes.Item(1)	=	"My	Computer"

				'	.ScopeFolders.Item(2)	=	"C:\"

				With	Application.FileSearch.SearchScopes.Item(1).	_

								ScopeFolder.ScopeFolders.Item(2)

								

								For	i	=	1	To	.ScopeFolders.Count

												strResults	=	strResults	&	.ScopeFolders.	_

																Item(i).Name	&	vbCrLf

								Next	i

								

								MsgBox	"Folder	Names	on	C:\...."	&	vbCrLf	&	strResults

				

				End	With

				

End	Sub

Show	All

ReleaseFocus	Method
							

Releases	the	user	interface	focus	from	all	command	bars.

expression.ReleaseFocus

expression			Required.	An	expression	that	returns	a	CommandBars	object.

Example

This	example	adds	three	blank	buttons	to	the	command	bar	named	“Custom”	and
sets	the	focus	to	the	center	button.	The	example	then	waits	five	seconds	before
releasing	the	user	interface	focus	from	all	command	bars.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlButton

				.Controls.Add	Type:=msoControlButton

				.Controls.Add	Type:=msoControlButton

				.Visible	=	True

End	With

Set	myControl	=	CommandBars("Custom").Controls(2)

With	myControl

				.SetFocus

End	With

PauseTime	=	5			'	Set	duration.

				Start	=	Timer			'	Set	start	time.

				Do	While	Timer	<	Start	+	PauseTime

								DoEvents				'	Yield	to	other	processes.

				Loop

				Finish	=	Timer

CommandBars.ReleaseFocus

Show	All

Remove	Method
							

Remove	method	as	it	applies	to	the	NewFile	object.

Removes	an	item	from	the	New	Item	task	pane.	Returns	a	Boolean.

expression.Remove(FileName,	Section,	DisplayName,	Action)

expression			Required.	An	expression	that	returns	a	NewFile	object.

FileName		Required	String.	The	name	of	the	file	reference.

Section		Optional	Variant.	The	section	of	the	task	pane	where	the	file	reference
exists.	Can	be	any	msoFileNewSection	constant.

DisplayName		Optional	Variant.	The	display	text	of	the	file	reference.

Action		Optional	Variant.	The	action	taken	when	a	user	clicks	on	the	item.	Can
be	any	msoFileNewAction	constant.

Remove	method	as	it	applies	to	the	FileTypes,	PropertyTests,	and
SearchFolders	objects.

Removes	the	specified	object	from	the	collection.

expression.Remove(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of	the	property	test	to	be	removed.

Example

As	it	applies	to	the	FileTypes,	PropertyTests,	and	SearchFolders	objects.

This	example	removes	the	first	search	criterion	from	the	collection.

Application.FileSearch.PropertyTests.Remove(1)

As	it	applies	to	the	NewFile	object.

This	example	removes	the	specified	item	from	Word's	NewDocument	task	pane.

Sub	RemoveDocFromTaskPane()

				Application.NewDocument.Remove	FileName:="C:\Newfile.doc",	_

												Section:=msoNewfromTemplate,	DisplayName:="NewFile"

				CommandBars("Task	Pane").Visible	=	True

End	Sub

Show	All

RemoveItem	Method
							

Removes	an	item	from	a	command	bar	combo	box	control.

Note			The	property	fails	when	applied	to	controls	other	than	list	controls.

expression.RemoveItem(Index)

expression			Required.	An	expression	that	returns	a	CommandBarComboBox
object.

Index			Required	Long.	The	item	to	be	removed	from	the	list.

Example

This	example	determines	whether	there	are	more	than	three	items	in	the
specified	combo	box.	If	there	are	more	than	three	items,	the	example	removes
the	second	item,	alters	the	style,	and	sets	a	new	value.	It	also	sets	the	Tag
property	of	the	parent	object	(the	CommandBarControl	object)	to	show	that	the
list	has	changed.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.AddItem	"View	News",	4

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

End	With

Set	myControl	=	myBar.Controls(1)

With	myControl

				If	.ListCount	>	3	Then

								.RemoveItem	2

								.Style	=	msoComboNormal

								.Text	=	"New	Default"

									Set	ctrl	=	.Parent

				End	If

End	With

Show	All

Reset	Method
							

Resets	a	built-in	command	bar	to	its	default	configuration,	or	resets	a	built-in
command	bar	control	to	its	original	function	and	face.

expression.Reset

expression			Required.	An	expression	that	returns	a	CommandBar,
CommandBarControl,	CommandBarButton,	CommandBarPopup,	or
CommandBarComboBox	object.

Remarks

Resetting	a	built-in	control	restores	the	actions	originally	intended	for	the	control
and	resets	each	of	the	control's	properties	back	to	its	original	state.	Resetting	a
built-in	command	bar	removes	custom	controls	and	restores	built-in	controls.

Example

This	example	uses	the	value	of	user	to	adjust	the	command	bars	according	to	the
user	level.	If	user	is	"Level	1,"	the	command	bar	named	"Custom"	is	displayed.
If	user	is	any	other	value,	the	built-in	Visual	Basic	command	bar	is	reset	to	its
default	state	and	the	command	bar	named	"Custom"	is	disabled.

Set	myBar	=	CommandBars("Custom")

If	user	=	"Level	1"	Then

				myBar.Visible	=	True

Else

				CommandBars("Visual	Basic").Reset

				myBar.Enabled	=	False

End	If

ResetFileList	Method
							

Resets	the	list	of	files	for	the	current	AnswerWizard	to	the	default	list	of	files	for
the	Microsoft	Office	host	application.

expression.ResetFileList

expression			An	expression	that	returns	an	AnswerWizard	object.

Remarks

Use	this	method	to	restore	all	entries	in	the	current	AnswerWizard	file	list	to	the
list	in	the	Windows	registry	for	the	host	application.	You	can	establish	a	custom
default	file	list	in	the	registry	by	adding	the	names	of	the	custom	files	to	the
appropriate	registry	key.

Example

This	example	resets	the	file	list	for	the	current	AnswerWizard	and	then	displays
both	the	file	count	and	the	file	names	in	a	message	box.

Dim	customAnswerWizard	As	AnswerWizard

Dim	strFileList	As	String

Dim	intCounter	As	Integer

Dim	intNumFiles	As	Integer

Set	customAnswerWizard	=	Application.AnswerWizard

intCounter	=	1

customAnswerWizard.ResetFileList

strFileList	=	""

intNumFiles	=	customAnswerWizard.Files.Count

For	intCounter	=	1	To	(intNumFiles)

				strFileList	=	strFileList	&	_

				customAnswerWizard.Files.Item(intCounter)	&	Chr(13)

Next

MsgBox	"There	are	"	&	customAnswerWizard.Files.Count	&	_

				"	files	avaialble	through	this	AnswerWizard:	"	&	_

				Chr(13)	&	strFileList

ResetTips	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Resets	the	application	tips	that	appear	in	the	Office	Assistant	balloon.

expression.ResetTips

expression			Required.	An	expression	that	returns	an	Assistant	object.

Remarks

The	ResetTips	method	corresponds	to	the	Reset	my	tips	button	on	the	Options
tab	in	the	Office	Assistant	dialog	box.

Example

This	example	resets	the	application	tips	before	making	the	Office	Assistant
visible.	A	confirmation	balloon	will	appear,	telling	the	user	that	his	or	her
application	tips	have	been	reset.

With	Application.Assistant

				.On	=	True

				.Visible	=	True

				.Animation	=	msoAnimationGreeting

				.ResetTips

End	With

SaveCopyAs	Method
							

Saves	the	specified	HTML	project	item	using	a	new	file	name.

expression.SaveCopyAs(Filename)

expression			An	HTMLProjectItem	object.

Filename			Required	String.	The	fully	qualified	path	of	the	file	to	which	you
want	to	save	the	HTML	project	item.

Example

This	example	saves	a	copy	of	the	text	of	the	current	HTML	project	item	to	the
file	NewScript.txt.

ActiveWorkbook.HTMLProject.HTMLProjectItems.	_

				Item(1).SaveCopyAs("C:\NewScript.txt")

SetAvoidRectangle	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Prevents	the	Office	Assistant	balloon	from	being	displayed	in	a	specified	area	of
the	screen.

expression.SetAvoidRectangle(Left,	Top,	Right,	Bottom)

expression			Required.	An	expression	that	returns	an	Assistant	object.

Left,	Top,	Right,	Bottom			Required	Long.	The	coordinates	(in	points	and
relative	to	the	screen)	of	the	area	of	the	screen	that	the	Office	Assistant	balloon
will	avoid	when	it's	displayed.

Remarks

This	property	is	intended	to	prevent	the	Office	Assistant	balloon	from
overlapping	custom	dialog	boxes	and	wizards.

Example

This	example	prevents	the	Office	Assistant	balloon	represented	by	the	variable
myBalloon	from	being	displayed	in	the	region	of	the	screen	denoted	by	the
specified	coordinates.

Set	myBalloon	=	Assistant.NewBalloon

With	myBalloon

				.SetAvoidRectangle	300,	250,	700,	500

				.Text	=	"Cannot	display	in	coordinates	"	&	_

								"300,	250,	700,	500."

				.Show

End	With

Show	All

SetFocus	Method
							

Moves	the	keyboard	focus	to	the	specified	command	bar	control.	If	the	control	is
disabled	or	isn't	visible,	this	method	will	fail.

Remarks

The	focus	on	the	control	is	subtle.	After	you	use	this	method,	you	will	notice	a
three	dimensional	highlight	on	the	control.	Pressing	the	arrow	keys	will	navigate
in	the	toolbars,	as	if	you	had	arrived	at	the	control	by	pressing	only	keyboard
controls.

expression.SetFocus

expression			Required.	An	expression	that	returns	a	CommandBarControl,
CommandBarButton,	CommandBarPopup,	or	CommandBarComboBox
object.

Example

This	example	creates	a	command	bar	named	"Custom"	and	adds	a	ComboBox
control	and	a	Button	control	to	it.	The	example	then	uses	the	SetFocus	method
to	set	the	focus	to	the	ComboBox	control.

Set	focusBar	=	CommandBars.Add(Name:="Custom")

With	CommandBars("Custom")

				.Visible	=	True

				.Position	=	msoBarTop

End	With

Set	testComboBox	=	CommandBars("Custom").Controls	_

				.Add(Type:=msoControlComboBox,	ID:=1)

With	testComboBox

				.AddItem	"First	Item",	1

				.AddItem	"Second	Item",	2

End	With

Set	testButton	=	CommandBars("Custom").Controls	_

				.Add(Type:=msoControlButton)

testButton.FaceId	=	17

'	Set	the	focus	to	the	combo	box.

testComboBox.SetFocus

SetSortOrder	Method
							

Sets	the	sort	order	for	mail	merge	data.

expression.SetSortOrder(SortField1,	SortAscending1,	SortField2,
SortAscending2,	SortField3,	SortAscending3)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

SortField1		Required	String.	The	first	field	on	which	to	sort	the	mail	merge
data.

SortAscending1		Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField1;	False	to	perform	a	descending	sort.

SortField2		Optional	String.	The	second	field	on	which	to	sort	the	mail	merge
data.	Default	is	an	empty	string.

SortAscending2		Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField2;	False	to	perform	a	descending	sort.

SortField3		Optional	String.	The	third	field	on	which	to	sort	the	mail	merge
data.	Default	is	an	empty	string.

SortAscending3		Optional	Boolean.	True	(default)	to	perform	an	ascending	sort
on	SortField3;	False	to	perform	a	descending	sort.

Example

The	following	example	sorts	the	data	source	first	according	to	ZIP	code	in
descending	order,	then	on	last	name	and	first	name	in	ascending	order.

Sub	SetDataSortOrder()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				appOffice.SetSortOrder	SortField1:="ZipCode",	_

								SortAscending1:=False,	SortField2:="LastName",	_

								SortField3:="FirstName"

End	Sub

Show	All

Show	Method
							

Show	method	as	it	applies	to	the	Balloon	object.

Displays	the	specified	balloon	object.	Returns	an	MsoBalloonButtonType
constant	that	indicates	which	button	or	label	the	user	clicks.	Read-only.

MsoBalloonButtonType	can	be	one	of	these	MsoBalloonButtonType	constants.
msoBalloonButtonAbort
msoBalloonButtonBack
msoBalloonButtonCancel
msoBalloonButtonClose
msoBalloonButtonIgnore
msoBalloonButtonNext
msoBalloonButtonNo
msoBalloonButtonNull
msoBalloonButtonOK
msoBalloonButtonOptions
msoBalloonButtonRetry
msoBalloonButtonSearch
msoBalloonButtonSnooze
msoBalloonButtonTips
msoBalloonButtonYes
msoBalloonButtonYesToAll

expression.Show

expression			Required.	An	expression	that	returns	a	Balloon	object.

Show	method	as	it	applies	to	the	FileDialog	object.

Displays	a	file	dialog	box	and	returns	a	Long	indicating	whether	the	user

pressed	the	action	button	(-1)	or	the	cancel	button	(0).	When	you	call	the	Show
method,	no	more	code	will	execute	until	the	user	dismisses	the	file	dialog	box.	In
the	case	of	SaveAs	and	Open	dialog	boxes,	use	the	Execute	method	right	after
the	Show	method	to	carry	out	the	user's	action.

expression.Show

expression			Required.	An	expression	that	returns	a	FileDialog	object.

Example

As	it	applies	to	the	Balloon	object.

This	example	creates	a	balloon	containing	two	balloon	label	choices	for	setting
printer	orientation:	Portrait	and	Landscape.	The	example	uses	the	Show
method	in	a	Select	Case	statement	to	determine	which	orientation	the	user	has
chosen.

Set	balNew	=	Assistant.NewBalloon

With	balNew

				.Heading	=	"Please	choose	a	printer	orientation"

				.Labels(1).Text	=	"Portrait"

				.Labels(2).Text	=	"Landscape"

				.Button	=	msoButtonSetNone

End	With

Select	Case	balNew.Show

				Case	1

								'	Insert	code	to	set	printer	to	Portrait.

				Case	2

								'	Insert	code	to	set	printer	to	Landscape.

End	Select

This	example	creates	a	balloon	containing	three	command	buttons:	Yes,	No,	and
Cancel.	The	example	uses	the	Show	method	in	a	Select	Case	statement	to
determine	the	return	value	of	the	button	clicked	by	the	user.

Set	balNew	=	Assistant.NewBalloon

With	balNew

				.Heading	=	"Are	you	sure	you	want	to	set	the	"	&	_

				"printer	orientation	to	Landscape?"

				.BalloonType	=	msoBalloonTypeButtons

				.Button	=	msoButtonSetYesNoCancel

End	With

Select	Case	balNew.Show

				Case	-2	 '	User	selected	Cancel	button.

								returnValue	=	MsgBox("Operation	canceled.",	_

								vbOKOnly,	"Printer	Message")

				Case	-3	 '	User	selected	Yes	button.

								returnValue	=	MsgBox("Printer	set	to	"	&	_

								"Landscape.",	vbOKOnly,	"Printer	Message")

				Case	-4	 '	User	selected	No	button.

								returnValue	=	MsgBox("Printer	orientation	not	"	&	_

								"reset.",	vbOKOnly,	"Printer	Message")

End	Select

As	it	applies	to	the	FileDialog	object.

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'The	user	pressed	the	action	button.

	 If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	string	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"The	path	is:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'The	user	pressed	Cancel.

	 Else

								End	If

				End	With

				'Set	the	object	variable	to	nothing.

				Set	fd	=	Nothing

End	Sub

Show	All

ShowPopup	Method
							

Displays	a	command	bar	as	a	shortcut	menu	at	the	specified	coordinates	or	at	the
current	pointer	coordinates.

Note			If	the	Position	property	of	the	command	bar	is	not	set	to	msoBarPopup,
this	method	fails.

expression.ShowPopup(x,	y)

expression			Required.	An	expression	that	returns	a	CommandBar	object.

x			Optional	Variant.	The	x-coordinate	for	the	location	of	the	shortcut	menu.	If
this	argument	is	omitted,	the	current	x-coordinate	of	the	pointer	is	used.

y			Optional	Variant.	The	y-coordinate	for	the	location	of	the	shortcut	menu.	If
this	argument	is	omitted,	the	current	y-coordinate	of	the	pointer	is	used.

Example

This	example	creates	a	shortcut	menu	containing	two	controls.	The	ShowPopup
method	is	used	to	make	the	shortcut	menu	visible.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarPopup,	Temporary:=False)

With	myBar

				.Controls.Add	Type:=msoControlButton,	Id:=3

				.Controls.Add	Type:=msoControlComboBox

End	With

myBar.ShowPopup

StartWizard	Method
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Starts	the	Office	Assistant	and	returns	a	Long	value	that	identifies	the	session.
You	should	use	this	method	only	to	run	the	Office	Assistant	in	a	custom	wizard.

Note			The	number	returned	by	StartWizard	method	is	used	by	the
ActivateWizard	and	EndWizard	methods.

expression.StartWizard(On,	Callback,	PrivateX,	Animation,	CustomTeaser,
Top,	Left,	Bottom,	Right)

expression				Required.	An	expression	that	returns	an	Assistant	object.

On			Required	Boolean.	True	to	display	the	Office	decision	balloon.	The	Office
decision	balloon	asks	the	user	whether	he	or	she	wants	help	with	the	active
custom	wizard.	It	isn't	necessary	to	use	the	Visible	property	to	display	the	Office
Assistant	if	you	specify	True	for	this	argument.

Callback			Required	String.	The	name	of	the	callback	procedure	run	by	the
Office	decision	balloon	and	the	branch	balloon.	The	branch	balloon	allows	the
user	to	choose	between	custom	Help	you've	provided	for	the	wizard	and	standard
Office	Help.

PrivateX			Required	Long.	A	number	that	identifies	the	balloon	that	initiated	the
callback	procedure.

Animation			Optional	Variant.	The	animation	the	Office	Assistant	performs
when	this	method	is	used.	The	default	value	is	msoAnimationGetWizardy.

CustomTeaser			Optional	Variant.	False	to	display	the	Office	decision	balloon.

Top,	Left,	Bottom,	Right			Optional	Variant.	The	position	of	the	corners	(in
points	and	relative	to	the	screen)	of	the	custom	wizard	form	the	Office	Assistant
will	avoid	when	the	Office	Assistant	appears.

Remarks

Unlike	callback	procedures	used	by	standard	modeless	balloons,	the	callback
procedure	called	by	the	modeless	decision	and	branch	balloons	displayed	during
an	Office	Assistant	wizard	session	takes	only	two	arguments:	an
MsoWizardMsgType	constant,	and	the	unique	value	specified	by	the	PrivateX
argument	of	the	StartWizard	method.

If	the	user	clicks	the	left	button	in	the	decision	or	branch	balloon,	the	constant
msoWizardMsgShowHelp	is	passed	to	the	first	argument	of	the	callback
procedure.	If	the	user	clicks	the	right	button,	the	constant
msoWizardLocalStateOff	is	passed.	(The	other	MsoWizardMsgType
constants	are	passed	by	the	ActivateWizard	method	if	you’ve	specified
msoWizardActResume	or	msoWizardActSuspend	for	the	Act	argument.)	In
the	case	of	msoWizardMsgShowHelp,	the	callback	procedure	should	display
the	appropriate	balloon	for	the	current	panel	of	the	custom	wizard.	And	in	the
case	of	msoWizardLocalStateOff,	the	callback	procedure	should	hide	the
visible	balloon.

Example

This	example	starts	the	Office	Assistant	as	part	of	a	process	to	provide
information	while	a	custom	wizard	is	running.	The	variable	lHelpForWiz	is	set
to	the	return	value	of	the	StartWizard	method,	which	is	Long.

lHelpForWiz	=	Assistant.StartWizard(On:=True,	_

				Callback:="myCallback",	PrivateX:=23)

Update	Method
							

Updates	the	contents	of	the	COMAddIns	collection	from	the	list	of	add-ins
stored	in	the	Windows	registry.

expression.Update

expression			The	COMAddIns	collection.

Remarks

Before	you	can	use	a	given	COM	add-in	in	a	Microsoft	Office	application,	that
add-in	must	be	registered	in	the	Windows	registry	as	a	COM	component	with	a
corresponding	Component	Category	ID.

Example

The	following	example	updates	the	contents	of	the	COMAddIns	collection	from
the	list	of	add-ins	stored	in	the	Windows	registry.

Application.COMAddIns.Update

ActionControl	Property
							

Returns	the	CommandBarControl	object	whose	OnAction	property	is	set	to
the	running	procedure.	If	the	running	procedure	was	not	initiated	by	a	command
bar	control,	this	property	returns	Nothing.	Read-only.

Example

This	example	creates	a	command	bar	named	“Custom”,	adds	three	buttons	to	it,
and	then	uses	the	ActionControl	property	and	the	Tag	property	to	determine
which	command	bar	button	was	last	clicked.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

Set	buttonOne	=	myBar.Controls.Add(Type:=msoControlButton)

With	buttonOne

				.FaceId	=	133

				.Tag	=	"RightArrow"

				.OnAction	=	"whichButton"

End	With

Set	buttonTwo	=	myBar.Controls.Add(Type:=msoControlButton)

With	buttonTwo

				.FaceId	=	134

				.Tag	=	"UpArrow"

				.OnAction	=	"whichButton"

End	With

Set	buttonThree	=	myBar.Controls.Add(Type:=msoControlButton)

With	buttonThree

				.FaceId	=	135

				.Tag	=	"DownArrow"

				.OnAction	=	"whichButton"

End	With

myBar.Visible	=	True

The	whichButton	subroutine	responds	to	the	OnAction	method	and	determines
which	command	bar	button	was	last	clicked.

Sub	whichButton()

Select	Case	CommandBars.ActionControl.Tag

				Case	"RightArrow"

								MsgBox	("Right	Arrow	button	clicked.")

				Case	"UpArrow"

								MsgBox	("Up	Arrow	button	clicked.")

				Case	"DownArrow"

								MsgBox	("Down	Arrow	button	clicked.")

End	Select

End	Sub

ActiveMenuBar	Property
							

Returns	a	CommandBar	object	that	represents	the	active	menu	bar	in	the
container	application.	Read-only.

Example

This	example	adds	a	temporary	pop-up	control	named	"Custom"	to	the	end	of
the	active	menu	bar,	and	adds	a	control	named	"Import"	to	the	pop-up	control.

Set	myMenuBar	=	CommandBars.ActiveMenuBar

Set	newMenu	=	myMenuBar.Controls.Add(Type:=msoControlPopup,	Temporary:=True)

newMenu.Caption	=	"Custom"

Set	ctrl1	=	newMenu.CommandBar.Controls	_

				.Add(Type:=msoControlButton,	Id:=1)

With	ctrl1

				.Caption	=	"Import"

				.TooltipText	=	"Import"

				.Style	=	msoButtonCaption

End	With

AdaptiveMenu	Property
							

True	if	a	personalized	menu	is	enabled.	Read/write	Boolean.

Example

This	example	sets	the	AdaptiveMenu	property	to	False	for	the	File	menu	in	the
Microsoft	Office	application	you’re	working	in.

CommandBars("File").AdaptiveMenu	=	False

AdaptiveMenus	Property
							

True	if	adaptive	menus	are	enabled.	Read/write	Boolean.

Example

This	example	sets	three	options	for	all	command	bars	in	Microsoft	Office,
including	custom	command	bars	and	the	controls	on	them.

With	CommandBars

				.LargeButtons	=	True

				.DisplayFonts	=	True

				.AdaptiveMenus	=	True

End	With

AllowMultiSelect	Property
							

True	if	the	user	is	allowed	to	select	multiple	files	from	a	file	dialog	box.
Read/write	Boolean.

expression.AllowMultiSelect

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

This	property	has	no	effect	on	Folder	Picker	dialog	boxes	or	SaveAs	dialog
boxes	because	users	should	never	be	able	to	select	multiple	files	in	these	types	of
file	dialog	boxes.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Allow	the	selection	of	multiple	files.

								.AllowMultiSelect	=	True

								'Use	the	Show	method	to	display	the	file	picker	dialog	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Animation	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	an	animation	action	for	the	Office	Assistant.	When	this	property
is	applied	to	the	Assistant	object	and	the	Assistant	supports	the	specified
animation,	the	Assistant	is	animated	immediately	(if	the	Assistant	is	visible	and
enabled).	When	this	property	is	applied	to	the	Balloon	object,	the	Assistant	is
animated	only	while	the	balloon	is	displayed.	Read/write	MsoAnimationType.

MsoAnimationType	can	be	one	of	these	MsoAnimationType	constants.
msoAnimationAppear
msoAnimationBeginSpeaking
msoAnimationCharacterSuccessMajor
msoAnimationCheckingSomething
msoAnimationDisappear
msoAnimationEmptyTrash
msoAnimationGestureDown
msoAnimationGestureLeft
msoAnimationGestureRight
msoAnimationGestureUp
msoAnimationGetArtsy
msoAnimationGetAttentionMajor
msoAnimationGetAttentionMinor
msoAnimationGetTechy
msoAnimationGetWizardy
msoAnimationGoodbye
msoAnimationGreeting
msoAnimationIdle
msoAnimationListensToComputer
msoAnimationLookDown

msoAnimationLookDownLeft
msoAnimationLookDownRight
msoAnimationLookLeft
msoAnimationLookRight
msoAnimationLookUp
msoAnimationLookUpLeft
msoAnimationLookUpRight
msoAnimationPrinting
msoAnimationRestPose
msoAnimationSaving
msoAnimationSearching
msoAnimationSendingMail
msoAnimationThinking
msoAnimationWorkingAtSomething
msoAnimationWritingNotingSomething

Remarks

“Clippit”	is	the	default	Assistant,	and	msoAnimationIdle	is	the	default
animation	type	for	the	Assistant.

Depending	on	the	selected	Assistant,	setting	the	Animation	property	may	or
may	not	result	in	an	obvious	animation.	However,	all	MsoAnimationType
constants	are	valid	for	all	Assistants.	Note	that	different	constants	may	produce
the	same	animation.

The	following	MsoAnimationType	constants	represent	animations	that	repeat
the	specified	action	until	the	Assistant	is	dismissed	or	until	the	Animation
property	is	reset	with	another	animation:

msoAnimationCheckingSomething

msoAnimationGetTechy

msoAnimationListensToComputer

msoAnimationSearching

msoAnimationThinking

msoAnimationWorkingAtSomething

msoAnimationWritingNotingSomething

Example

This	example	displays	the	Office	Assistant	in	a	specific	location	and	it	sets
several	options	before	making	the	Assistant	visible.

With	Assistant

				.On	=	True

				.Visible	=	True

				.Move	xLeft:=	400,	yTop:=	300

				.MoveWhenInTheWay	=	True

				.TipOfDay	=	True

				.Animation	=	msoAnimationGreeting

End	With

Application	Property
							

Returns	an	Application	object	that	represents	the	container	application	for	the
object	(you	can	use	this	property	with	an	Automation	object	to	return	that
object's	container	application).

expression.Application

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	returns	the	name	of	the	application	in	which	the	command	bar
named	Standard	was	created	and	displays	this	result	in	a	message	box.

Set	Appobj	=	CommandBars("Standard").Application

MsgBox	Appobj

AssistWithAlerts	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	balloon	delivers	application	alerts	when	the	Office
Assistant	is	visible.	Read/write	Boolean.

Remarks

The	AssistWithAlerts	property	corresponds	to	the	Display	alerts	option	under
Use	the	Office	Assistant	on	the	Options	tab	in	the	Office	Assistant	dialog	box.

If	this	property	is	set	to	False,	the	application	displays	alerts	in	dialog	boxes.

Example

This	example	sets	the	Office	Assistant	to	be	displayed	whenever	an	application
alert	is	generated.

With	Assistant

				.On	=	True

				.Visible	=	True

				.AssistWithHelp	=	True

				.AssistWithAlerts	=	True

				.Animation	=	msoAnimationGetAttentionMajor

End	With

AssistWithHelp	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	appears	when	the	user	presses	the	F1	key	to	display
Help.	Read/write	Boolean.

Remarks

The	AssistWithHelp	property	corresponds	to	the	Respond	to	F1	key	option
under	Use	the	Office	Assistant	on	the	Options	tab	in	the	Office	Assistant
dialog	box.

If	this	property	is	set	to	False,	the	Help	Topics	dialog	box	appears	instead	of	the
Office	Assistant.

Example

This	example	displays	the	Office	Assistant	whenever	the	user	presses	the	F1	key
to	display	Help.

With	Assistant

				.On	=	True

				.Visible	=	True

				.AssistWithHelp	=	True

				.AssistWithAlerts	=	True

				.Animation	=	msoAnimationGetAttentionMajor

End	With

AssistWithWizards	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	provides	online	Help	with	wizards.	Read/write
Boolean.

Remarks

The	AssistWithWizards	property	corresponds	to	the	Help	with	wizards	option
under	Use	the	Office	Assistant	on	the	Options	tab	in	the	Office	Assistant
dialog	box.

Example

This	example	sets	the	Office	Assistant	to	provide	Help	information	about
wizards.

Assistant.AssistWithWizards	=	True

AttachCertificate	Property
							

True	if	the	digital	certificate	that	corresponds	to	the	specified	Signature	object
is	attached	to	the	document.	Read/write	Boolean.

expression.AttachCertificate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	call	this	function.	The	function	will	test	to	make	sure	that
the	digital	signature	that	the	user	selects	will	not	expire	in	less	than	12	months.	If
it	will	expire,	the	certificate	isn't	attached.

Function	AddSignature()	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				sig.AttachCertificate	=	True

				'Test	to	make	sure	that	the	new	Signature	object

				'doesn't	expire	too	soon.	This	expression	calculates

				'the	number	of	months	until	the	Signature	object	expires.

				If	DateDiff("m",	sig.SignDate,	sig.ExpireDate)	<	12	Then

								MsgBox	"This	certificate	will	expire	in	less	than	1	year."	&	vbCrLf	&	_

								"Please	use	a	newer	certificate."

								AddSignature	=	False

								sig.Delete

				Else

								AddSignature	=	True

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

BalloonError	Property
							

Returns	a	value	that	indicates	the	last	recorded	balloon	error.	Read-only
MsoBalloonErrorType.

MsoBalloonErrorType	can	be	one	of	these	MsoBalloonErrorType	constants.
msoBalloonErrorBadCharacter		The	balloon	contains	an	ASCII	control
character	other	than	CR	or	LF	and	less	than	32.
msoBalloonErrorBadPictureRef		The	balloon	contains	a	graphic	that	couldn't
be	displayed	because	the	file	doesn't	exist	or	because	the	graphic	isn't	a	valid
.BMP	or	.WMF	file.
msoBalloonErrorBadReference		The	balloon	contains	an	unrecognized	or
unsupported	reference.
msoBalloonErrorButtonlessModal		The	balloon	you	attempted	to	display	is
modal,	but	it	contains	no	buttons.	The	balloon	won't	be	shown	because	it	can't
be	dismissed.
msoBalloonErrorButtonModeless		The	balloon	you	attempted	to	display	is
modeless,	contains	buttons,	and	has	no	procedure	assigned	to	the	Callback
property.	The	balloon	won't	be	shown	because	a	callback	procedure	is	required
for	modeless	balloons.
msoBalloonErrorCharNotTopmostForModal		The	modal	balloon	was
requested	by	an	application	that	isn’t	the	active	application.	Microsoft	Office
renders	balloons	for	the	active	(topmost)	application	only.
msoBalloonErrorCOMFailure		The	balloon	could	not	be	displayed	because	of
a	COM	failure.
msoBalloonErrorNone		No	error	was	encountered.
msoBalloonErrorOther		The	balloon	won't	appear	because	some	other	error
occurred,	such	as	another	modal	balloon	is	already	active.
msoBalloonErrorOutOfMemory		The	balloon	won't	appear	because	there	is
insufficient	memory.
msoBalloonErrorTooBig		The	balloon	is	too	big	to	appear	on	the	screen.
msoBalloonErrorTooManyControls		The	balloon	contains	more	than	twenty

controls	(check	boxes	or	labels).

Example

This	example	creates	a	balloon	that	generates	an	error.	The	error	is	generated
because	the	balloon	is	created	without	a	way	to	dismiss	it:	the	button	type	is	set
to	msoButtonSetNone	and	the	default	balloon	mode	is	msoModeModal,
resulting	in	a	buttonless,	modal	balloon.	Note	that	there's	no	way	to	dismiss	a
buttonless	modal	balloon.

With	Application.Assistant

With	.NewBalloon

				.Heading	=	"This	will	never	show."

				.Text	=	"Imagine	a	balloon	here."

				.Button	=	msoButtonSetNone

				.Show

End	With

.Visible	=	True

If	.BalloonError	=	msoBalloonErrorButtonlessModal	Then

				MsgBox	"You	need	a	button	to	dismiss	the	balloon."

End	If

End	With

BalloonType	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	type	of	balloon	the	Office	Assistant	uses.	When	you	create	a
Balloon	object,	this	property	is	initially	set	to	msoBalloonTypeButtons.
Read/write	MsoBalloonType.

MsoBalloonType	can	be	one	of	these	MsoBalloonType	constants.
msoBalloonTypeBullets
msoBalloonTypeButtons
msoBalloonTypeNumbers

Example

This	example	creates	an	instruction	balloon	that	explains	how	to	select	a	printer.
The	balloon	is	modeless,	so	the	user	can	follow	the	instructions	in	the	balloon
and	keep	the	balloon	visible	as	he	or	she	works.

Set	bln	=	Assistant.NewBalloon

With	bln

				.Heading	=	"Instructions	for	Choosing	a	Printer."

				.Text	=	"Click	OK	when	you've	chosen	a	printer."

				.Labels(1).Text	=	"From	the	File	menu,	choose	Print."

				.Labels(2).Text	=	"Click	Setup."

				.Labels(3).Text	=	"Select	the	name	of	the	printer."

				.BalloonType	=	msoBalloonTypeNumbers

				.Mode	=	msoModeModeless

				.Callback	=	"ProcessPrinter"

				.Button	=	msoButtonSetOK

				.Show

End	With

Show	All

BeginGroup	Property
							

True	if	the	specified	command	bar	control	appears	at	the	beginning	of	a	group	of
controls	on	the	command	bar.	Read/write	Boolean.

Example

This	example	begins	a	new	group	with	the	last	control	on	the	active	menu	bar.

Set	myMenuBar	=	CommandBars.ActiveMenuBar

Set	lastMenu	=	myMenuBar	_

				.Controls(myMenuBar.Controls.Count)

lastMenu.BeginGroup	=	True

Show	All

BuiltIn	Property
							

True	if	the	specified	command	bar	or	command	bar	control	is	a	built-in
command	bar	or	control	of	the	container	application.	False	if	it's	a	custom
command	bar	or	control,	or	if	it's	a	built-in	control	whose	OnAction	property
has	been	set.	Read-only	Boolean.

Example

This	example	deletes	all	custom	command	bars	that	aren't	visible.

foundFlag	=	False

deletedBars	=	0

For	Each	bar	In	CommandBars

				If	(bar.BuiltIn	=	False)	And	(bar.Visible	=	False)	Then

								bar.Delete

								foundFlag	=	True

								deletedBars	=	deletedBars	+	1

				End	If

Next

If	Not	foundFlag	Then

				MsgBox	"No	command	bars	have	been	deleted."

Else

				MsgBox	deletedBars	&	"	custom	command	bar(s)	deleted."

End	If

Show	All

BuiltInFace	Property
							

True	if	the	face	of	a	command	bar	button	control	is	its	original	built-in	face.
This	property	can	only	be	set	to	True,	which	will	reset	the	face	to	the	built-in
face.	Read/write	Boolean.

Example

This	example	determines	whether	the	face	of	the	first	control	on	the	command
bar	named	"Custom"	is	its	built-in	button	face.	If	it	is,	the	example	copies	the
button	face	to	the	Clipboard.

Set	myControl	=	CommandBars("My	Custom	Bar").Controls(1)

With	myControl

				If	.BuiltInFace	=	True	Then	.CopyFace

End	With

Button	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	type	of	button	displayed	at	the	bottom	of	the	Office	Assistant
balloon.	When	you	create	a	Balloon	object,	this	property	is	initially	set	to
msoButtonSetOK.	Read/write	MsoButtonSetType.

MsoButtonSetType	can	be	one	of	these	MsoButtonSetType	constants.
msoButtonSetAbortRetryIgnore
msoButtonSetBackClose
msoButtonSetBackNextClose
msoButtonSetBackNextSnooze
msoButtonSetCancel
msoButtonSetNextClose
msoButtonSetNone
msoButtonSetOK
msoButtonSetOkCancel
msoButtonSetRetryCancel
msoButtonSetSearchClose
msoButtonSetTipsOptionsClose
msoButtonSetYesAllNoCancel
msoButtonSetYesNo
msoButtonSetYesNoCancel

Example

This	example	displays	a	balloon	that	contains	a	heading,	text,	three	region
choices,	and	two	command	buttons	(OK	and	Cancel).

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	a	region"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Button	=	msoButtonSetOkCancel

				.Show

End	With

ButtonName	Property
							

Sets	or	returns	a	String	representing	the	text	that	is	displayed	on	the	action
button	of	a	file	dialog	box.	By	default,	this	property	is	set	to	the	standard	text	for
the	type	of	file	dialog	box.	For	example,	in	the	case	of	the	Open	dialog	box,	the
property	is	set	to	"Open"	by	default.	Read/write.

expression.ButtonName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Change	the	text	on	the	action	button.

								.ButtonName	=	"Archive"

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	String	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Callback	Property
							

Sets	the	name	of	the	procedure	to	run	from	a	modeless	balloon.	Read/write
String.

Remarks

The	procedure	you	specify	for	the	Callback	property	must	be	written	to	receive
either	two	or	three	arguments,	depending	on	what	you	use	the	property	with.	If
you	use	the	Callback	property	with	a	wizard,	you	must	write	the	procedure	to
receive	two	arguments:	a	long	integer	that	represents	the
msoBalloonButtonType	value	of	the	button	that	the	user	clicked,	and	a	long
integer	that	uniquely	identifies	the	balloon.	If	you	use	the	Callback	property
with	a	modeless	balloon,	you	must	write	the	procedure	to	receive	three
arguments:	the	Balloon	object	that	called	the	procedure;	a	long	integer	that
represents	the	msoBalloonButtonType	value	of	the	button	the	user	clicked;	and
a	long	integer	that	uniquely	identifies	the	balloon	that	called	the	procedure,	as
denoted	in	the	balloon’s	Private	property.

The	callback	procedure	must	contain	at	least	one	condition	under	which	the
Close	method	is	applied	to	the	Balloon	object	that	is	passed	to	it;	otherwise,	the
modeless	balloon	cannot	be	dismissed.

If	you	specify	a	procedure	that	is	stored	in	a	separate	class	module,	you	must
include	the	module	name	in	the	value	assigned	to	the	Callback	property	(for
example,	"Sheet1.MyCallback).

Example

This	example	displays	a	balloon	that	contains	a	button	for	each	of	three	printers.
Whenever	the	user	clicks	one	of	these	buttons,	the	ProcessPrinter	callback
procedure	is	run	and	the	balloon	is	closed.

Sub	selectPrinter()

Set	bln	=	Assistant.NewBalloon

With	bln

				.Heading	=	"Select	a	Printer."

				.Labels(1).Text	=	"Network	Printer"

				.Labels(2).Text	=	"Local	Printer"

				.Labels(3).Text	=	"Local	Color	Printer"

				.BalloonType	=	msoBalloonTypeButtons

				.Mode	=	msoModeModeless

				.Callback	=	"ProcessPrinter"

				.Show

End	With

End	Sub

Sub	ProcessPrinter(bln	As	Balloon,	lbtn	As	Long,	_

	lPriv	As	Long)

				Assistant.Animation	=	msoAnimationPrinting

				Select	Case	lbtn

				Case	-1

								'	Insert	network	printer-specific	code.

				Case	-2

								'	Insert	local	printer-specific	code.

				Case	-3

								'	Insert	color	printer-specific	code.

				End	Select

				bln.Close

End	Sub

Show	All

Caption	Property
							

Returns	or	sets	the	caption	text	for	a	command	bar	control.	Read/write	String.

Note			A	control's	caption	is	also	displayed	as	its	default	ScreenTip.

Example

This	example	adds	a	command	bar	control	with	a	spelling	checker	button	face	to
a	custom	command	bar,	and	then	it	sets	the	caption	to	"Spelling	checker."

Set	myBar	=	CommandBars.Add(Name:="Custom",	_

Position:=msoBarTop,	Temporary:=True)

myBar.Visible	=	True

Set	myControl	=	myBar.Controls	_

.Add(Type:=msoControlButton,	Id:=2)

With	myControl

				.DescriptionText	=	"Starts	the	spelling	checker"

				.Caption	=	"Spelling	checker"

End	With

Checkboxes	Property
							

Returns	the	BalloonCheckboxes	collection	that	represents	all	the	check	boxes
contained	in	the	specified	balloon.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	creates	a	balloon	with	a	heading,	text,	and	three	region	choices.
When	the	user	clicks	OK	in	the	balloon,	data	for	the	selected	region	or	regions	is
printed.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	the	region(s)	you	want	to	print."

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Button	=	msoButtonSetOkCancel

				If	.Show	=	msoBalloonButtonOK	Then

								dataPrinted	=	0

								For	i	=	1	To	3

												If	.CheckBoxes(i).Checked	=	True	Then

																'	Code	to	print	region	data.

																dataPrinted	=	dataPrinted	+	1

																MsgBox	"Region	"	&	i	&	"	data	printed."

												End	If

								Next

								If	dataPrinted	=	0	Then	MsgBox	"No	data	printed."

				End	If

End	With

Checked	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	specified	check	box	in	the	Office	Assistant	balloon	is	checked.
Read/write	Boolean.

Example

This	example	creates	a	balloon	with	a	heading,	text,	and	three	region	choices.
When	the	user	clicks	OK	in	the	balloon,	data	for	the	selected	region	or	regions	is
printed.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	the	region(s)	you	want	to	print."

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Button	=	msoButtonSetOkCancel

				If	.Show	=	msoBalloonButtonOK	Then

								dataPrinted	=	0

								For	i	=	1	To	3

												If	.CheckBoxes(i).Checked	=	True	Then

																'	Code	to	print	region	data.

																dataPrinted	=	dataPrinted	+	1

																MsgBox	"Region	"	&	i	&	"	data	printed."

												End	If

								Next

								If	dataPrinted	=	0	Then	MsgBox	"No	data	printed."

				End	If

End	With

Column	Property
							

Returns	or	sets	a	String	that	represents	the	name	of	the	field	in	the	mail	merge
data	source	to	use	in	the	filter.	Read/write.

expression.Column

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

Columns	Property
							

Returns	an	ODSOColumns	object	that	represents	the	fields	in	a	data	source.

expression.Columns

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	field	names	in	the	data	source	attached	to
the	active	publication.

Sub	ShowFieldNames()

				Dim	appOffice	As	OfficeDataSourceObject

				Dim	intCount	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Columns

								For	intCount	=	1	To	.Count

												MsgBox	"Field	Name:	"	&	.Item(intCount).Name

								Next

				End	With

End	Sub

Show	All

CommandBar	Property
							

Returns	a	CommandBar	object	that	represents	the	menu	displayed	by	the
specified	pop-up	control.	Read-only.

Example

This	example	sets	the	variable	fourthLevel	to	the	fourth	control	on	the
command	bar	named	"Drawing."

Set	fourthLevel	=	CommandBars("Drawing")	_

				.Controls(1).CommandBar.Controls(4)

CommandBars	Property
							

Returns	a	CommandBars	collection.

expression.CommandBars

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	return	the	CommandBars	collection	from	the
MsoEnvelope	object	in	Microsoft	Word.

Dim	cbars	As	CommandBars

Set	cbars	=	Application.ActiveDocument.MailEnvelope.Commandbars

CompareTo	Property
							

Returns	or	sets	a	String	that	represents	the	text	to	compare	in	the	query	filter
criterion.	Read/write.

expression.CompareTo

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

Show	All

Comparison	Property
							

Returns	or	sets	an	MsoFilterComparison	constant	that	represents	how	to
compare	the	Column	and	CompareTo	properties.	Read/write.

MsoFilterComparison	can	be	one	of	these	MsoFilterComparison	constants.
msoFilterComparisonContains
msoFilterComparisonEqual
msoFilterComparisonGreaterThan
msoFilterComparisonGreaterThanEqual
msoFilterComparisonIsBlank
msoFilterComparisonIsNotBlank
msoFilterComparisonLessThan
msoFilterComparisonLessThanEqual
msoFilterComparisonNotContains
msoFilterComparisonNotEqual

expression.Comparison

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

Condition	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	the	condition	of	the	specified	search	criteria.	Read-only	MsoCondition.

MsoCondition	can	be	one	of	these	MsoCondition	constants.
msoConditionAnyNumberBetween
msoConditionAnytime
msoConditionAnytimeBetween
msoConditionAtLeast
msoConditionAtMost
msoConditionBeginsWith
msoConditionDoesNotEqual
msoConditionEndsWith
msoConditionEquals
msoConditionFileTypeAllFiles
msoConditionFileTypeBinders
msoConditionFileTypeCalendarItem
msoConditionFileTypeContactItem
msoConditionFileTypeDatabases
msoConditionFileTypeDataConnectionFiles
msoConditionFileTypeDesignerFiles
msoConditionFileTypeEPaperFiles
msoConditionFileTypeExcelWorkbooks
msoConditionFileTypeJournalItem
msoConditionFileTypeMailItem
msoConditionFileTypeNoteItem
msoConditionFileTypeOfficeFiles
msoConditionFileTypeOutlookItems

msoConditionFileTypePhotoDrawFiles
msoConditionFileTypePowerPointPresentations
msoConditionFileTypeProjectFiles
msoConditionFileTypePublisherFiles
msoConditionFileTypeTaskItem
msoConditionFileTypeTemplates
msoConditionFileTypeVisioDocuments
msoConditionFileTypeWebPages
msoConditionFileTypeWordDocuments
msoConditionFreeText
msoConditionIncludes
msoConditionIncludesFormsOf
msoConditionIncludesNearEachOther
msoConditionIncludesPhrase
msoConditionInTheLast
msoConditionInTheNext
msoConditionIsExactly
msoConditionIsNo
msoConditionIsNot
msoConditionIsYes
msoConditionLastMonth
msoConditionLastWeek
msoConditionLessThan
msoConditionMoreThan
msoConditionNextMonth
msoConditionNextWeek
msoConditionOn
msoConditionOnOrAfter
msoConditionOnOrBefore
msoConditionThisMonth
msoConditionThisWeek
msoConditionToday
msoConditionTomorrow

msoConditionYesterday

Example

This	example	returns	the	condition	value	for	search	criteria	for	the	first	property
test.

With	Application.FileSearch.PropertyTests(1)

				MsgBox	"The	condition	you've	set	is:	"	&	.Condition

End	With

Show	All

Conjunction	Property
							

Returns	or	sets	an	MsoFilterConjunction	constant	that	represents	how	a	filter
criterion	relates	to	other	filter	criteria	in	the	ODSOFilters	object.	Read/write.

MsoFilterConjunction	can	be	one	of	these	MsoFilterConjunction	constants.
msoFilterConjunctionAnd
msoFilterConjunctionOr

expression.Conjunction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	changes	an	existing	filter	to	remove	from	the	mail	merge
all	records	that	do	not	have	a	Region	field	equal	to	"WA".

Sub	SetQueryCriterion()

				Dim	appOffice	As	Office.OfficeDataSourceObject

				Dim	intItem	As	Integer

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				With	appOffice.Filters

								For	intItem	=	1	To	.Count

												With	.Item(intItem)

																If	.Column	=	"Region"	Then

																				.Comparison	=	msoFilterComparisonNotEqual

																				.CompareTo	=	"WA"

																				If	.Conjunction	=	"Or"	Then	.Conjunction	=	"And"

																End	If

												End	With

								Next	intItem

				End	With

End	Sub

Connect	Property
							

Returns	or	sets	the	state	of	the	connection	for	the	specified	COMAddIn	object.
Read/write	Boolean.

Remarks

The	Connect	property	returns	True	if	the	add-in	is	active;	it	returns	False	if	the
add-in	is	inactive.	An	active	add-in	is	registered	and	connected;	an	inactive	add-
in	is	registered	but	not	currently	connected.

Example

The	following	example	displays	a	message	box	that	indicates	whether	COM
add-in	one	is	registered	and	currently	connected.

If	Application.COMAddIns(1).Connect	Then

				MsgBox	"The	add-in	is	connected."

Else

				MsgBox	"The	add-in	is	not	connected."

End	If

Connector	Property
							

Returns	the	connector	between	two	similar	property	test	values.	The	default
value	is	msoConnectorAnd.	Read-only	MsoConnector.

MsoConnector	can	be	one	of	these	MsoConnector	constants.
msoConnectorAnd
msoConnectorOr

Remarks

A	connector	specifies	whether	two	similar	search	criteria	will	be	combined	to
form	one	property	test	(as	with	msoConnectorAnd)	or	treated	independently	(as
with	msoConnectorOr).

Example

This	example	displays	a	message	that	describes	how	the	search	criteria	will	be
evaluated	in	a	file	search.

With	Application.FileSearch.PropertyTests(1)

If	.Connector	=	msoConnectorAnd	Then

			MsgBox	"All	search	criteria	will	be	combined."

Else

				MsgBox	"Criteria	will	be	treated	independently"

End	If

End	With

ConnectString	Property
							

Returns	or	sets	a	String	that	represents	the	connection	to	the	specified	mail
merge	data	source.	Read/write.

expression.ConnectString

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	checks	if	the	connection	string	contains	the	characters
ODSOOutlook	and	displays	a	message	accordingly.

Sub	VerifyCorrectDataSource()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				If	InStr(appOffice.ConnectString,	"ODSOOutlook")	>	0	Then

								MsgBox	"Your	Outlook	address	book	is	used	as	the	data	source."

				Else

								MsgBox	"Your	Outlook	address	book	is	not	used	as	the	data	source."

				End	If

End	Sub

Show	All

Context	Property
							

Returns	or	sets	a	string	that	determines	where	a	command	bar	will	be	saved.	The
string	is	defined	and	interpreted	by	the	application.	Read/write	String.

Remarks

You	can	set	the	Context	property	only	for	custom	command	bars.	This	property
will	fail	if	the	application	doesn't	recognize	the	context	string,	or	if	the
application	doesn't	support	changing	context	strings	programmatically.

Example

This	example	displays	a	message	box	containing	the	context	string	for	the
command	bar	named	“Custom”.	This	example	works	in	Microsoft	Word	and
other	applications	that	support	the	Context	property.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlButton,	ID:=2

				.Visible	=	True

End	With

MsgBox	(myBar.Context)

Controls	Property
							

Returns	a	CommandBarControls	object	that	represents	all	the	controls	on	a
command	bar	or	pop-up	control.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	adds	a	combo	box	control	to	the	command	bar	named	"Custom"
and	fills	the	list	with	two	items.	The	example	also	sets	the	number	of	line	items,
the	width	of	the	combo	box,	and	an	empty	default	for	the	combo	box.

Set	myControl	=	CommandBars("Custom").Controls	_

				.Add(Type:=msoControlComboBox,	Before:=1)

With	myControl

				.AddItem	Text:="First	Item",	Index:=1

				.AddItem	Text:="Second	Item",	Index:=2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListHeaderCount	=	0

End	With

Count	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	a	Long	indicating	the	number	of	items	in	the	specified	collection.
Read/write	Long	for	the	BalloonCheckboxes	and	BalloonLabels	objects;	read-
only	Long	for	all	other	objects	in	the	Applies	To	list.

expression.Count

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

For	the	CommandBars	collection,	the	count	includes	only	menu	bars,	toolbars,
and	shortcut	menus.

For	the	Scripts	collection,	the	count	returned	is	the	number	of	script	blocks	in
the	specified	document.	In	Microsoft	Word,	Scripts.Count	returns	the	total
number	of	inline	and	floating	script	anchors	combined.

Example

This	example	uses	the	Count	property	to	display	the	number	of	command	bars
in	the	CommandBars	collection.

MsgBox	"There	are	"	&	CommandBars.Count	&	_

				"	bars	in	the	CommandBars	collection."

This	example	uses	the	Count	property	to	display	the	number	of	check	boxes	in
the	Office	Assistant	balloon.

With	Assistant.NewBalloon

				.CheckBoxes(1).Text	=	"First	Choice"

				.CheckBoxes(2).Text	=	"Second	Choice"

				.Text	=	"You	have	the	following	"	_

				&	.CheckBoxes.Count	&	"	choices."

				.Show

End	With

This	example	displays	the	number	of	custom	document	properties	in	the	active
document.

MsgBox	("There	are	"	&	_

				ActiveDocument.CustomDocumentProperties.Count	&	_

				"	custom	document	properties	in	the	"	&	_

				"active	document.")

Creator	Property
							

Returns	the	four-character	code	for	the	application	in	which	the	specified	object
was	created.	Macintosh	only.	Read-only	Long.

expression.Creator

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

DataSource	Property
							

Returns	or	sets	a	String	that	represents	the	name	of	the	attached	data	source.
Read/write.

expression.DataSource

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sets	the	name	of	the	data	source	if	the	name	is	blank.

Sub	SetAndReturnDataSourceName()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				With	appOffice

								.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

												"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

								If	.DataSource	=	""	Then

												.DataSource	=	"Northwind"

												MsgBox	.DataSource

								End	If

				End	With

End	Sub

Show	All

Description	Property
							

Description	property	as	it	applies	to	the	COMAddIn	object.

Returns	or	sets	a	descriptive	String	value	for	the	specified	COMAddIn	object.
Read/write.

expression.Description

expression			Required.	An	expression	that	returns	a	COMAddIn	object.

Description	property	as	it	applies	to	the	FileDialogFilter	object.

Returns	the	description	of	each	Filter	object	as	a	String	value.	The	description
is	the	text	that	is	displayed	in	the	file	dialog	box.	Read-only.

expression.Description

expression			Required.	An	expression	that	returns	a	FileDialogFilter	object.

Example

As	it	applies	to	the	COMAddIn	object.

The	following	example	displays	the	description	text	of	the	Microsoft
Accessibility	COM	add-in	for	drawing.

MsgBox	"The	description	of	this	"	&	_

				"COMAddIn	is	"""	&	Application.COMAddIns.	_

				Item("msodraa9.ShapeSelect").	_

				Description	&	"""

As	it	applies	to	the	FileDialogFilter	object.

The	following	example	iterates	through	the	default	filters	of	the	SaveAs	dialog
box	and	displays	the	description	of	each	filter	that	includes	a	Microsoft	Excel
file.	The	Extensions	property	is	used	to	find	the	appropriate	filter	objects.

Sub	Main()

				'Declare	a	variable	as	a	FileDialogFilters	collection.

				Dim	fdfs	As	FileDialogFilters

				'Declare	a	variable	as	a	FileDialogFilter	object.

				Dim	fdf	As	FileDialogFilter

				'Set	the	FileDialogFilters	collection	variable	to

				'the	FileDialogFilters	collection	of	the	SaveAs	dialog	box.

				Set	fdfs	=	Application.FileDialog(msoFileDialogSaveAs).Filters

				'Iterate	through	the	description	and	extensions	of	each

				'default	filter	in	the	SaveAs	dialog	box.

				For	Each	fdf	In	fdfs

								'Display	the	description	of	filters	that	include

								'Microsoft	Excel	files.

								If	InStr(1,	fdf.Extensions,	"xls",	vbTextCompare)	>	0	Then

												MsgBox	"Filter	description:	"	&	fdf.Description

								End	If

				Next	fdf

End	Sub

Show	All

DescriptionText	Property
							

Returns	or	sets	the	description	for	a	command	bar	control.	The	description	is	not
displayed	to	the	user,	but	it	can	be	useful	for	documenting	the	behavior	of	the
control	for	other	developers.	Read/write	String.

Remarks

This	property	is	used	for	Balloon	Help	on	the	Macintosh.

Example

This	example	adds	a	control	to	a	custom	command	bar,	including	a	description
of	the	control's	behavior.

Set	myBar	=	CommandBars.Add("Custom",	msoBarTop,	,	True)

myBar.Visible	=	True

Set	myControl	=	myBar.Controls	_

				.Add(Type:=msoControlButton,	ID:=	_

				CommandBars("Standard").Controls("Paste").ID)

With	myControl

				.DescriptionText	=	"Pastes	the	contents	of	the	Clipboard"

				.Caption	=	"Paste"

End	With

Show	All

DialogType	Property
							

Returns	an	MsoFileDialogType	constant	representing	the	type	of	file	dialog	box
that	the	FileDialog	object	is	set	to	display.	Read-only.

MsoFileDialogType	can	be	one	of	these	MsoFileDialogType	constants.
msoFileDialogFilePicker
msoFileDialogFolderPicker
msoFileDialogOpen
msoFileDialogSaveAs

expression.DialogType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	takes	a	FileDialog	object	of	an	unknown	type	and	runs
the	Execute	method	if	it	is	a	SaveAs	dialog	box	or	an	Open	dialog	box.

Sub	DisplayAndExecuteFileDialog(ByRef	fd	As	FileDialog)

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Use	the	DialogType	property	to	determine	whether	to

												'use	the	Execute	method.

												Select	Case	.DialogType

																Case	msoFileDialogOpen,	msoFileDialogSaveAs:	.Execute

																'Do	nothing	otherwise.

																Case	Else

												End	Select

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

End	Sub

DisableAskAQuestionDropdown
Property
							

True	if	the	Answer	Wizard	dropdown	menu	is	enabled.	Read/write	Boolean.

expression.DisableAskAQuestionDropdown

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	toggles	the	DisableAskAQuestionDropdown	property.

Sub	ToggleQuestionDropdown()

				With	Application.CommandBars

								If	.DisableAskAQuestionDropdown	=	True	Then

												.DisableAskAQuestionDropdown	=	False

								Else

												.DisableAskAQuestionDropdown	=	True

								End	If

				End	With

End	Sub

DisableCustomize	Property
							

True	if	toolbar	customization	is	disabled.	Read/write	Boolean.

expression.DisableCustomize

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	toggles	the	DisableCustomize	property.

Sub	ToggleCustomize()

				With	Application.CommandBars

								If	.DisableCustomize	=	True	Then

												.DisableCustomize	=	False

								Else

												.DisableCustomize	=	True

								End	If

				End	With

End	Sub

DisplayFonts	Property
							

True	if	the	font	names	in	the	Font	box	are	displayed	in	their	actual	fonts.
Read/write	Boolean.

Example

This	example	sets	three	options	for	all	command	bars	in	Microsoft	Office,
including	custom	command	bars	and	the	controls	on	them.

With	CommandBars

				.LargeButtons	=	True

				.DisplayFonts	=	True

				.AdaptiveMenus	=	True

End	With

Show	All

DisplayKeysInTooltips	Property
							

True	if	shortcut	keys	are	displayed	in	the	ToolTips	for	each	command	bar
control.	Read/write	Boolean.

Remarks

To	display	shortcut	keys	in	ToolTips,	you	must	also	set	the	DisplayTooltips
property	to	True.

Example

This	example	sets	options	for	all	command	bars	in	Microsoft	Office.

With	CommandBars

				.LargeButtons	=	True

				.DisplayTooltips	=	True

				.DisplayKeysInTooltips	=	True

				.MenuAnimationStyle	=	msoMenuAnimationUnfold

End	With

Show	All

DisplayTooltips	Property
							

True	if	ScreenTips	are	displayed	whenever	the	user	positions	the	pointer	over
command	bar	controls.	Read/write	Boolean.

Remarks

Setting	the	DisplayTooltips	property	in	a	container	application	immediately
affects	every	command	bar	in	every	running	Microsoft	Office	application,	and	in
every	Office	application	opened	after	the	property	is	set.

Example

This	example	displays	large	controls	and	ToolTips	on	all	command	bars.

Set	allBars	=	CommandBars

allBars.LargeButtons	=	True

allBars.DisplayTooltips	=	True

Show	All

DropDownLines	Property
							

Returns	or	sets	the	number	of	lines	in	a	command	bar	combo	box	control.	The
combo	box	control	must	be	a	custom	control	and	it	must	be	a	drop-down	list	box
or	a	combo	box.	Read/write	Long.

Note			An	error	occurs	if	you	attempt	to	set	this	property	for	a	combo	box
control	that's	an	edit	box	or	a	built-in	combo	box	control.

Remarks

If	this	property	is	set	to	0	(zero),	the	number	of	lines	in	the	control	will	be	based
on	the	number	of	items	in	the	list.

Example

This	example	adds	a	combo	box	control	containing	two	items	to	the	command
bar	named	"Custom".	The	example	also	sets	the	number	of	line	items,	the	width
of	the	combo	box,	and	an	empty	default	for	the	combo	box.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls.Add(Type:=msoControlComboBox,	Id:=1)

With	myControl

				.AddItem	Text:="First	Item",	Index:=1

				.AddItem	"Second	Item",	2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListHeaderCount	=	0

End	With

Show	All

DropDownWidth	Property
							

Returns	or	sets	the	width	(in	pixels)	of	the	list	for	the	specified	command	bar
combo	box	control.	Read/write	Long.

Note			An	error	occurs	if	you	attempt	to	set	this	property	for	a	built-in	control.

Remarks

If	this	property	is	set	to		-1,	the	width	of	the	list	is	based	on	the	length	of	the
longest	item	in	the	combo	box	list.	If	this	property	is	set	to	0,	the	width	of	the	list
is	based	on	the	width	of	the	control.

Example

This	example	adds	a	combo	box	control	containing	two	items	to	the	command
bar	named	"Custom".	The	example	also	sets	the	number	of	line	items,	the	width
of	the	combo	box,	and	an	empty	default	for	the	combo	box.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls.Add(Type:=msoControlComboBox,	Id:=1)

With	myControl

				.AddItem	"First	Item",	1

				.AddItem	"Second	Item",	2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListHeaderCount	=	0

End	With

Show	All

Enabled	Property
							

True	if	the	specified	command	bar	or	command	bar	control	is	enabled.
Read/write	Boolean.

Remarks

For	command	bars,	setting	this	property	to	True	causes	the	name	of	the
command	bar	to	appear	in	the	list	of	available	command	bars.

For	built-in	controls,	if	you	set	the	Enabled	property	to	True,	the	application
determines	its	state,	but	setting	it	to	False	will	force	it	to	be	disabled.

Example

This	example	adjusts	the	command	bars	according	to	the	user	level	specified	by
user.	If	user	is	"Level	1,"	the	command	bar	named	"VB	Custom	Bar"	is
displayed.	If	user	is	any	other	value,	the	built-in	Visual	Basic	command	bar	is
reset	to	its	default	state	and	the	command	bar	named	"VB	Custom	Bar"	is
disabled.

Set	myBar	=	CommandBars	_

				.Add(Name:="VB	Custom	Bar",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlButton,	ID:=2

				.Visible	=	True

End	With

If	user	=	"Level	1"	Then

				myBar.Visible	=	True

Else

				CommandBars("Visual	Basic").Reset

				myBar.Enabled	=	False

End	If

This	example	adds	two	command	bar	buttons	to	the	command	bar	named
“Custom”.	The	first	control	is	disabled;	the	second	control	is	enabled	by	default.

Set	myBar	=	CommandBars("Custom")

With	myBar

				.Controls.Add	Type:=msoControlButton,	Id:=3

				.Controls(1).Enabled	=	False

				.Controls.Add	Type:=msoControlButton,	Id:=3

End	With

myBar.Visible	=	True

ExpireDate	Property
							

Returns	a	Variant	representing	the	date	on	which	the	digital	signature	that
corresponds	to	the	Signature	object	will	expire.	Read-only.

expression.ExpireDate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	call	this	function.	The	function	will	test	to	make	sure	that
the	digital	signature	that	the	user	selects	will	not	expire	in	less	than	12	months.	If
it	will	expire,	the	certificate	isn't	attached.

Function	AddSignature()	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	to	make	sure	that	the	new	Signature	object

				'doesn't	expire	too	soon.	This	expression	calculates

				'the	number	of	months	until	the	Signature	object	expires.

				If	DateDiff("m",	sig.SignDate,	sig.ExpireDate)	<	12	Then

								MsgBox	"This	Certificate	will	expire	in	less	than	1	year."	&	vbCrLf	&	_

								"Please	use	a	newer	certificate."

								AddSignature	=	False

								sig.Delete

				Else

								AddSignature	=	True

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

Extended	Property
							

Sets	or	returns	attributes	added	to	the	<SCRIPT>	tag,	with	the	exception	of	the
LANGUAGE	and	ID	attributes.	Read/write	String.

Remarks

Attributes	are	separated	by	spaces,	the	same	as	in	HTML.	You	cannot	pass	the
LANGUAGE	attribute	or	the	ID	attribute	by	using	the	Extended	property.

The	Microsoft	Office	host	application	doesn’t	provide	any	means	of	checking
the	syntax	of	passed	attributes.

If	you	pass	the	LANGUAGE	attribute	in	the	Extended	property,	the	<SCRIPT>
tag	receives	two	language	settings,	which	causes	a	conflict.

If	you	pass	an	ID	attribute	in	the	Extended	property	and	no	ID	has	been	set
through	either	the	ID	parameter	of	the	Add	method	or	the	Id	property	of	the
Script	object,	the	ID	is	exported	correctly.

Example

This	example	checks	the	Extended	property	to	ensure	that	no	additional
attributes	have	been	added	to	the	first	script	in	worksheet	one	in	the	active
workbook.

If	ActiveWorkbook.Worksheets(1).Scripts(1).Extended	_

				<>	""	Then

						MsgBox	"This	script	contains	extended	attributes."

End	If

Extensions	Property
							

Returns	a	String	value	containing	the	extensions	that	determine	which	files	are
displayed	in	a	file	dialog	box	for	each	Filter	object.	Read-only.

expression.Extensions

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	iterates	through	the	default	filters	of	the	SaveAs	dialog
box	and	displays	the	description	of	each	filter	that	includes	a	Microsoft	Excel
file.	The	Extensions	property	is	used	to	find	the	appropriate	filter	objects.

Sub	Main()

				'Declare	a	variable	as	a	FileDialogFilters	collection.

				Dim	fdfs	As	FileDialogFilters

				'Declare	a	variable	as	a	FileDialogFilter	object.

				Dim	fdf	As	FileDialogFilter

				'Set	the	FileDialogFilters	collection	variable	to

				'the	FileDialogFilters	collection	of	the	SaveAs	dialog	box.

				Set	fdfs	=	Application.FileDialog(msoFileDialogSaveAs).Filters

				'Iterate	through	the	description	and	extensions	of	each

				'default	filter	in	the	SaveAs	dialog	box.

				For	Each	fdf	In	fdfs

								'Display	the	description	of	filters	that	include

								'Microsoft	Excel	files.

								If	InStr(1,	fdf.Extensions,	"xls",	vbTextCompare)	>	0	Then

												MsgBox	"Description	of	filter:	"	&	fdf.Description

								End	If

				Next	fdf

End	Sub

Show	All

FaceId	Property
							

Returns	or	sets	the	Id	number	for	the	face	of	a	command	bar	button	control.
Read/write	Long.

Remarks

The	FaceId	property	dictates	the	look,	not	the	function,	of	a	command	bar
button.	The	Id	property	of	the	CommandBarControl	object	determines	the
function	of	the	button.

The	value	of	the	FaceId	property	for	a	command	bar	button	with	a	custom	face
is	0	(zero).

Example

This	example	adds	a	command	bar	button	to	a	custom	command	bar.	Clicking
this	button	is	equivalent	to	clicking	the	Open	command	on	the	File	menu
because	the	ID	number	is	23,	yet	the	button	has	the	same	button	face	as	the	built-
in	Charting	button.

Set	newBar	=	CommandBars.Add(Name:="Custom2",	_

					Position:=msoBarTop,	Temporary:=True)

newBar.Visible	=	True

Set	con	=	newBar.Controls.Add(Type:=msoControlButton,	Id:=23)

con.FaceId	=	17

FeatureTips	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	provides	information	about	using	application
features	more	effectively.	Read/write	Boolean.

Remarks

The	FeatureTips	property	corresponds	to	the	Using	features	more	effectively
check	box	on	the	Options	tab	in	the	Assistant	dialog	box.

Example

This	example	allows	the	Office	Assistant	to	provide	information	about	using
application	features	more	effectively.

Assistant.FeatureTips	=	True

FileName	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Assistant	object:	Returns	or	sets	the	path	and	file	name	for	the	active	Office
Assistant.	Read/write	String.

FileSearch	object:	Returns	or	sets	the	name	of	the	file	to	look	for	during	a	file
search.	The	name	of	the	file	may	include	the	*	(asterisk)	or	?	(question	mark)
wildcards.	Use	the	question	mark	wildcard	to	match	any	single	character.	For
example,	type	gr?y	to	match	both	"gray"	and	"grey."	Use	the	asterisk	wildcard	to
match	any	number	of	characters.	For	example,	type	*.txt	to	find	all	files	that
have	the	.TXT	extension.	Read/write	String.

expression.FileName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	searches	for	all	files	located	in	the	My	Documents	folder	that
begin	with	"cmd"	and	have	a	file	name	extension.	The	example	displays	the
name	and	location	of	each	found	file.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.FileName	=	"cmd*.*"

				If	.Execute	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

												"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

Files	Property
							

Returns	an	AnswerWizardFiles	collection	that	represents	the	list	of	files
available	to	the	current	AnswerWizard.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	resets	the	file	list	for	the	current	AnswerWizard	and	then	displays
both	the	file	count	and	the	file	names	in	a	message	box.

Dim	customAnswerWizard	As	AnswerWizard

Dim	strFileList	As	String

Dim	intCounter	As	Integer

Dim	intNumFiles	As	Integer

Set	customAnswerWizard	=	Application.AnswerWizard

intCounter	=	1

customAnswerWizard.ResetFileList

strFileList	=	""

intNumFiles	=	customAnswerWizard.Files.Count

For	intCounter	=	1	To	(intNumFiles)

				strFileList	=	strFileList	&	_

				customAnswerWizard.Files.Item(intCounter)	&	Chr(13)

Next

MsgBox	"There	are	"	&	customAnswerWizard.Files.Count	&	_

				"	files	avaialble	through	this	AnswerWizard:	"	&	_

				Chr(13)	&	strFileList

Show	All

FileType	Property
							

Returns	or	sets	the	type	of	file	to	look	for	during	a	file	search.	Read/write
MsoFileType.

MsoFileType	can	be	one	of	these	MsoFileType	constants.
msoFileTypeAllFiles
msoFileTypeBinders
msoFileTypeCalendarItem
msoFileTypeContactItem
msoFileTypeCustom
msoFileTypeDatabases
msoFileTypeDataConnectionFiles
msoFileTypeDesignerFiles
msoFileTypeDocumentImagingFiles
msoFileTypeExcelWorkbooks
msoFileTypeJournalItem
msoFileTypeMailItem
msoFileTypeNoteItem
msoFileTypeOfficeFiles
msoFileTypeOutlookItems
msoFileTypePhotoDrawFiles
msoFileTypePowerPointPresentations
msoFileTypeProjectFiles
msoFileTypePublisherFiles
msoFileTypeTaskItem
msoFileTypeTemplates
msoFileTypeVisioFiles
msoFileTypeWebPages
msoFileTypeWordDocuments

expression.FileType

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	constant	msoFileTypeOfficeFiles	includes	all	files	with	any	of	the
following	extensions:	*.doc,	*.xls,	*.ppt,	*.pps,	*.obd,	*.mdb,	*.mpd,	*.dot,
*.xlt,	*.pot,	*.obt,	*.htm,	or	*.html.

Example

This	example	searches	for	all	Binder	files	located	in	the	My	Documents	folder.
The	example	displays	a	message	box	that	contains	the	name	and	location	of	each
file	that’s	found.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.FileType	=	msoFileTypeBinders

				If	.Execute	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

												"	Binder	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	Binder	files	found."

				End	If

End	With

FileTypes	Property
							

Returns	a	FileTypes	collection.

expression.FileTypes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	searches	for	all	HTML	and	Microsoft	Excel	files	on	the
C:\	drive.

Sub	SearchForFiles()

				'Declare	a	variable	to	act	as	a	generic	counter.

				Dim	lngCount	As	Long

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Clear	all	the	parameters	of	the	previous	searches.

								'This	method	doesn't	clear	the	LookIn	property	or

								'the	SearchFolders	collection.

								.NewSearch

								'Setting	the	FileType	property	clears	the

								'FileTypes	collection	and	sets	the	first

								'item	in	the	collection	to	the	file	type

								'defined	by	the	FileType	property.

								.FileType	=	msoFileTypeWebPages

								'Add	a	second	item	to	the	FileTypes	collection.

								.FileTypes.Add	msoFileTypeExcelWorkbooks

								'Display	the	number	of	FileTypes	objects	in	the	collection.

								MsgBox	"You	are	about	to	search	for	"	&	.FileTypes.Count	&	_

												"	file	types."

								'Set	up	the	search	to	look	in	all	subfolders	on	the	C:\	drive.

								.LookIn	=	"C:\"

								.SearchSubFolders	=	True

								'Execute	the	search	and	test	to	see	if	any	files

								'were	found.

								If	.Execute	<>	0	Then

												'Display	the	number	of	files	found.

												MsgBox	"Files	found:	"	&	.FoundFiles.Count

												'Loop	through	the	list	of	found	files	and

												'display	the	path	of	each	one	in	a	message	box.

												For	lngCount	=	1	To	.FoundFiles.Count

																If	MsgBox(.FoundFiles.Item(lngCount),	vbOKCancel,	_

																				"Found	files")	=	vbCancel	Then

																				'Break	out	of	the	loop

																				lngCount	=	.FoundFiles.Count

																End	If

												Next	lngCount

								Else

												MsgBox	"No	files	found."

								End	If

				End	With

End	Sub

FilterIndex	Property
							

Returns	or	sets	a	Long	indicating	the	default	file	filter	of	a	file	dialog	box.	The
default	filter	determines	which	types	of	files	are	displayed	when	the	file	dialog
box	is	first	opened.	Read/write.

expression.FilterIndex

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

If	you	try	to	set	this	property	to	a	number	greater	than	the	number	of	filters,	the
last	available	filter	will	be	selected.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.	This	example	also
demonstrates	how	to	add	a	new	file	filter	and	how	to	make	it	the	default	filter.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Add	a	filter	that	includes	GIF	and	JPEG	images	and	make	it	the	second	item	in	the	list.

								.Filters.Add	"Images",	"*.gif;	*.jpg;	*.jpeg",	2

								'Sets	the	initial	file	filter	to	number	2.

								.FilterIndex	=	2

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Filters	Property
							

Returns	a	FileDialogFilters	collection.

expression.Filters

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.	The	example	also	adds	a
new	file	filter	called	"Images."

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Add	a	filter	that	includes	GIF	and	JPEG	images	and	make	it	the	first	item	in	the	list.

								.Filters.Add	"Images",	"*.gif;	*.jpg;	*.jpeg",	1

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

FixedWidthFont	Property
							

Sets	or	returns	the	fixed-width	font	setting	in	the	host	application.	Read/write
String.

Remarks

When	you	set	the	FixedWidthFont	property,	the	host	application	does	not	check
the	value	for	validity.

Example

This	example	sets	the	fixed-width	font	and	fixed-width	font	size	for	the
English/Western	European/Other	Latin	Script	character	set	in	the	active
application.

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.FixedWidthFont	=	"System"

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.FixedWidthFontSize	=	12

FixedWidthFontSize	Property
							

Sets	or	returns	the	fixed-width	font	size	setting	in	the	host	application,	in	points.
Read/write	Single.

Remarks

When	you	set	the	FixedWidthFontSize	property,	the	host	application	does	not
check	the	value	for	validity.	If	you	enter	an	invalid	value,	such	as	a	nonnumber,
the	host	application	sets	the	size	to	0	points.	You	can	enter	half-point	sizes;	if
you	enter	other	fractional	point	sizes,	they	are	rounded	up	or	down	to	the	nearest
half-point.

Example

This	example	sets	the	fixed-width	font	and	fixed-width	font	size	for	the
English/Western	European/Other	Latin	Script	character	set	in	the	active
application.

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.FixedWidthFont	=	"System"

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.FixedWidthFontSize	=	12

FoundFiles	Property
							

Returns	a	FoundFiles	object	that	contains	the	names	of	all	the	files	found	during
a	search.	Read-only.

Example

This	example	steps	through	the	list	of	files	found	during	a	search	and	displays
the	path	for	each	file.

With	Application.FileSearch

For	i	=	1	To	.FoundFiles.Count

				MsgBox	.FoundFiles(i)

Next	I

End	With

GuessHelp	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	balloon	presents	a	list	of	Help	topics	based	on
keywords	the	user	selects	before	clicking	the	Assistant	window	or	pressing	F1.
Read/write	Boolean.

Remarks

The	GuessHelp	property	corresponds	to	the	Guess	help	topics	option	under	Use
the	Office	Assistant	on	the	Options	tab	in	the	Office	Assistant	dialog	box.

Example

This	example	allows	the	Office	Assistant	to	guess	at	Help	topics.

Assistant.GuessHelp	=	True

Guid	Property
							

Returns	the	globally	unique	class	identifier	(GUID)	for	the	specified
COMAddIn	object.	Read-only	String.

Example

The	following	example	displays	the	ProgID	and	GUID	for	COM	add-in	one	in	a
message	box.

MsgBox	"My	ProgID	is	"	&	_

				Application.COMAddIns(1).ProgID	&	_

				"	and	my	GUID	is	"	&	_

				Application.COMAddIns(1).Guid

Heading	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	heading	that	appears	in	the	Office	Assistant	balloon.
Read/write	String.

Remarks

You	can	specify	a	graphic	to	be	displayed	in	the	balloon	heading	by	using	the
following	syntax:	{type	location	sizing_factor},	where	type	is	bmp	(bitmap)	or
wmf	(Windows	metafile),	location	is	the	resource	ID	or	the	path	and	file	name,
and	sizing_factor	specifies	the	width	of	the	wmf	(omitted	for	bmp).

The	balloon	heading	also	supports	underlined	text	and	text	that	has	one	of	the	16
system	palette	colors	applied	to	it.	To	display	underlined	text	in	a	heading,	use
the	syntax	{ul}	or	{ul	1};	use	{ul	0}	to	turn	underlining	off.	To	change	the	color
of	heading	text,	precede	the	text	string	with	the	character	sequence	{cf	number},
where	number	is	one	of	the	system	color	numbers	listed	in	the	following	table.

System	color	number Color
0 Black
1 Dark	red
2 Dark	green
3 Dark	yellow
4 Dark	blue
5 Dark	magenta
6 Dark	cyan
7 Light	gray
248 Medium	gray
249 Red
250 Green
251 Yellow
252 Blue
253 Magenta
254 Cyan
255 White

If	you	specify	a	number	other	than	one	of	the	preceding	system	color	numbers,
the	heading	text	is	black.

Example

This	example	displays	a	balloon	with	a	heading,	text,	and	three	region	choices.

With	Assistant.NewBalloon

				.Button	=	msoButtonSetOkCancel

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	a	region"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Show

End	With

Show	All

Height	Property
							

Returns	or	sets	the	height	of	a	command	bar	control	or	command	bar.	Read/write
Long.

expression.Height

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

This	example	adds	a	custom	control	to	the	command	bar	named	Custom.	The
example	sets	the	height	of	the	custom	control	to	twice	the	height	of	the
command	bar	and	sets	the	control’s	width	to	50	pixels.	Notice	how	the	command
bar	automatically	resizes	itself	to	accommodate	the	control.

Set	myBar	=	CommandBars("Custom")

barHeight	=	myBar.Height

Set	myControl	=	myBar.Controls	_

				.Add(Type:=msoControlButton,	_

				Id:=	CommandBars("Standard").Controls("Save").Id,	_

					Temporary:=True)

With	myControl

				.Height	=	barHeight	*	2

				.Width	=	50

End	With

myBar.Visible	=	True

Show	All

HelpContextId	Property
							

Returns	or	sets	the	Help	context	Id	number	for	the	Help	topic	attached	to	the
command	bar	control.	Read/write	Long.

Remarks

To	use	this	property,	you	must	also	set	the	HelpFile	property.	Help	topics
respond	to	Shift+F1.

Example

This	example	adds	a	custom	command	bar	with	a	combo	box	that	tracks	stock
data.	The	example	also	specifies	the	Help	topic	to	be	displayed	for	the	combo
box	when	the	user	presses	SHIFT+F1.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.AddItem	"View	News",	4

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

				.HelpFile	=	"C:\corphelp\custom.hlp"

				.HelpContextID	=	47

End	With

Show	All

HelpFile	Property
							

Returns	or	sets	the	file	name	for	the	Help	topic	attached	to	the	command	bar
control.	Read/write	String.

Remarks

To	use	this	property,	you	must	also	set	the	HelpContextID	property.	Help	topics
respond	to	the	user	pressing	SHIFT+F1.

Example

This	example	adds	a	custom	command	bar	with	a	combo	box	that	tracks	stock
data.	The	example	also	specifies	the	Help	topic	to	be	displayed	for	the	combo
box	when	the	user	presses	SHIFT+F1.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.AddItem	"View	News",	4

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

				.HelpFile	=	"C:\corphelp\custom.hlp"

				.HelpContextID	=	47

End	With

HighPriorityTips	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	displays	high-priority	tips.	Read/write	Boolean.

Remarks

The	HighPriorityTips	property	corresponds	to	the	Only	show	high	priority
tips	option	under	Show	tips	about	on	the	Options	tab	in	the	Office	Assistant
dialog	box.

Example

This	example	sets	the	Office	Assistant	to	display	high-priority	tips.

Assistant.HighPriorityTips	=	True

HTMLProjectItems	Property
							

Returns	the	HTMLProjectItems	collection	that	is	included	in	the	specified
HTML	project.	Read-only	HTMLProjectItems.

Example

This	example	returns	the	number	of	items	in	the	HTMLProjectItems	collection
in	the	HTML	project	in	the	active	workbook.

intCount	=	ActiveWorkbook.HTMLProject.HTMLProjectItems.Count

HyperlinkType	Property
							

Sets	or	returns	the	type	of	hyperlink	associated	with	the	specified	command	bar
button.	Read/write	MsoCommandBarButtonHyperlinkType.

MsoCommandBarButtonHyperlinkType	can	be	one	of	these
MsoCommandBarButtonHyperlinkType	constants.
msoCommandBarButtonHyperlinkInsertPicture
msoCommandBarButtonHyperlinkNone
msoCommandBarButtonHyperlinkOpen

Example

This	example	checks	the	HyperlinkType	property	for	the	specified	command
bar	button	on	the	command	bar	named	"Custom.".	If	HyperlinkType	is	set	to
msoCommandBarButtonHyperlinkNone,	the	example	sets	the	property	to
msoCommandBarButtonHyperlinkOpen	and	sets	the	URL	to
www.microsoft.com.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

Set	myButton	=	myBar.Controls.Add(Type:=msoControlButton)

With	myButton

				.FaceId	=	277

				.HyperlinkType	=	msoCommandBarButtonHyperlinkNone

End	With

If	myButton.HyperlinkType	<>	_

				msoCommandBarButtonHyperlinkOpen	Then

				myButton.HyperlinkType	=	_

								msoCommandBarButtonHyperlinkOpen

				myButton.TooltipText	=	"www.microsoft.com"

End	If

Icon	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	type	of	icon	that	appears	in	the	upper-left	portion	of	the
Office	Assistant	balloon.	Read/write	MsoIconType.

MsoIconType	can	be	one	of	these	MsoIconType	constants.
msoIconAlert
msoIconAlertCritical
msoIconAlertInfo
msoIconAlertQuery
msoIconAlertWarning
msoIconNone
msoIconTip

Example

This	example	creates	a	balloon	with	an	“Alert”	icon	that	instructs	the	user	to
select	a	printer.

With	Assistant.NewBalloon

				.Heading	=	"Select	A	Printer"

				.Text	=	"You	must	select	a	printer	before	printing."

				.Icon	=	msoIconAlert

				.CheckBoxes(1).Text	=	"Local	printer"

				.CheckBoxes(2).Text	=	"Network	printer"

				.Show

End	With

Show	All

Id	Property
							

Id	property	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	and	CommandBarControl	objects.

Returns	the	ID	for	a	built-in	command	bar	control.	Read-only	Long.

expression.Id

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Remarks

A	control's	ID	determines	the	built-in	action	for	that	control.	The	value	of	the	Id
property	for	all	custom	controls	is	1.

Id	property	as	it	applies	to	the	Script	object.

Sets	or	returns	the	ID	of	a	Script	object.	Read/write	String.

expression.Id

expression			Required.	An	expression	that	returns	a	Script	object.

Remarks

The	ID	returned	is	the	ID	attribute	of	the	<SCRIPT>	tag	in	HTML.	If	there’s	no
ID	attribute	specified	in	the	<SCRIPT>	tag,	the	Id	property	returns	an	empty
string.

Id	specifies	an	SGML	identifier	used	for	naming	elements.	Valid	identifiers
include	any	string	that	begins	with	a	letter	and	is	composed	of	alphanumeric
characters;	the	string	can	also	include	the	underscore	character	(_).

The	ID	must	be	unique	within	the	HTML	document.

Example

As	it	applies	to	the	CommandBarButton,	CommandBarComboBox,	and
CommandBarControl	objects.

This	example	changes	the	button	face	of	the	first	control	on	the	command	bar
named	"Custom2"	if	the	button's	ID	value	is	less	than	25.

Set	ctrl	=	CommandBars("Custom").Controls(1)

With	ctrl

				If	.Id	<	25	Then

								.FaceId	=	17

								.Tag	=	"Changed	control"

				End	If

End	With

The	following	example	changes	the	caption	of	every	control	on	the	toolbar
named	"Standard"	to	the	current	value	of	the	Id	property	for	that	control.

For	Each	ctl	In	CommandBars("Standard").Controls

				ctl.Caption	=	CStr(ctl.Id)

Next	ctl

As	it	applies	to	the	Script	object.

This	example	sets	the	Id	property	of	the	first	script	in	worksheet	one	of	the
active	workbook	to	a	new	value.

ActiveWorkbook.Worksheets(1).Scripts(1).Id	=	"UpdatedScriptName"

Index	Property
							

Returns	a	Long	representing	the	index	number	for	an	object	in	the	collection.
Read-only.

expression.Index

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	position	of	the	first	command	bar	control	is	1.	Separators	are	not	counted	in
the	CommandBarControls	collection.

Example

This	example	searches	the	command	bar	named	"Custom2"	for	a	control	with	an
Id	value	of	23.	If	such	a	control	is	found	and	the	index	number	of	the	control	is
greater	than	5,	the	control	will	be	positioned	as	the	first	control	on	the	command
bar.

Set	myBar	=	CommandBars("Custom2")

Set	ctrl1	=	myBar.FindControl(Id:=23)

If	ctrl1.Index	>	5	Then

				ctrl1.Move	before:=1

End	If

InitialFileName	Property
							

Set	or	returns	a	String	representing	the	path	and/or	file	name	that	is	initially
displayed	in	a	file	dialog	box.	Read/write.

expression.InitialFileName

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

You	can	use	the	'*'	and	'?'	wildcard	characters	when	specifying	the	file	name	but
not	when	specifying	the	path.	The	'*'	represents	any	number	of	consecutive
characters	and	the	'?'	represents	a	single	character.	For	example,
.InitialFileName	=	"c:\c*s.txt"	will	return	both	"charts.txt"	and
"checkregister.txt."

If	you	specify	a	path	and	no	file	name,	then	all	files	that	are	allowed	by	the	file
filter	will	appear	in	the	dialog	box.

If	you	specify	a	file	that	exists	in	the	initial	folder,	then	only	that	file	will	appear
in	the	dialog	box.

If	you	specify	a	file	name	that	doesn't	exist	in	the	initial	folder,	then	the	dialog
box	will	contain	no	files.	The	type	of	file	that	you	specify	in	the
InitialFileName	property	will	override	the	file	filter	settings.

If	you	specify	an	invalid	path,	the	last-used	path	is	used.	A	message	will	warn
users	when	an	invalid	path	is	used.

Setting	this	property	to	a	string	longer	than	256	characters	will	cause	a	run-time
error.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Set	the	initial	path	to	the	C:\	drive.

								.InitialFileName	=	"C:\"

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Show	All

InitialView	Property
							

Returns	or	sets	an	MsoFileDialogView	constant	representing	the	initial
presentation	of	files	and	folders	in	a	file	dialog	box.	Read/write.

MsoFileDialogView	can	be	one	of	these	MsoFileDialogView	constants.
msoFileDialogViewDetails
msoFileDialogViewLargeIcons
msoFileDialogViewList
msoFileDialogViewPreview
msoFileDialogViewProperties
msoFileDialogViewSmallIcons
msoFileDialogViewThumbnail	This	constant	is	only	available	in	conjunction
with	Microsoft	Windows	2000	or	Microsoft	Windows	Millennium	Edition,	or
later.	
msoFileDialogViewWebView	Not	available.	If	you	select	this	constant,	the
default	view	will	be	used.

expression.InitialView

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	a	File	Picker	dialog	box	in	details	view		using
the	FileDialog	object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

	 	

								'Set	the	initial	view	to	the	details	view.

								.InitialView	=	msoFileDialogViewDetails

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Introduction	Property
							

Sets	or	returns	the	introductory	text	that	is	included	with	a	document	that	is	sent
using	the	MsoEnvelope	object.	The	introductory	text	is	included	at	the	top	of	the
document	in	the	e-mail.	Read/write	String.

expression.Introduction

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	sends	the	active	Microsoft	Word	document	as	an	e-mail
to	the	e-mail	address	that	you	pass	to	the	subroutine.

Sub	SendMail(ByVal	strRecipient	As	String)

				'Use	a	With...End	With	block	to	reference	the	MsoEnvelope	object.

				With	Application.ActiveDocument.MailEnvelope

								'Add	some	introductory	text	before	the	body	of	the	e-mail.

								.Introduction	=	"Please	read	this	and	send	me	your	comments."

								'Return	a	MailItem	object	that	you	can	use	to	send	the	document.

								With	.Item

												'All	of	the	mail	item	settings	are	saved	with	the	document.

												'When	you	add	a	recipient	to	the	Recipients	collection

												'or	change	other	properties	these	settings	will	persist.

												.Recipients.Add	strRecipient

												.Subject	=	"Here	is	the	document."

												'The	body	of	this	message	will	be

												'the	content	of	the	active	document.

												.Send

								End	With

				End	With

End	Sub

IsCertificateExpired	Property
							

True	if	the	digital	certificate	that	corresponds	to	the	Signature	object	has
expired.	Read-only	Boolean.

expression.IsCertificateExpired

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

IsCertificateRevoked	Property
							

True	if	the	digital	certificate	that	corresponds	to	the	Signature	object	has	been
revoked	by	the	issuer	of	the	certificate.	Read-only	Boolean.

expression.IsCertificateRevoked

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

IsOpen	Property
							

True	if	the	specified	HTML	project	item	is	open	in	the	Microsoft	Script	Editor.
Read-only	Boolean.

Example

This	example	determines	whether	the	specified	HTML	project	item	is	open.	and
if	it	is,	the	example	then	loads	script	from	the	specified	file.

If	ActiveWorkbook.HTMLProject.HTMLProjectItems	_

				.Item(1).IsOpen	Then

				ActiveWorkbook.HTMLProject.HTMLProjectItems	_

								.Item(1).LoadFromFile	("C:\MyScript.txt")

Else

				MsgBox	"The	HTMLProjectItem	is	not	open."

End	If

IsPriorityDropped	Property
							

True	if	the	control	is	currently	dropped	from	the	menu	or	toolbar	based	on	usage
statistics	and	layout	space.	(Note	that	this	is	not	the	same	as	the	control's
visibility,	as	set	by	the	Visible	property.)	A	control	with	Visible	set	to	True,	will
not	be	immediately	visible	on	a	Personalized	Menu	or	Toolbar	if
IsPriorityDropped	is	True.	Read-only	Boolean.

Remarks

To	determine	when	to	set	IsPriorityDropped	to	True	for	a	specific	menu	item,
Microsoft	Office	maintains	a	total	count	of	the	number	of	times	the	menu	item
was	used	and	a	record	of	the	number	of	different	application	sessions	in	which
the	user	has	used	another	menu	item	in	the	same	menu	as	this	menu	item,
without	using	the	specific	menu	item.	When	this	value	reaches	certain	threshold
values,	the	count	is	decremented.	When	the	count	reaches	zero,
IsPriorityDropped	is	set	to	True.	Programmers	cannot	set	the	session	value,	the
threshold	value,	or	the	IsPriorityDropped	property.	Programmers	can,	however,
use	the	AdaptiveMenus	property	to	disable	adaptive	menus	for	specific	menus
in	an	application.

To	determine	when	to	set	IsPriorityDropped	to	True	for	a	specific	toolbar
control,	Office	maintains	a	list	of	the	order	in	which	all	the	controls	on	that
toolbar	were	last	executed.	A	toolbar	will	always	show	as	many	controls	as	it	has
space	to	show,	in	the	order	of	most	recently	used	to	least	recently	used.	Controls
with	Priority	set	to	1	will	always	be	shown	and	the	toolbar	will	wrap	rows,	if
necessary,	to	show	these	controls.	Programmers	can	use	the	Priority	property	to
ensure	that	specific	toolbar	controls	are	always	shown,	or	to	reposition	toolbars
so	that	they	have	enough	space	to	display	all	of	their	controls.

You	can	use	the	following	table	to	predict	the	number	of	sessions	for	which	a
menu	item	on	a	Personalized	Menu	will	remain	visible	before	the	menu	item's
IsPriorityDropped	property	is	set	to	True.

Number	of	uses	of	the	command	bar
control Number	of	sessions	of	the	application

0,	1 3
2 6
3 9
4,	5 12
6–	8 17
9–13 23
14–24 29
25	or	more 31

Example

This	example	checks	the	IsPriorityDropped	property	for	the	first	control	on	the
command	bar	named	“Custom.”	If	IsPriorityDropped	is	True,	the	example	sets
the	AdaptiveMenus	property	to	False,	restoring	the	dropped	command	bar.

If	CommandBars("Custom").Controls(1).IsPriorityDropped	Then

				CommandBars.AdaptiveMenus	=	True

End	If

Issuer	Property
							

Returns	a	String	representing	the	name	of	the	issuer	of	the	digital	certificate	that
corresponds	to	the	Signature	object.	Read-only.

expression.Issuer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

IsValid	Property
							

True	if	the	digital	certificate	that	corresponds	to	the	Signature	object	is	a	valid
certificate.	A	certificate	may	be	invalid	for	several	reasons	ranging	from	its
having	expired	to	changes	in	the	document	that	contains	it.	Read-only	Boolean.

expression.IsValid

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

Show	All

Item	Property
							

Item	property	as	it	applies	to	the	FileTypes	collection.

Returns	a	value	that	indicates	which	file	type	will	be	searched	for	by	the
Execute	method	of	the	FileSearch	object.	Read-only	MsoFileType.

MsoFileType	can	be	one	of	these	MsoFileType	constants.
msoFileTypeAllFiles
msoFileTypeBinders
msoFileTypeCalendarItem
msoFileTypeContactItem
msoFileTypeDatabases
msoFileTypeDataConnectionFiles
msoFileTypeDesignerFiles
msoFileTypeDocumentImagingFiles
msoFileTypeExcelWorkbooks
msoFileTypeJournalItem
msoFileTypeMailItem
msoFileTypeNoteItem
msoFileTypeOfficeFiles
msoFileTypeOutlookItems
msoFileTypePhotoDrawFiles
msoFileTypePowerPointPresentations
msoFileTypeProjectFiles
msoFileTypePublisherFiles
msoFileTypeTaskItem
msoFileTypeTemplates
msoFileTypeVisioFiles
msoFileTypeWebPages

msoFileTypeWordDocuments

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	FileTypes	collection.

Index		Required	Long.	The	index	number	of	the	object	to	be	returned.

Item	property	as	it	applies	to	the	CommandBars	object.

Returns	a	CommandBar	object	from	the	CommandBars	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	CommandBars	object.

Index		Required	Variant.	The	name	or	index	number	of	the	object	to	be
returned.

Item	property	as	it	applies	to	the	CommandBarControls	object.

Returns	a	CommandBarControl	object	from	the	CommandBarControls
collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	CommandBarControls
object.

Index		Required	Variant.	The	name	or	index	number	of	the	object	to	be
returned.

Item	property	as	it	applies	to	the	DocumentProperties	object.

Returns	a	DocumentProperty	object	from	the	DocumentProperties	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	DocumentProperties	object.

Index		Required	Variant.	The	name	or	index	number	of	the	document	property

returned.

Item	property	as	it	applies	to	the	BalloonCheckboxes	and	BalloonLabels
objects.

Returns	a	BalloonCheckBox	or	BalloonLabel	object.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of	the	check	box	or	label	to	be
returned.

Item	property	as	it	applies	to	the	MsoEnvelope	object.

Returns	a	MailItem	object	that	can	be	used	to	send	the	document	as	an	e-mail.

expression.Item

expression			Required.	An	expression	that	returns	an	MsoEnvelope	object.

Item	property	as	it	applies	to	the	PropertyTests	object.

Returns	a	PropertyTest	object	from	the	PropertyTests	collection.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	PropertyTests	object.

Index		Required	Long.	The	index	number	of	the	property	test	to	be	returned.

Item	property	as	it	applies	to	the	ScopeFolders	and	SearchFolders	objects.

Returns	a	ScopeFolder	object	that	represents	a	subfolder	of	the	parent	object.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	Determines	which	subfolder	to	return.

Item	property	as	it	applies	to	the	SearchScopes	object.

Returns	a	SearchScope	object	that	corresponds	to	an	area	in	which	to	perform	a
file	search,	such	as	local	drives	or	Microsoft	Outlook	folders.

expression.Item(Index)

expression			Required.	An	expression	that	returns	a	SearchScopes	object.

Index		Required	Long.	Determines	which	SearchScope	object	to	return.

Item	property	as	it	applies	to	the	SignatureSet	object.

Returns	a	Signature	object	that	corresponds	to	one	of	the	digital	signatures	with
which	the	document	is	currently	signed.

expression.Item(iSig)

expression			Required.	An	expression	that	returns	a	SignatureSet	object.

iSig		Required	Long.	Determines	which	Signature	object	to	return.

Item	property	as	it	applies	to	the	AnswerWizardFiles	and	FoundFiles	objects.

Returns	a	file	name	string	from	an	AnswerWizardFiles	collection,	or	a	file
name	from	the	list	of	file	names	represented	by	the	FoundFiles	object,
respectively.	Read-only	String.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	Long.	The	index	number	of	the	Answer	Wizard	file	name
string,	or	the	file	name,	to	be	returned.

Item	property	as	it	applies	to	the	Assistant,	BalloonCheckbox,	BalloonLabel,
and	FileDialog	objects.

Returns	the	text	associated	with	an	object.	Read-only	String.

expression.Item

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Item	property	as	it	applies	to	the	WebPageFonts	object.

Returns	a	WebPageFont	object	from	the	WebPageFonts	collection	for	a
particular	value	of	MsoCharacterSet.

expression.Item(Index)

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Index		Required	MsoCharacterSet.	The	specified	character	set.

MsoCharacterSet	can	be	one	of	these	MsoCharacterSet	constants.
msoCharacterSetArabic
msoCharacterSetCyrillic
msoCharacterSetEnglishWesternEuropeanOtherLatinScript
msoCharacterSetGreek
msoCharacterSetHebrew
msoCharacterSetJapanese
msoCharacterSetKorean
msoCharacterSetMultilingualUnicode
msoCharacterSetSimplifiedChinese
msoCharacterSetThai
msoCharacterSetTraditionalChinese
msoCharacterSetVietnamese

Example

As	it	applies	to	the	CommandBars	object.

Item	is	the	default	member	of	the	object	or	collection.	The	following	two
statements	both	assign	a	CommandBar	object	to	cmdBar.

Set	cmdBar	=	CommandBars.Item("Standard")

Set	cmdBar	=	CommandBars("Standard")

As	it	applies	to	the	BalloonCheckboxes	and	BalloonLabels	objects.

Item	is	the	default	member	of	the	object	or	collection.	The	following	two
statements	both	assign	to	lblText	the	text	of	the	first	label	in	the	Balloon	object
assigned	to	myBalloon.

lblText	=	myBalloon.Labels(1).Item

lblText	=	myBalloon.Labels(1)

As	it	applies	to	the	AnswerWizardFiles	and	FoundFiles	objects.

This	example	resets	the	file	list	for	the	current	Answer	Wizard	and	displays	both
the	file	count	and	the	file	names	in	a	message	box,	using	the	Item	property	to
return	the	file	names.

Dim	customAnswerWizard	As	AnswerWizard

Dim	strFileList	As	String

Dim	intCounter	As	Integer

Dim	intNumFiles	As	Integer

Set	customAnswerWizard	=	Application.AnswerWizard

intCounter	=	1

customAnswerWizard.ResetFileList

strFileList	=	""

intNumFiles	=	customAnswerWizard.Files.Count

For	intCounter	=	1	To	(intNumFiles)

				strFileList	=	strFileList	&	_

				customAnswerWizard.Files.Item(intCounter)	&	Chr(13)

Next

MsgBox	"There	are	"	&	customAnswerWizard.Files.Count	&	_

				"	files	avaialble	through	this	AnswerWizard:	"	&	_

				Chr(13)	&	strFileList

As	it	applies	to	the	WebPageFonts	object.

The	following	example	uses	the	Item	property	to	set	myFont	to	the
WebPageFont	object	for	the	English/Western	European/Other	Latin	Script
character	set	in	the	active	application.

Dim	myFont	As	WebPageFont

Set	myFont	=	_

	Application.DefaultWebOptions.Fonts.	_

	Item(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)

As	it	applies	to	the	MsoEnvelope	object.

The	following	example	sends	the	active	Microsoft	Word	document	as	an	e-mail
to	the	e-mail	address	that	you	pass	to	the	subroutine.

Sub	SendMail(ByVal	strRecipient	As	String)

				'Use	a	With...End	With	block	to	reference	the	msoEnvelope	object.

				With	Application.ActiveDocument.MailEnvelope

								'Add	some	introductory	text	before	the	body	of	the	e-mail	message.

								.Introduction	=	"Please	read	this	and	send	me	your	comments."

								'Return	a	MailItem	object	that	you	can	use	to	send	the	document.

								With	.Item

												'All	of	the	mail	item	settings	are	saved	with	the	document.

												'When	you	add	a	recipient	to	the	Recipients	collection

												'or	change	other	properties	these	settings	will	persist.

												.Recipients.Add	strRecipient

												.Subject	=	"Here	is	the	document."

												'The	body	of	this	message	will	be

												'the	content	of	the	active	document.

												.Send

								End	With

				End	With

End	Sub

KeyboardShortcutTips	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	displays	Help	about	keyboard	shortcuts.	Read/write
Boolean.

Remarks

The	KeyboardShortcutTips	property	corresponds	to	the	Keyboard	shortcuts
option	in	the	Show	tips	about	section	on	the	Options	tab	in	the	Office
Assistant	dialog	box.

Example

This	example	sets	the	Office	Assistant	to	provide	Help	information	about
keyboard	shortcuts.

Assistant.KeyboardShortcutTips	=	True

Labels	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	a	BalloonLabels	collection	that	represents	the	button	labels,	number
labels,	and	bullet	labels	contained	in	the	specified	Office	Assistant	balloon.
Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	creates	a	balloon	containing	three	choices.	The	variable	x	is	set	to
the	return	value	of	the	Show	method,	which	will	be	1,	2	or	3,	depending	on	the
label	the	user	clicks.	In	the	example,	a	message	box	displays	the	value	of	the
variable	x,	but	you	can	pass	the	value	to	another	procedure	or	you	can	use	the
value	in	a	Select	Case	statement.

Set	b	=	Assistant.NewBalloon

With	b

				.Heading	=	"This	is	my	heading"

				.Text	=	"Select	one	of	these	things:"

				.Labels(1).Text	=	"Choice	One"

				.Labels(2).Text	=	"Choice	Two"

				.Labels(3).Text	=	"Choice	Three"

				x	=	.Show

End	With

MsgBox	x

Language	Property
							

Specifies	or	returns	the	scripting	language	of	the	active	script.	Read/write
MsoScriptLanguage.

MsoScriptLanguage	can	be	one	of	these	MsoScriptLanguage	constants.
msoScriptLanguageASP
msoScriptLanguageJava
msoScriptLanguageOther
msoScriptLanguageVisualBasic

Remarks

The	MsoScriptLanguage	constants	used	with	the	Language	property	are	also
used	in	the	Language	parameter	in	the	Add	method	of	the	Scripts	collection.

Example

This	example	checks	the	Language	property	to	ensure	that	the	first	script	in
worksheet	one	in	the	active	workbook	is	written	in	VBScript.

If	ActiveWorkbook.Worksheets(1).Scripts(1).Language	<>	_

				msoScriptLanguageVisualBasic	Then

						MsgBox	"Language	is	not	set	to	VBScript."

End	If

LanguageID	Property
							

Returns	the	locale	identifier	(LCID)	for	the	install	language,	the	user	interface
language,	or	the	Help	language.	Read-only	Long.

expression.LanguageID(Id)

expression			Required.	An	expression	that	returns	a	LanguageSettings	object.

Id		Required	MsoAppLanguageID.

MsoAppLanguageID
constant Meaning

msoLanguageIDExeMode

The	language	mode	that	the	application	is	using.
This	setting	applies	only	to	Microsoft	Excel	and
Microsoft	Access.	This	setting	affects	languages
that	can	be	displayed	and	edited,	available
language-specific	features,	number	styles,
currency	settings,	and	so	forth.

If	none	of	the	languages	supported	by	Excel	and
Access	are	used,	the	host	application	will	not	be
configured	to	support	right-to-left	and	East	Asian
languages.	The	supported	languages	are	as
follows:

Arabic

Farsi

Hebrew

Japanese

Korean

Simplified	Chinese

Traditional	Chinese

Urdu

Yiddish

msoLanguageIDHelp The	language	used	for	online	Help.

msoLanguageIDInstall

The	language	settings	used	by	Microsoft	Office	to
set	up	defaults.	For	example,	Microsoft	Word
uses	this	setting	to	determine	the	layout	of
toolbars	and	the	default	types	of	bullets	and
numbers	on	a	language-by-language	basis.

msoLanguageIDUI The	language	used	by	the	host	application's	user
interface.

msoLanguageIDUIPrevious

The	language	setting	for	the	user	interface	when	a
given	computer	was	last	rebooted.	A	program	or
add-in	can	use	this	to	determine	whether	the	user
interface	language	has	changed.

Example

This	Microsoft	Excel	example	checks	the	LanguageID	property	settings	for	the
user	interface	and	execution	mode	to	verify	that	they	are	set	to	the	same	LCID.
The	example	returns	an	error	if	there	is	a	discrepancy.

If	Application.LanguageSettings.LanguageID(msoLanguageIDExeMode)	_

				<>	Application.LanguageSettings.LanguageID(msoLanguageIDUI)	_

				Then	MsgBox	"The	user	interface	language	and	execution	"	&	_

				"mode	are	different."

LanguagePreferredForEditing
Property
							

Returns	True	if	the	value	for	the	msoLanguageID	constant	has	been	identified
in	the	Windows	registry	as	a	preferred	language	for	editing.	Read-only	Boolean.

expression.LanguagePreferredForEditing(lid)

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

lid		Required	MsoLanguageID.

MsoLanguageID	can	be	one	of	these	MsoLanguageID	constants.
msoLanguageIDAfrikaans
msoLanguageIDAlbanian
msoLanguageIDAmharic
msoLanguageIDArabic
msoLanguageIDArabicAlgeria
msoLanguageIDArabicBahrain
msoLanguageIDArabicEgypt
msoLanguageIDArabicIraq
msoLanguageIDArabicJordan
msoLanguageIDArabicKuwait
msoLanguageIDArabicLebanon
msoLanguageIDArabicLibya
msoLanguageIDArabicMorocco
msoLanguageIDArabicOman
msoLanguageIDArabicQatar
msoLanguageIDArabicSyria
msoLanguageIDArabicTunisia

msoLanguageIDArabicUAE
msoLanguageIDArabicYemen
msoLanguageIDArmenian
msoLanguageIDAssamese
msoLanguageIDAzeriCyrillic
msoLanguageIDAzeriLatin
msoLanguageIDBasque
msoLanguageIDBelgianDutch
msoLanguageIDBelgianFrench
msoLanguageIDBengali
msoLanguageIDBrazilianPortuguese
msoLanguageIDBulgarian
msoLanguageIDBurmese
msoLanguageIDByelorussian
msoLanguageIDCatalan
msoLanguageIDCherokee
msoLanguageIDChineseHongKong
msoLanguageIDChineseMacao
msoLanguageIDChineseSingapore
msoLanguageIDCroatian
msoLanguageIDCzech
msoLanguageIDDanish
msoLanguageIDDutch
msoLanguageIDEnglishAUS
msoLanguageIDEnglishBelize
msoLanguageIDEnglishCanadian
msoLanguageIDEnglishCaribbean
msoLanguageIDEnglishIreland
msoLanguageIDEnglishJamaica
msoLanguageIDEnglishNewZealand
msoLanguageIDEnglishPhilippines
msoLanguageIDEnglishSouthAfrica
msoLanguageIDEnglishTrinidad

msoLanguageIDEnglishUK
msoLanguageIDEnglishUS
msoLanguageIDEnglishZimbabwe
msoLanguageIDEstonian
msoLanguageIDFaeroese
msoLanguageIDFarsi
msoLanguageIDFinnish
msoLanguageIDFrench
msoLanguageIDFrenchCameroon
msoLanguageIDFrenchCanadian
msoLanguageIDFrenchCotedIvoire
msoLanguageIDFrenchLuxembourg
msoLanguageIDFrenchMali
msoLanguageIDFrenchMonaco
msoLanguageIDFrenchReunion
msoLanguageIDFrenchSenegal
msoLanguageIDFrenchWestIndies
msoLanguageIDFrenchZaire
msoLanguageIDFrisianNetherlands
msoLanguageIDGaelicIreland
msoLanguageIDGaelicScotland
msoLanguageIDGalician
msoLanguageIDGeorgian
msoLanguageIDGerman
msoLanguageIDGermanAustria
msoLanguageIDGermanLiechtenstein
msoLanguageIDGermanLuxembourg
msoLanguageIDGreek
msoLanguageIDGujarati
msoLanguageIDHebrew
msoLanguageIDHindi
msoLanguageIDHungarian
msoLanguageIDIcelandic

msoLanguageIDIndonesian
msoLanguageIDInuktitut
msoLanguageIDItalian
msoLanguageIDJapanese
msoLanguageIDKannada
msoLanguageIDKashmiri
msoLanguageIDKazakh
msoLanguageIDKhmer
msoLanguageIDKirghiz
msoLanguageIDKonkani
msoLanguageIDKorean
msoLanguageIDLao
msoLanguageIDLatvian
msoLanguageIDLithuanian
msoLanguageIDMacedonian
msoLanguageIDMalayalam
msoLanguageIDMalayBruneiDarussalam
msoLanguageIDMalaysian
msoLanguageIDMaltese
msoLanguageIDManipuri
msoLanguageIDMarathi
msoLanguageIDMexicanSpanish
msoLanguageIDMixed
msoLanguageIDMongolian
msoLanguageIDNepali
msoLanguageIDNone
msoLanguageIDNoProofing
msoLanguageIDNorwegianBokmol
msoLanguageIDNorwegianNynorsk
msoLanguageIDOriya
msoLanguageIDOromo
msoLanguageIDPolish
msoLanguageIDPortuguese

msoLanguageIDPunjabi
msoLanguageIDRhaetoRomanic
msoLanguageIDRomanian
msoLanguageIDRomanianMoldova
msoLanguageIDRussian
msoLanguageIDRussianMoldova
msoLanguageIDSamiLappish
msoLanguageIDSanskrit
msoLanguageIDSerbianCyrillic
msoLanguageIDSerbianLatin
msoLanguageIDSesotho
msoLanguageIDSimplifiedChinese
msoLanguageIDSindhi
msoLanguageIDSlovak
msoLanguageIDSlovenian
msoLanguageIDSorbian
msoLanguageIDSpanish
msoLanguageIDSpanishArgentina
msoLanguageIDSpanishBolivia
msoLanguageIDSpanishChile
msoLanguageIDSpanishColombia
msoLanguageIDSpanishCostaRica
msoLanguageIDSpanishDominicanRepublic
msoLanguageIDSpanishEcuador
msoLanguageIDSpanishElSalvador
msoLanguageIDSpanishGuatemala
msoLanguageIDSpanishHonduras
msoLanguageIDSpanishModernSort
msoLanguageIDSpanishNicaragua
msoLanguageIDSpanishPanama
msoLanguageIDSpanishParaguay
msoLanguageIDSpanishPeru
msoLanguageIDSpanishPuertoRico

msoLanguageIDSpanishUruguay
msoLanguageIDSpanishVenezuela
msoLanguageIDSutu
msoLanguageIDSwahili
msoLanguageIDSwedish
msoLanguageIDSwedishFinland
msoLanguageIDSwissFrench
msoLanguageIDSwissGerman
msoLanguageIDSwissItalian
msoLanguageIDTajik
msoLanguageIDTamil
msoLanguageIDTatar
msoLanguageIDTelugu
msoLanguageIDThai
msoLanguageIDTibetan
msoLanguageIDTigrignaEritrea
msoLanguageIDTigrignaEthiopic
msoLanguageIDTraditionalChinese
msoLanguageIDTsonga
msoLanguageIDTswana
msoLanguageIDTurkish
msoLanguageIDTurkmen
msoLanguageIDUkrainian
msoLanguageIDUrdu
msoLanguageIDUzbekCyrillic
msoLanguageIDUzbekLatin
msoLanguageIDVenda
msoLanguageIDVietnamese
msoLanguageIDWelsh
msoLanguageIDXhosa
msoLanguageIDZulu

Remarks

You	must	test	all	valid	msoLanguageID	values	to	enumerate	the	set	of	preferred
languages.

Example

This	example	displays	a	message	if	U.S.	English	is	a	preferred	editing	language.

If	Application.LanguageSettings.	_

				LanguagePreferredForEditing(msoLanguageIDEnglishUS)	Then

				MsgBox	"One	of	the	preferred	editing	languages	is	US	English."

End	If

LargeButtons	Property
							

True	if	the	toolbar	buttons	displayed	are	larger	than	normal	size.	Read/write
Boolean.

Example

This	example	toggles	the	display	size	of	toolbar	buttons	on	all	command	bars.

Set	allBars	=	CommandBars

If	allBars.LargeButtons	Then

				allBars.LargeButtons	=	False

Else

				allBars.LargeButtons	=	True

End	If

LastModified	Property
							

Returns	or	sets	a	constant	that	represents	the	amount	of	time	since	the	specified
file	was	last	modified	and	saved.	The	default	value	is
msoLastModifiedAnyTime.	Read/write	MsoLastModified.

MsoLastModified	can	be	one	of	these	MsoLastModified	constants.
msoLastModifiedAnyTime
msoLastModifiedLastMonth
msoLastModifiedLastWeek
msoLastModifiedThisMonth
msoLastModifiedThisWeek
msoLastModifiedToday
msoLastModifiedYesterday

Example

This	example	sets	options	for	a	file	search.	The	files	this	search	returns	were
modified	yesterday	and	are	located	in	the	C:\My	Documents	folder	or	in	one	of
its	subfolders.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.LastModified	=	msoLastModifiedYesterday

End	With

Show	All

Left	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Left	property	as	it	applies	to	the	Assistant	and	CommandBar	objects.

Sets	or	returns	the	horizontal	position	of	the	Office	Assistant	window	(in	points),
or	the	distance	(in	pixels)	of	the	command	bar,	from	the	left	edge	of	the	specified
object	relative	to	the	screen.	Read/write	Long.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Left	property	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	and	CommandBarPopup
objects.

Set	or	returns	the	horizontal	position	of	the	specified	command	bar	control	(in
pixels)	relative	to	the	left	edge	of	the	screen.	Returns	the	distance	from	the	left
side	of	the	docking	area.	Read-only	Long.

expression.Left

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Assistant	and	CommandBar	objects.

This	example	displays	the	Office	Assistant	and	moves	it	to	the	specified	position
within	the	application	window.

With	Assistant

				.Visible	=	True

				.Left	=	300

				.Top	=	300

End	With

This	example	moves	the	command	bar	named	Custom	from	its	docked	position
along	the	top	of	the	window	to	the	left	edge	of	the	window.

Set	myBar	=	CommandBars("Custom")

With	myBar

				.Position	=	1

				.RowIndex	=	2

				.Left	=	0

End	With

LinkSource	Property
							

Returns	or	sets	the	source	of	a	linked	custom	document	property.	Read/write
String.

Remarks

This	property	applies	only	to	custom	document	properties;	you	cannot	use	it	with
built-in	document	properties.

The	source	of	the	specified	link	is	defined	by	the	container	application.

Setting	the	LinkSource	property	sets	the	LinkToContent	property	to	True.

Example

This	example	displays	the	linked	status	of	a	custom	document	property.	For	the
example	to	work,	dp	must	be	a	valid	DocumentProperty	object.

Sub	DisplayLinkStatus(dp	As	DocumentProperty)

				Dim	stat	As	String,	tf	As	String

				If	dp.LinkToContent	Then

								tf	=	""

				Else

								tf	=	"not	"

				End	If

				stat	=	"This	property	is	"	&	tf	&	"linked"

				If	dp.LinkToContent	Then

								stat	=	stat	+	Chr(13)	&	"The	link	source	is	"	&	dp.LinkSource

				End	If

				MsgBox	stat

End	Sub

LinkToContent	Property
							

True	if	the	value	of	the	custom	document	property	is	linked	to	the	content	of	the
container	document.	False	if	the	value	is	static.	Read/write	Boolean.

Remarks

This	property	applies	only	to	custom	document	properties.	For	built-in	document
properties,	the	value	of	this	property	is	False.

Use	the	LinkSource	property	to	set	the	source	for	the	specified	linked	property.
Setting	the	LinkSource	property	sets	the	LinkToContent	property	to	True.

Example

This	example	displays	the	linked	status	of	the	custom	document	property.	For	the
example	to	work,	dp	must	be	a	valid	DocumentProperty	object.

Sub	DisplayLinkStatus(dp	As	DocumentProperty)

				Dim	stat	As	String,	tf	As	String

				If	dp.LinkToContent	Then

								tf	=	""

				Else

								tf	=	"not	"

				End	If

				stat	=	"This	property	is	"	&	tf	&	"linked"

				If	dp.LinkToContent	Then

								stat	=	stat	+	Chr(13)	&	"The	link	source	is	"	&	dp.LinkSource

				End	If

				MsgBox	stat

End	Sub

Show	All

List	Property
							

Returns	or	sets	an	item	in	the	command	bar	combo	box	control.	Read/write
String.

Note			This	property	is	read-only	for	built-in	combo	box	controls.

expression.List(Index)

expression			Required.	An	expression	that	returns	a	CommandBarComboBox
object.

Index			Required	Long.	The	list	item	to	be	set.

Example

This	example	checks	the	fourth	list	item	in	the	combo	box	control	whose	caption
is	"Stock	Data"	on	the	command	bar	named	"Custom."	If	the	item	isn’t	"View
News,"	the	example	displays	a	message	advising	the	user	that	the	combo	box
may	be	damaged	and	asks	the	user	to	reinstall	the	application.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.AddItem	"View	News",	4

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

End	With

If	CommandBars("Custom").Controls(1).List(4)	_

					<>	"View	News"	Then

MsgBox	("Stock	Data	appears	to	be	damaged."	&	_

					"	Please	reinstall	application.")

End	If

Show	All

ListCount	Property
							

Returns	the	number	of	list	items	in	a	command	bar	combo	box	control.	Read-
only	Long.

Example

This	example	checks	the	number	of	items	in	the	combo	box	on	the	command	bar
named	"Custom."	If	there	aren’t	three	items	in	the	list	that	the	procedure
produces,	the	example	displays	a	message	advising	the	user	that	the	combo	box
may	be	damaged	and	asks	the	user	to	reinstall	the	application.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

With	CommandBars("Custom").Controls(1)

				.AddItem	"Get	Stock	Quote",	1

				.AddItem	"View	Chart",	2

				.AddItem	"View	Fundamentals",	3

				.Caption	=	"Stock	Data"

				.DescriptionText	=	"View	Data	For	Stock"

End	With

If	CommandBars("Custom").Controls(1).ListCount	_

					<>	4	Then

MsgBox	("ComboBox	appears	to	be	damaged."	&	_

					"	Please	reinstall.")

End	If

Show	All

ListHeaderCount	Property
							

Returns	or	sets	the	number	of	list	items	in	a	command	bar	combo	box	control
that	appears	above	the	separator	line.	Read/write	Long.

Note			This	property	is	read-only	for	built-in	combo	box	controls.

Remarks

A	ListHeaderCount	property	value	of		–	1	indicates	that	there's	no	separator
line	in	the	combo	box	control.

Example

This	example	adds	a	combo	box	control	to	the	command	bar	named	"Custom"
and	then	adds	two	items	to	the	combo	box.	The	example	uses	the
ListHeaderCount	property	to	display	a	separator	line	between	First	Item	and
Second	Item	in	the	combo	box.	The	example	also	sets	the	number	of	line	items,
the	width	of	the	combo	box,	and	an	empty	default	for	the	combo	box.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls.Add(Type:=msoControlComboBox)

With	myControl

				.AddItem	Text:="First	Item",	Index:=1

				.AddItem	Text:="Second	Item",	Index:=2

				.DropDownLines	=	3

				.DropDownWidth	=	75

				.ListHeaderCount	=	1

End	With

Show	All

ListIndex	Property
							

Returns	or	sets	the	index	number	of	the	selected	item	in	the	list	portion	of	the
command	bar	combo	box	control.	If	nothing	is	selected	in	the	list,	this	property
returns	zero.	Read/write	Long.

Note			This	property	fails	when	applied	to	controls	other	than	list	controls.

Remarks

Setting	the	ListIndex	property	causes	the	specified	control	to	select	the	given
item	and	execute	the	appropriate	action	in	the	application.

Example

This	example	uses	the	ListIndex	property	to	determine	the	correct	subroutine	to
run,	based	on	the	selection	in	the	combo	box	on	the	command	bar	named	“My
Custom	Bar.”	Because	the	procedure	uses	ListIndex,	the	text	in	the	combo	box
can	be	anything.

Sub	processSelection()

Dim	userChoice	As	Long

userChoice	=	CommandBars("My	Custom	Bar").Controls(1).ListIndex

				Select	Case	userChoice

								Case	1

												chartcourse

								Case	2

												displaygraph

								Case	Else

												MsgBox	("Invalid	choice.	Please	choose	again.")

				End	Select

End	Sub

Location	Property
							

Returns	the	location	of	the	script	anchor	in	the	specified	HTML	document.
Read-only	MsoScriptLocation.

MsoScriptLocation	can	be	one	of	these	MsoScriptLocation	constants.
msoScriptLocationInBody
msoScriptLocationInHead

Remarks

Script	tags	in	an	HTML	document	can	appear	anywhere	between	the	<HTML>
tags	in	the	document.	In	Microsoft	Word,	Excel,	or	PowerPoint,	only	the	script
anchors	located	between	the	<BODY>	tags	are	visible.	Additional	HTML	script
that	appears	before	or	after	the	<BODY>	tags	is	stored	in	but	isn’t	visible	to	the
user.

The	Scripts	collection	contains	all	of	the	script	anchors	that	appear	in	the
document,	whether	inside	or	outside	of	the	main	body	of	the	document.	Using
the	Location	argument	of	the	Add	method,	you	can	insert	script	anchors	within
the	<HEAD>	and	<BODY>	tags	in	the	HTML	document.	You	can	also	use	the
Location	property	to	determine	where	a	particular	script	anchor	is	stored	within
the	document.

Example

This	example	checks	the	Location	property	of	the	first	script	in	worksheet	one
in	the	active	workbook	and	displays	the	location	in	a	message	box.

If	ActiveWorkbook.Worksheets(1).Scripts(1).Location	=	1	Then

				MsgBox	"The	script	in	located	in	the	header."

End	If

If	ActiveWorkbook.Worksheets(1).Scripts(1).Location	=	2	Then

				MsgBox	"The	script	in	located	in	the	body	of	the	worksheet."

End	If

LookIn	Property
							

Returns	or	sets	the	folder	to	be	searched	during	the	specified	file	search.
Read/write	String.

Example

This	example	searches	the	My	Documents	folders	for	all	files	that	begin	with
"Cmd"	and	displays	the	name	and	location	of	each	file	that’s	found.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.FileName	=	"cmd*.*"

				If	.Execute	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

								"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

Mask	Property
							

Returns	an	IPictureDisp	object	representing	the	mask	image	of	a
CommandBarButton	object.	The	mask	image	determines	what	parts	of	the
button	image	are	transparent.

expression.Mask

expression			Required.	An	expression	that	returns	a	CommandBarButton
object.

Remarks

When	you	create	an	image	that	you	plan	on	using	as	a	mask	image,	all	of	the
areas	that	you	want	to	be	transparent	should	be	white,	and	all	of	the	areas	that
you	want	to	show	should	be	black.

Always	set	the	mask	after	you	have	set	the	picture	for	a	CommandBarButton
object.

Example

The	following	example	sets	the	image	and	mask	of	the	first
CommandBarButton	that	the	code	returns.	To	make	this	work,	create	a	mask
image	and	a	button	image	and	sustitute	the	paths	in	the	sample	with	the	paths	to
your	images.

Sub	ChangeButtonImage()

				Dim	picPicture	As	IPictureDisp

				Dim	picMask	As	IPictureDisp

				Set	picPicture	=	stdole.StdFunctions.LoadPicture(_

								"c:\images\picture.bmp")

				Set	picMask	=	stdole.StdFunctions.LoadPicture(_

								"c:\images\mask.bmp")

				'Reference	the	first	button	on	the	first	command	bar

				'using	a	With...End	With	block.

				With	Application.CommandBars.FindControl(msoControlButton)

								'Change	the	button	image.

								.Picture	=	picButton

								'Use	the	second	image	to	define	the	area	of	the

								'button	that	should	be	transparent.

								.Mask	=	picMask

				End	With

End	Sub

The	following	example	gets	the	image	and	mask	of	the	first
CommandBarButton	that	the	code	returns	and	outputs	each	of	them	to	a	file.
To	make	this	work,	specify	a	path	for	the	output	files.

Sub	GetButtonImageAndMask()

				Dim	picPicture	As	IPictureDisp

				Dim	picMask	As	IPictureDisp

				With	Application.CommandBars.FindControl(msoControlButton)

								'Get	the	button	image	and	mask	of	the	this	CommandBarButton	object

								Set	picPicture	=	.Picture

								Set	picMask	=	.Mask

				End	With

				'Save	the	button	image	and	mask	in	a	folder.

				stdole.SavePicture	picPicture,	"c:\temp\image.bmp"

				stdole.SavePicture	picMask,	"c:\temp\mask.bmp"

End	Sub

MatchAllWordForms	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	file	search	is	expanded	to	include	all	forms	of	the	specified	word
contained	in	the	body	of	the	file,	or	in	the	file's	properties.	Read/write	Boolean.

Remarks

This	property	is	available	only	if	the	file	Mswds_en.lex	has	been	installed	and
registered.	Note	that	this	file	isn't	installed	as	part	of	a	Typical	setup.

Example

This	example	returns	all	files	that	contain	the	word	"run,"	"running,"	"runs,"	or
"ran"	in	the	body	of	the	file,	or	in	the	properties	of	the	file.	The	TextOrProperty
property	sets	the	word	to	be	matched,	and	limits	the	search	to	either	the	body	of
the	file	or	the	file	properties.

With	Application.FileSearch

				.NewSearch

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.TextOrProperty	=	"run"

				.MatchAllWordForms	=	True

				.FileType	=	msoFileTypeAllFiles

End	With

MatchTextExactly	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	specified	file	search	will	find	only	files	whose	body	text	or	file
properties	contain	the	exact	word	or	phrase	that	you've	specified.	Read/write
Boolean.

Example

This	example	searches	the	C:\My	Documents	folder	and	returns	all	files	that
contain	the	word	"Run"	either	in	the	body	text	or	in	the	file	properties.

With	Application.FileSearch

				.NewSearch

				.LookIn	=	"C:\My	Documents"

				.TextOrProperty	=	"Run"

				.MatchTextExactly	=	True

				.FileType	=	msoFileTypeAllFiles

End	With

Show	All

MenuAnimationStyle	Property
							

Returns	or	sets	the	way	a	command	bar	is	animated.	Read/write
MsoMenuAnimation.

MsoMenuAnimation	can	be	one	of	these	MsoMenuAnimation	constants.
msoMenuAnimationNone
msoMenuAnimationRandom
msoMenuAnimationSlide
msoMenuAnimationUnfold

Example

This	example	sets	options	for	all	command	bars	in	Microsoft	Office.

With	CommandBars

				.LargeButtons	=	True

				.DisplayTooltips	=	True

				.DisplayKeysInTooltips	=	True

				.MenuAnimationStyle	=	msoMenuAnimationUnfold

End	With

Mode	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	modal	behavior	of	the	Office	Assistant	balloon.	When	you
create	a	Balloon	object,	this	property	is	initially	set	to	msoModeModal.
Read/write	MsoModeType.

MsoModeType	can	be	one	of	these	MsoModeType	constants.
msoModeAutoDown
msoModeModal
msoModeModeless

Remarks

If	the	Mode	property	for	a	balloon	is	set	to	msoModeModeless,	the	user	can
work	in	the	application	while	the	balloon	is	visible.	If	the	property	is	set	to
msoModeModal,	the	user	must	dismiss	the	balloon	before	continuing	to	work	in
the	application.	If	the	property	is	set	to	msoModeAutoDown,	the	balloon	is
dismissed	when	the	user	clicks	anywhere	on	the	screen.

If	the	Mode	property	for	a	balloon	is	set	to	msoModeModeless	and	a	value	for
the	Callback	property	is	not	supplied,	an	error	occurs.	The	Close	method	can
only	be	used	in	the	procedure	specified	by	the	Callback	property	when	the
Mode	property	is	set	to	msoModeModeless.

Example

This	example	creates	a	balloon	with	an	alert	icon	that	instructs	the	user	to	select
a	printer.	Because	the	balloon	is	modeless,	the	user	has	access	to	printer
commands	while	the	balloon	is	visible.	When	the	user	clicks	the	OK	button,	the
procedure	specified	in	the	Callback	property	is	run.

With	Assistant.NewBalloon

				.Heading	=	"Select	A	Printer"

				.Text	=	"You	must	select	a	printer	before	printing."

				.Icon	=	msoIconAlert

				.CheckBoxes(1).Text	=	"Local	printer"

				.CheckBoxes(2).Text	=	"Network	printer"

				.Mode	=	msoModeModeless

				.Callback	=	"ProcessPrinter"

				.Show

End	With

MouseTips	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	provides	suggestions	for	using	the	mouse
effectively.	Read/write	Boolean.

Remarks

The	MouseTips	property	corresponds	to	the	Using	the	mouse	more	effectively
option	under	Show	tips	about	on	the	Options	tab	in	the	Office	Assistant	dialog
box.

Example

This	example	sets	the	Office	Assistant	to	provide	suggestions	for	using	the
mouse	effectively.

Assistant.MouseTips	=	True

MoveWhenInTheWay	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	window	automatically	moves	when	it's	in	the	way	of
the	user's	work	area.	For	example,	the	Assistant	will	move	if	it's	in	the	way	of
dragging	or	dropping	or	in	the	way	of	keystroke	entries.	Read/write	Boolean.

Remarks

The	default	value	is	True.	The	MoveWhenInTheWay	property	corresponds	to
the	Move	when	in	the	way	option	in	the	Use	the	Office	Assistant	section	on	the
Options	tab	in	the	Office	Assistant	dialog	box.

Example

This	example	displays	the	Office	Assistant	in	a	specific	location	and	it	sets
several	options	before	making	the	Assistant	visible	and	active.

With	Assistant

				.On	=	True

				.Visible	=	True

				.Left	=	400

				If	Not	MoveWhenInTheWay	Then	MoveWhenInTheWay	=	True

				.Animation	=	msoAnimationGetAttentionMajor

End	With

Show	All

Name	Property
							

Returns	or	sets	the	name	of	the	specified	object.	Read/write	String	for	the
CommandBar	and	DocumentProperty	objects;	read-only	String	for	all	other
objects.

Remarks

The	local	name	of	a	built-in	command	bar	is	displayed	in	the	title	bar	(when	the
command	bar	isn't	docked)	and	in	the	list	of	available	command	bars	—
wherever	that	list	is	displayed	in	the	container	application.

For	a	built-in	command	bar,	the	Name	property	returns	the	command	bar's	U.S.
English	name.	Use	the	NameLocal	property	to	return	the	localized	name.

If	you	change	the	value	of	the	LocalName	property	for	a	custom	command	bar,
the	value	of	Name	changes	as	well,	and	vice	versa.

Example

This	example	searches	the	collection	of	command	bars	for	the	command	bar
named	"Custom."	If	this	command	bar	is	found,	the	example	makes	it	visible.

foundFlag	=	False

For	Each	bar	In	CommandBars

				If	bar.Name	=	"Custom"	Then

								foundFlag	=	True

								bar.Visible	=	True

				End	If

Next

If	Not	foundFlag	Then

				MsgBox	"'Custom'	bar	isn't	in	collection."

Else

				MsgBox	"'Custom'	bar	is	now	visible."

End	If

This	example	displays	the	name,	type,	and	value	of	a	document	property.	You
must	pass	a	valid	DocumentProperty	object	to	the	procedure.

Sub	DisplayPropertyInfo(dp	As	DocumentProperty)

				MsgBox	"value	=	"	&	dp.Value	&	Chr(13)	&	_

								"type	=	"	&	dp.Type	&	Chr(13)	&	_

								"name	=	"	&	dp.Name

End	Sub

Show	All

NameLocal	Property
							

Returns	the	name	of	a	built-in	command	bar	as	it's	displayed	in	the	language
version	of	the	container	application,	or	returns	or	sets	the	name	of	a	custom
command	bar.	Read/write	String.

Note			If	you	attempt	to	set	this	property	for	a	built-in	command	bar,	an	error
occurs.

Remarks

The	local	name	of	a	built-in	command	bar	is	displayed	in	the	title	bar	(when	the
command	bar	isn't	docked)	and	in	the	list	of	available	command	bars,	wherever
that	list	is	displayed	in	the	container	application.

If	you	change	the	value	of	the	LocalName	property	for	a	custom	command	bar,
the	value	of	Name	changes	as	well,	and	vice	versa.

Example

This	example	displays	the	name	and	localized	name	of	the	first	command	bar	in
the	container	application.

With	CommandBars(1)

				MsgBox	"The	name	of	the	command	bar	is	"	&	.Name

				MsgBox	"The	localized	name	of	the	command	bar	is	"	&	.NameLocal

End	With

NewBalloon	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Creates	an	Office	Assistant	balloon.	Returns	a	Balloon	object.	Read-only.

Example

This	example	creates	a	balloon	with	a	heading,	text,	and	three	region	choices,
and	then	displays	it.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	one	or	more	regions"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Show

End	With

Object	Property
							

Sets	or	returns	the	object	that	is	the	basis	for	the	specified	COMAddIn	object.
Read/write	Object.

Remarks

This	property	is	primarily	used	for	enabling	one	COMAddIn	to	communicate
with	another	COMAddIn.

Example

The	following	example	returns	the	object	associated	with	the	COM	add	in
msodraa9.ShapeSelect.

Dim	objBaseObject	As	Object

Set	objBaseObject	=	_

				Application.COMAddIns.Item("msodraa9.ShapeSelect").	_

						Object

Show	All

OLEMenuGroup	Property
							

Returns	or	sets	the	menu	group	that	the	specified	command	bar	pop-up	control
belongs	to	when	the	menu	groups	of	the	OLE	server	are	merged	with	the	menu
groups	of	an	OLE	client	(that	is,	when	an	object	of	the	container	application	type
is	embedded	in	another	application).	Read/write	MsoOLEMenuGroup.

MsoOLEMenuGroup	can	be	one	of	these	MsoOLEMenuGroup	constants.
msoOLEMenuGroupContainer
msoOLEMenuGroupEdit
msoOLEMenuGroupFile
msoOLEMenuGroupHelp
msoOLEMenuGroupNone
msoOLEMenuGroupObject
msoOLEMenuGroupWindow

Note			This	property	is	read-only	for	built-in	controls.

Remarks

This	property	is	intended	to	allow	add-in	applications	to	specify	how	their
command	bar	controls	will	be	represented	in	the	Office	application.	If	either	the
container	or	the	server	does	not	implement	command	bars,	normal	OLE	menu
merging	will	occur:	the	menu	bar	will	be	merged,	as	well	as	all	the	toolbars	from
the	server,	and	none	of	the	toolbars	from	the	container.	This	property	is	relevant
only	for	pop-up	controls	on	the	menu	bar	because	menus	are	merged	on	the	basis
of	their	menu	group	category.

If	both	of	the	merging	applications	implement	command	bars,	command	bar
controls	are	merged	according	to	the	OLEUsage	property.

Example

This	example	checks	the	OLEMenuGroup	property	of	a	new	custom	pop-up
control	on	the	command	bar	named	“Custom”	and	sets	the	property	to
msoOLEMenuGroupNone.

Set	myControl	=	CommandBars("Custom").Controls	_

				.Add(Type:=msoControlPopup,Temporary:=False)

myControl.OLEMenuGroup	=	msoOLEMenuGroupNone

Show	All

OLEUsage	Property
							

Returns	or	sets	the	OLE	client	and	OLE	server	roles	in	which	a	command	bar
control	will	be	used	when	two	Microsoft	Office	applications	are	merged.
Read/write	MsoControlOLEUsage.

MsoControlOLEUsage	can	be	one	of	these	MsoControlOLEUsage	constants.
msoControlOLEUsageBoth
msoControlOLEUsageClient
msoControlOLEUsageNeither
msoControlOLEUsageServer

Remarks

This	property	is	intended	to	allow	you	to	specify	how	individual	add-in
applications'	command	bar	controls	will	be	represented	in	one	Office	application
when	it	is	merged	with	another	Office	application.	If	both	the	client	and	server
implement	command	bars,	the	command	bar	controls	are	embedded	in	the	client
control	by	control.	Custom	controls	marked	as	client-only	(or	neither	client	nor
server)	are	dropped	from	the	server,	and	controls	marked	as	server-only	(or
neither	server	nor	client)	are	dropped	from	the	client.	The	remaining	controls	are
merged.

If	one	of	the	merging	applications	isn't	an	Office	application,	normal	OLE	menu
merging	is	used,	which	is	controlled	by	the	OLEMenuGroup	property.

Example

This	example	adds	a	new	button	to	the	command	bar	named	Tools,	and	sets	its
OLEUsage	property.

Set	myControl	=	CommandBars("Tools").Controls	_

				.Add(Type:=msoControlButton,Temporary:=True)

myControl.OLEUsage	=	msoControlOLEUsageNeither

On	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	is	enabled.	Read/write	Boolean.

Example

This	example	disables	the	Office	Assistant,	displays	a	message	box	that	asks	the
user	whether	the	Assistant	should	be	enabled,	and	enables	the	Assistant	if	the
user	clicks	Yes.	If	the	users	enables	the	Assistant,	the	Assistant	appears	and
performs	the	animation	msoAnimationGreeting.

Assistant.On	=	False

If	MsgBox("Enable	Office	Assistant?",	_

				vbYesNo,	"Assistant	is	Off")	=	vbYes	Then

				Assistant.On	=	True

				Assistant.Visible	=	True

				Assistant.Animation	=	_

								msoAnimationGetAttentionMajor

End	If

Show	All

OnAction	Property
							

Returns	or	sets	the	name	of	a	Visual	Basic	procedure	that	will	run	when	the	user
clicks	or	changes	the	value	of	a	command	bar	control.	Read/write	String.

Note			The	container	application	determines	whether	the	value	is	a	valid	macro
name.

Example

This	example	adds	a	command	bar	control	to	the	command	bar	named
"Custom".	The	procedure	named	"MySub"	will	run	each	time	the	control	is
clicked.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls	_

				.Add(Type:=msocontrolButton)

With	myControl

				.FaceId	=	2

				.OnAction	=	"MySub"

End	With

myBar.Visible	=	True

This	example	adds	a	command	bar	control	to	the	command	bar	named
"Custom".	The	COM	add	in	named	"FinanceAddIn"	will	run	each	time	the
control	is	clicked.

Set	myBar	=	CommandBars("Custom")

Set	myControl	=	myBar.Controls	_

				.Add(Type:=msocontrolButton)

With	myControl

				.FaceId	=	2

				.OnAction	=	"!<FinanceAddIn>"

End	With

myBar.Visible	=	True

Parameter	Property
							

Returns	or	sets	a	string	that	an	application	can	use	to	execute	a	command.
Read/write	String.

Remarks

If	the	specified	parameter	is	set	for	a	built-in	control,	the	application	can	modify
its	default	behavior	if	it	can	parse	and	use	the	new	value.	If	the	parameter	is	set
for	custom	controls,	it	can	be	used	to	send	information	to	Visual	Basic
procedures,	or	it	can	be	used	to	hold	information	about	the	control	(similar	to	a
second	Tag	property	value).

Example

This	example	assigns	a	new	parameter	to	a	control	and	sets	the	focus	to	the	new
button.

Set	myControl	=	CommandBars("Custom").Controls(4)

With	myControl

				.Copy	,	1

				.Parameter	=	"2"

				.SetFocus

End	With

Parent	Property
							

Returns	the	Parent	object	for	the	specified	object.	Read-only.

Example

This	example	displays	the	name	of	the	parent	object	for	a	document	property.
You	must	pass	a	valid	DocumentProperty	object	to	the	procedure.

Sub	DisplayParent(dp	as	DocumentProperty)

				MsgBox	dp.Parent.Name

End	Sub

Path	Property
							

Returns	a	String	indicating	the	full	path	of	a	ScopeFolder	object.	Read-only.

expression.Path

expression			Required.	An	expression	that	returns	a	ScopeFolder	object.

Example

The	following	example	displays	the	root	path	of	each	directory	in	My	Computer.
To	retrieve	this	information,	the	example	first	gets	the	ScopeFolder	object	at	the
root	of	My	Computer.	The	path	of	this	ScopeFolder	will	always	be	"*".	As	with
all	ScopeFolder	objects,	the	root	object	contains	a	ScopeFolders	collection.
This	example	loops	through	this	ScopeFolders	collection	and	displays	the	path
of	each	ScopeFolder	object	in	it.	The	paths	of	these	ScopeFolder	objects	will	be
"A:\",	"C:\",	etc.

Sub	DisplayRootScopeFolders()

				'Declare	variables	that	reference	a

				'SearchScope	and	a	ScopeFolder	object.

				Dim	ss	As	SearchScope

				Dim	sf	As	ScopeFolder

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection

								'and	display	all	of	the	root	ScopeFolders	collections	in

								'the	My	Computer	scope.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				'Loop	through	each	ScopeFolder	collections	in

																				'the	ScopeFolders	collection	of	the

																				'SearchScope	object	and	display	the	path.

																				For	Each	sf	In	ss.ScopeFolder.ScopeFolders

																								MsgBox	"Path:	"	&	sf.Path

																				Next	sf

																Case	Else

												End	Select

								Next	ss

				End	With

End	Sub

Picture	Property
							

Returns	an	IPictureDisp	object	representing	the	image	of	a
CommandBarButton	object.

expression.Picture

expression			Required.	An	expression	that	returns	a	CommandBarButton
object.

Remarks

When	you	change	the	image	on	a	button,	you	will	also	want	to	use	the	Mask
property	to	set	a	mask	image.	The	mask	image	determines	which	parts	of	the
button	image	are	transparent.	Always	set	the	mask	after	you	have	set	the	picture
for	a	CommandBarButton	object.

Note		The	images	for	the	View	Microsoft	Application	and	Insert	Item	buttons
on	the	Standard	toolbar	in	the	Visual	Basic	Editor	cannot	be	changed.

Example

The	following	example	sets	the	image	and	mask	of	the	first
CommandBarButton	that	the	code	returns.	To	make	this	work,	create	a	mask
image	and	a	button	image	and	substitute	the	paths	in	the	sample	with	the	paths	to
your	images.

Sub	ChangeButtonImage()

				Dim	picPicture	As	IPictureDisp

				Dim	picMask	As	IPictureDisp

				Set	picPicture	=	stdole.StdFunctions.LoadPicture(_

								"c:\images\picture.bmp")

				Set	picMask	=	stdole.StdFunctions.LoadPicture(_

								"c:\images\mask.bmp")

				'Reference	the	first	button	on	the	first	command	bar

				'using	a	With...End	With	block.

				With	Application.CommandBars.FindControl(msoControlButton)

								'Change	the	button	image.

								.Picture	=	picButton

								'Use	the	second	image	to	define	the	area	of	the

								'button	that	should	be	transparent.

								.Mask	=	picMask

				End	With

End	Sub

The	following	example	gets	the	image	and	mask	of	the	first
CommandBarButton	that	the	code	returns	and	outputs	each	of	them	to	a	file.
To	make	this	work,	specify	a	path	for	the	output	files.

Sub	GetButtonImageAndMask()

				Dim	picPicture	As	IPictureDisp

				Dim	picMask	As	IPictureDisp

				With	Application.CommandBars.FindControl(msoControlButton)

								'Get	the	button	image	and	mask	of	the	this	CommandBarButton	object.

								Set	picPicture	=	.Picture

								Set	picMask	=	.Mask

				End	With

				'Save	the	button	image	and	mask	in	a	folder.

				stdole.SavePicture	picPicture,	"c:\temp\image.bmp"

				stdole.SavePicture	picMask,	"c:\temp\mask.bmp"

End	Sub

Show	All

Position	Property
							

Returns	or	sets	the	position	of	a	command	bar.	Read/write	MsoBarPosition.

MsoBarPosition	can	be	one	of	these	MsoBarPosition	constants.
msoBarBottom
msoBarFloating
msoBarLeft
msoBarMenuBar
msoBarPopup
msoBarRight
msoBarTop

Example

This	example	steps	through	the	collection	of	command	bars,	docking	the	custom
command	bars	at	the	bottom	of	the	application	window	and	docking	the	built-in
command	bars	at	the	top	of	the	window.

For	Each	bar	In	CommandBars

				If	bar.Visible	=	True	Then

								If	bar.BuiltIn	Then

												bar.Position	=	msoBarTop

									Else

												bar.Position	=	msoBarBottom

								End	If

				End	If

Next

Show	All

Priority	Property
							

Returns	or	sets	the	priority	of	a	command	bar	control.	A	control's	priority
determines	whether	the	control	can	be	dropped	from	a	docked	command	bar	if
the	command	bar	controls	can't	fit	in	a	single	row.	Read/write	Long.

Remarks

Valid	priority	numbers	are	0	(zero)	through	7.	A	priority	of	1	means	that	the
control	cannot	be	deleted	from	a	toolbar.	Other	priority	values	are	ignored.

The	Priority	property	is	not	used	by	command	bar	controls	that	are	menu	items.

Example

This	example	moves	a	control	and	assigns	it	a	priority	of	5	so	that	it	will	likely
be	dropped	from	the	command	bar	if	the	controls	don't	all	fit	in	one	row.

Set	allcontrols	=	CommandBars("Custom").Controls

For	Each	ctrl	In	allControls

				If	ctrl.Type	=	msoControlComboBox	Then

								With	ctrl

												.Move	Before:=7

												.Tag	=	"Selection	box"

												.Priority	=	5

								End	With

				Exit	For

End	If

Next

Private	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	an	integer	that	identifies	the	Office	Assistant	balloon	that
initiated	the	callback	procedure.	Read/write	Long.

Remarks

This	property	is	helpful	if	you	run	the	same	callback	procedure	from	more	than
one	balloon.

Example

This	example	identifies	the	Office	Assistant	balloon	by	setting	the	Private
property	to	129.

Set	printerOrientation	=	Assistant.NewBalloon

With	printerOrientation					.Heading	=	"	Print	portrait	or	landscape?"

					.Text	=	"Click	OK	when	you've	selected	the	"	&	_

								"printer	orientation."

				.Labels(1).Text	=	"Portrait"

				.Labels(2).Text	=	"Landscape"

				.BalloonType	=	msoBalloonTypeButtons

				.Mode	=	msoModeModeless

				.Button	=	msoButtonSetOK

				.Private	=	129

				.Callback	=	"PortraitOrLandscape	"

				.Show

End	With

ProgId	Property
							

Returns	the	programmatic	identifier	(ProgID)	for	the	specified	COMAddIn
object.	Read-only	String.

Example

The	following	example	displays	the	ProgID	and	GUID	for	COM	add-in	one	in	a
message	box.

MsgBox	"My	ProgID	is	"	&	_

				Application.COMAddIns(1).ProgID	&	_

				"	and	my	GUID	is	"	&	_

				Application.COMAddIns(1).Guid

PropertyTests	Property
							

Returns	the	PropertyTests	collection	that	represents	all	the	search	criteria	for	a
file	search.	Read-only.

For	information	about	returning	a	single	member	of	a	collection,	see	Returning
an	Object	from	a	Collection.

Example

This	example	displays	all	the	search	criteria	for	the	first	property	test	in	the
collection.

With	Application.FileSearch.PropertyTests(1)

myString	=	"This	is	the	search	criteria:	"	_

				&	"	The	name	is:	"	&	.Name	&	".	The	condition	is:	"	_

				&	.Condition

If	.Value	<>	""	Then

				myString	=	myString	&	".	The	value	is:	"	&	.Value

				If	.SecondValue	<>	""	Then

								myString	=	myString	_

												&	".	The	second	value	is:	"	_

												&	.SecondValue	&	",	and	the	connector	is"	_

												&	.Connector

				End	If

End	If

MsgBox	myString

End	With

ProportionalFont	Property
							

Sets	or	returns	the	proportional	font	setting	in	the	host	application.	Read/write
String.

Remarks

When	you	set	the	ProportionalFont	property,	the	host	application	does	not
check	the	value	for	validity.

Example

This	example	sets	the	proportional	font	and	proportional	font	size	for	the
English/Western	European/Other	Latin	Script	character	set	in	the	active
application.

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.ProportionalFont	=	"Tahoma"

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.ProportionalFontSize	=	14.5

ProportionalFontSize	Property
							

Sets	or	returns	the	proportional	font	size	setting	in	the	host	application,	in	points.
Read/write	Single.

Remarks

When	you	set	the	ProportionalFontSize	property,	the	host	application	does	not
check	the	value	for	validity.	If	you	enter	an	invalid	value,	such	as	a	nonnumber,
the	host	application	sets	the	size	to	0	points.	You	can	enter	half-point	sizes;	if
you	enter	other	fractional	point	sizes,	they	are	rounded	up	or	down	to	the	nearest
half-point.

Example

This	example	sets	the	proportional	font	and	proportional	font	size	for	the
English/Western	European/Other	Latin	Script	character	set	in	the	active
application.

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.ProportionalFont	=	"Tahoma"

Application.DefaultWebOptions.	_

Fonts(msoCharacterSetEnglishWesternEuropeanOtherLatinScript)	_

.ProportionalFontSize	=	14.5

Show	All

Protection	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Returns	or	sets	the	way	a	command	bar	is	protected	from	user	customization.
Read/write	MsoBarProtection.

MsoBarProtection	can	be	one	of	these	MsoBarProtection	constants.
msoBarNoChangeDock
msoBarNoChangeVisible
msoBarNoCustomize
msoBarNoHorizontalDock
msoBarNoMove
msoBarNoProtection
msoBarNoResize
msoBarNoVerticalDock

Remarks

Using	the	constant	msoBarNoCustomize	prevents	users	from	accessing	the
Add	or	Remove	Buttons	menu	(this	menu	enables	users	to	customize	a	toolbar).

Example

This	example	steps	through	the	collection	of	command	bars	to	find	the	command
bar	named	"Forms."	If	this	command	bar	is	found,	it's	docking	state	is	protected
and	it's	made	visible.

foundFlag	=	False

For	i	=	1	To	CommandBars.Count

				If	CommandBars(i).Name	=	"Forms"	Then

												CommandBars(i).Protection	=	msoBarNoChangeDock

												CommandBars(i).Visible	=	True

												foundFlag	=	True

				End	If

Next

If	Not	foundFlag	Then

				MsgBox	"'Forms'	command	bar	is	not	in	the	collection."

End	If

Reduced	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	window	appears	in	its	smaller	size.	Read/write
Boolean.

Remarks

This	property	is	not	used	in	Microsoft	Office.

Example

This	example	displays	the	Office	Assistant	in	a	specific	location	and	it	sets
several	options	before	making	the	Assistant	visible.

With	Assistant

				.Reduced	=	True

				.Left	=	400

				.MoveWhenInTheWay	=	True

				.TipOfDay	=	True

				.Visible	=	True

				.Animation	=	msoAnimationGreeting

End	With

RowCount	Property
							

Returns	a	Long	that	represents	the	number	of	records	in	the	specified	data
source.	Read-only.

expression.RowCount

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	new	filter	that	removes	all	records	with	a	blank	Region
field	and	then	applies	the	filter	to	the	active	publication.

Sub	OfficeFilters()

				Dim	appOffice	As	OfficeDataSourceObject

				Dim	appFilters	As	ODSOFilters

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				Set	appFilters	=	appOffice.Filters

				MsgBox	appOffice.RowCount

				appFilters.Add	Column:="Region",	Comparison:=msoFilterComparisonEqual,	_

								Conjunction:=msoFilterConjunctionAnd,	bstrCompareTo:="WA"

				appOffice.ApplyFilter

				MsgBox	appOffice.RowCount

End	Sub

Show	All

RowIndex	Property
							

Returns	or	sets	the	docking	order	of	a	command	bar	in	relation	to	other
command	bars	in	the	same	docking	area.	Can	be	an	integer	greater	than	zero,	or
either	of	the	following	MsoBarRow	constants:	msoBarRowFirst	or
msoBarRowLast.	Read/write	Long.

Remarks

Several	command	bars	can	share	the	same	row	index,	and	command	bars	with
lower	numbers	are	docked	first.	If	two	or	more	command	bars	share	the	same
row	index,	the	command	bar	most	recently	assigned	will	be	displayed	first	in	its
group.

Example

This	example	adjusts	the	position	of	the	command	bar	named	"Custom"	by
moving	it	to	the	left	110	pixels	more	than	the	default,	and	it	makes	this	command
bar	the	first	to	be	docked	by	changing	its	row	index	to	msoBarRowFirst.

Set	myBar	=	CommandBars("Custom")

With	myBar

				.RowIndex	=	msoBarRowFirst

				.Left	=	140

End	With

ScopeFolder	Property
							

Returns	a	ScopeFolder	object.

expression.ScopeFolder

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	root	path	of	each	directory	in	My	Computer.
To	retrieve	this	information,	the	example	first	gets	the	ScopeFolder	object	at	the
root	of	My	Computer.	The	path	of	this	ScopeFolder	will	always	be	"*".	As	with
all	ScopeFolder	objects,	the	root	object	contains	a	ScopeFolders	collection.
This	example	loops	through	this	ScopeFolders	collection	and	displays	the	path
of	each	ScopeFolder	object	in	it.	The	paths	of	these	ScopeFolder	objects	will	be
"A:\",	"C:\",	etc.

Sub	DisplayRootScopeFolders()

				'Declare	variables	that	reference	a

				'SearchScope	and	a	ScopeFolder	object.

				Dim	ss	As	SearchScope

				Dim	sf	As	ScopeFolder

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection

								'and	display	all	of	the	root	ScopeFolders	collections	in

								'the	My	Computer	scope.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				'Loop	through	each	ScopeFolder	object	in

																				'the	ScopeFolders	collection	of	the

																				'SearchScope	object	and	display	the	path.

																				For	Each	sf	In	ss.ScopeFolder.ScopeFolders

																								MsgBox	"Path:	"	&	sf.Path

																				Next	sf

																Case	Else

												End	Select

								Next	ss

				End	With

End	Sub

ScopeFolders	Property
							

Returns	a	ScopeFolders	collection.	The	items	in	this	collection	correspond	to
the	subfolders	of	the	parent	ScopeFolder	object.

expression.ScopeFolders

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	root	path	of	each	directory	in	My	Computer.
To	retrieve	this	information,	the	example	first	gets	the	ScopeFolder	object	at	the
root	of	My	Computer.	The	path	of	this	ScopeFolder	will	always	be	"*".	As	with
all	ScopeFolder	objects,	the	root	object	contains	a	ScopeFolders	collection.
This	example	loops	through	this	ScopeFolders	collection	and	displays	the	path
of	each	ScopeFolder	object	in	it.	The	paths	of	these	ScopeFolder	objects	will	be
"A:\",	"C:\",	etc.

Sub	DisplayRootScopeFolders()

				'Declare	variables	that	reference	a

				'SearchScope	and	a	ScopeFolder	object.

				Dim	ss	As	SearchScope

				Dim	sf	As	ScopeFolder

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection

								'and	display	all	of	the	root	ScopeFolders	collections	in

								'the	My	Computer	scope.

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				'Loop	through	each	ScopeFolder	object	in

																				'the	ScopeFolders	collection	of	the

																				'SearchScope	object	and	display	the	path.

																				For	Each	sf	In	ss.ScopeFolder.ScopeFolders

																								MsgBox	"Path:	"	&	sf.Path

																				Next	sf

																Case	Else

												End	Select

								Nextb	ss

				End	With

End	Sub

ScriptText	Property
							

Sets	or	returns	the	text	contained	in	a	block	of	script.	Read/write	String.

Remarks

The	Microsoft	Office	host	application	doesn’t	check	the	syntax	of	the	script.	The
ScriptText	property	is	the	default	property	for	the	Script	object.

Example

This	example	sets	the	text	of	the	first	script	in	worksheet	one	in	the	active
workbook.

ActiveWorkbook.Worksheets(1).Scripts(1).ScriptText	=	_

				"MsgBox	""New	ScriptText"""

SearchFolders	Property
							

Returns	a	SearchFolders	collection.

expression.SearchFolders

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	the	current	number	of	ScopeFolder	objects	in
the	SearchFolders	collection.	See	the	SearchFolders	collection	topic	for	a	more
detailed	example.

MsgBox	"Number	of	ScopeFolder	objects	in	the	SearchFolders	collection:	"	&	_

				Application.FileSearch.SearchFolders.Count

SearchScopes	Property
							

Returns	a	SearchScopes	collection.

expression.SearchScopes

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	all	of	the	currently	available	SearchScope
objects	in	the	SearchScopes	collection.

Sub	DisplayAvailableScopes()

				'Declare	a	variable	that	references	a

				'SearchScope	object.

				Dim	ss	As	SearchScope

				'Use	a	With...End	With	block	to	reference	the

				'FileSearch	object.

				With	Application.FileSearch

								'Loop	through	the	SearchScopes	collection

								For	Each	ss	In	.SearchScopes

												Select	Case	ss.Type

																Case	msoSearchInMyComputer

																				MsgBox	"My	Computer	is	an	available	search	scope."

																Case	msoSearchInMyNetworkPlaces

																				MsgBox	"My	Network	Places	is	an	available	search	scope."

																Case	msoSearchInOutlook

																				MsgBox	"Outlook	is	an	available	search	scope."

																Case	msoSearchInCustom

																				MsgBox	"A	custom	search	scope	is	available."

																Case	Else

																				MsgBox	"Can't	determine	search	scope."

												End	Select

								Next	ss

				End	With

End	Sub

SearchSubFolders	Property
							

True	if	the	search	includes	all	the	subfolders	in	the	folder	specified	by	the
LookIn	property.	Read/write	Boolean.

Example

This	example	searches	the	My	Documents	folder	and	all	of	its	subfolders	for	all
files	whose	names	begin	with	"Cmd."	The	example	also	displays	the	name	and
location	of	each	file	that's	found.

Set	fs	=	Application.FileSearch

With	fs

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.FileName	=	"cmd*"

				If	.Execute()	>	0	Then

								MsgBox	"There	were	"	&	.FoundFiles.Count	&	_

									"	file(s)	found."

								For	i	=	1	To	.FoundFiles.Count

												MsgBox	.FoundFiles(i)

								Next	i

				Else

								MsgBox	"There	were	no	files	found."

				End	If

End	With

SearchWhenProgramming	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	displays	application	and	programming	Help	while
the	user	is	working	in	Visual	Basic.	Read/write	Boolean.

Remarks

The	default	value	is	False.	SearchWhenProgramming	property	corresponds	to
the	Search	for	both	product	and	programming	help	when	programming
option	in	the	Use	the	Office	Assistant	section	on	the	Options	tab	in	the	Office
Assistant	dialog	box.

Example

This	example	allows	the	user	to	search	both	application	and	programming	help
while	working	in	Visual	Basic.

Assistant.SearchWhenProgramming	=	True

SecondValue	Property
							

Returns	an	optional	second	value	property	test	(as	in	a	range)	for	the	file	search.
Read-only	Variant.

Remarks

This	property	is	intended	to	be	used	to	specify	a	range,	and	it	can	only	be	used
with	the	MsoCondition	constant	msoConditionAnyTimeBetween	or
msoConditionAnyNumberBetween.

Example

This	example	displays	the	second	value	of	the	search	criteria	(if	it	exists)	in	a
dialog	box.	If	the	second	value	doesn't	exist,	the	example	displays	another
message.

With	Application.FileSearch.PropertyTests(1)

If	.SecondValue	=	""	Then

			MsgBox	"You	haven't	specified	a	second	value."

Else

				MsgBox	"The	second	value	you've	set	is:	"	_

				&	.SecondValue

End	If

End	With

SelectedItems	Property
							

Returns	a	FileDialogSelectedItems	collection.	This	collection	contains	a	list	of
the	paths	of	the	files	that	a	user	selected	from	a	file	dialog	box	displayed	using
the	Show	method	of	the	FileDialog	object.

expression.SelectedItems

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	Main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Allow	the	user	to	select	multiple	files.

								.AllowMultiSelect	=	True

								'Use	the	Show	method	to	display	the	File	Picker	dialog	box	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

Shape	Property
							

Returns	a	Shape	object	or	InlineShape	object,	depending	on	the	Microsoft
Office	host	application.	Read-only	Object.

Remarks

The	Shape	property	returns	a	Shape	object	in	Microsoft	Excel	and	PowerPoint.
In	Word,	the	Shape	property	returns	a	Shape	object	if	the	script	anchor	is
floating;	if	it’s	an	inline	anchor,	however,	this	property	returns	an	InlineShape
object.

Example

This	example	gets	the	shape	associated	with	the	first	script	in	the	Scripts
collection	and	deletes	it	from	worksheet	one	in	the	active	workbook.

Dim	objScriptShape	As	Object

Set	objScriptShape	=	_

				ActiveWorkbook.Worksheets(1).Scripts(1).Shape

ObjScriptShape.Delete

Show	All

ShortcutText	Property
							

Returns	or	sets	the	shortcut	key	text	displayed	next	to	a	button	control	when	the
button	appears	on	a	menu,	submenu,	or	shortcut	menu.	Read/write	String.

Remarks

You	can	set	this	property	only	for	command	bar	buttons	that	contain	an
OnAction	macro.

Example

This	example	displays	the	shortcut	text	for	the	Open	command	(File	menu)	on
the	Microsoft	Excel	Worksheet	menu	bar	in	a	message	box.

MsgBox	(CommandBars("Worksheet	Menu	Bar").	_

				Controls("File").Controls("New...).ShortcutText)

SignDate	Property
							

Returns	a	Variant	representing	the	date	and	time	that	the	digital	certificate
corresponding	to	the	Signature	object	was	attached	to	the	document.	Read-only.

expression.SignDate

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	call	this	function.	The	function	will	test	to	make	sure	that
the	digital	signature	that	the	user	selects	will	not	expire	in	less	than	12	months.	If
it	will	expire,	the	certificate	isn't	attached.

Function	AddSignature()	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	to	make	sure	that	the	new	Signature	object

				'doesn't	expire	too	soon.	This	expression	calculates

				'the	number	of	months	until	the	Signature	object	expires.

				If	DateDiff("m",	sig.SignDate,	sig.ExpireDate)	<	12	Then

								MsgBox	"This	certificate	will	expire	in	less	than	1	year."	&	vbCrLf	&	_

								"Please	use	a	newer	certificate."

								AddSignature	=	False

								sig.Delete

				Else

								AddSignature	=	True

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

Signer	Property
							

Returns	a	String	representing	the	name	of	the	person	who	attached	the	digital
certificate	that	corresponds	to	the	Signature	object	to	the	document.	Read-only.

expression.Signer

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	prompts	the	user	to	select	a	digital	signature	with	which
to	sign	the	active	document	in	Microsoft	Word.	To	use	this	example,	open	a
document	in	Word	and	pass	this	function	the	name	of	a	certificate	issuer	and	the
name	of	a	certificate	signer	that	match	the	Issued	By	and	Issued	To	fields	of	a
digital	certificate	in	the	Digital	Certificates	dialog	box.	This	example	will	test
to	make	sure	that	the	digital	signature	that	the	user	selects	meets	certain	criteria,
such	as	not	having	expired,	before	the	new	signature	is	committed	to	the	disk.

Function	AddSignature(ByVal	strIssuer	As	String,	_

				strSigner	As	String)	As	Boolean

				On	Error	GoTo	Error_Handler

				Dim	sig	As	Signature

				'Display	the	dialog	box	that	lets	the

				'user	select	a	digital	signature.

				'If	the	user	selects	a	signature,	then

				'it	is	added	to	the	Signatures

				'collection.	If	the	user	doesn't,	then

				'an	error	is	returned.

				Set	sig	=	ActiveDocument.Signatures.Add

				'Test	several	properties	before	commiting	the	Signature	object	to	disk.

				If	sig.Issuer	=	strIssuer	And	_

								sig.Signer	=	strSigner	And	_

								sig.IsCertificateExpired	=	False	And	_

								sig.IsCertificateRevoked	=	False	And	_

								sig.IsValid	=	True	Then

								MsgBox	"Signed"

								AddSignature	=	True

				'Otherwise,	remove	the	Signature	object	from	the	SignatureSet	collection.

				Else

								sig.Delete

								MsgBox	"Not	signed"

								AddSignature	=	False

				End	If

				'Commit	all	signatures	in	the	SignatureSet	collection	to	the	disk.

				ActiveDocument.Signatures.Commit

				Exit	Function

Error_Handler:

				AddSignature	=	False

				MsgBox	"Action	cancelled."

End	Function

Sounds	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	produces	the	sounds	that	correspond	to	animations.
Read/write	Boolean.

Remarks

The	default	value	is	True.	The	Sounds	property	corresponds	to	the	Make
sounds	option	under	Use	the	Office	Assistant	on	the	Options	tab	in	the	Office
Assistant	dialog	box.	If	a	sound	card	is	not	installed,	this	property	has	no	effect.

Example

This	example	displays	and	animates	the	Office	Assistant	and	allows	sound.

With	Assistant

				.Visible	=	True

				.On	=	True

				If	Not	Sounds	Then	Sounds	=	True

				.Animation	=	msoAnimationGreeting

End	With

Show	All

State	Property
							

State	property	as	it	applies	to	the	CommandBarButton	object.

Returns	or	sets	the	appearance	of	a	command	bar	button	control.	Read/write
MsoButtonState.

MsoButtonState	can	be	one	of	these	MsoButtonState	constants.
msoButtonDown
msoButtonMixed
msoButtonUp

expression.State

expression			Required.	An	expression	that	returns	a	CommandBarButton
object.

State	property	as	it	applies	to	the	HTMLProject	object.

Returns	the	current	state	of	an	HTMLProject	object.	Read-only
MsoHTMLProjectState.

MsoHTMLProjectState	can	be	one	of	these	MsoHTMLProjectState	constants.
msoHTMLProjectStateDocumentLocked
msoHTMLProjectStateDocumentProjectUnlocked
msoHTMLProjectStateProjectLocked

expression.State

expression			Required.	An	expression	that	returns	an	HTMLProject	object.

Example

As	it	applies	to	the	CommandBarButton	object.

This	example	creates	a	command	bar	named	Custom	and	adds	two	blank	buttons
to	it.	The	example	then	sets	the	button	on	the	left	to	msoButtonUp	and	sets	the
button	on	the	right	to	msoButtonDown.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlButton,	ID:=1

				.Controls.Add	Type:=msoControlButton,	ID:=2

				.Visible	=	True

End	With

Set	myControl1	=	CommandBars("Custom").Controls(1)

myControl1.State	=	msoButtonUp

Set	myControl2	=	CommandBars("Custom").Controls(2)

myControl2.State	=	msoButtonDown

Show	All

Style	Property
							

Style	property	as	it	applies	to	the	CommandBarButton	object.	

Returns	or	sets	the	way	a	command	bar	button	control	is	displayed.		Read/write
MsoButtonStyle.

MsoButtonStyle	can	be	one	of	these	MsoButtonStyle	constants.
msoButtonAutomatic
msoButtonCaption
msoButtonIcon
msoButtonIconAndCaption
msoButtonIconAndCaptionBelow
msoButtonIconAndWrapCaption
msoButtonIconAndWrapCaptionBelow
msoButtonWrapCaption

Style	property	as	it	applies	to	the	CommandBarComboBox	object.

Returns	or	sets	the	way	a	command	bar	combo	box	control	is	displayed.	Can	be
either	of	the	following	MsoComboStyle	constants:	msoComboLabel	or
msoComboNormal.	Read/write	MsoComboStyle.

MsoComboStyle	can	be	one	of	these	MsoComboStyle	constants.
msoComboLabel
msoComboNormal

Example

This	example	creates	a	shortcut	menu	containing	a	button	control	and	a	combo
box	control	and	sets	the	style	of	each.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom1",	Position:=msoBarPopup,	Temporary:=False)

With	myBar

				.Controls.Add	Type:=msoControlButton,	Id:=3

				.Controls(1).Style	=	msoButtonCaption

				.Controls.Add	Type:=msoControlComboBox

				With	.Controls(2)

								.Style	=	msoComboLabel

								.AddItem	"vanilla"

								.AddItem	"chocolate"

								.AddItem	"cookie	dough"

				End	With

End	With

myBar.ShowPopup

Table	Property
							

Returns	a	String	that	represents	the	name	of	the	table	within	the	data	source	file
that	contains	the	mail	merge	records.	The	returned	value	may	be	blank	if	the
table	name	is	unknown	or	not	applicable	to	the	current	data	source.	Read-only.

expression.Table

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	sets	the	name	of	the	table	if	the	table	name	is	currently	blank.

Sub	OfficeTest()

				Dim	appOffice	As	OfficeDataSourceObject

				Set	appOffice	=	Application.OfficeDataSourceObject

				appOffice.Open	bstrConnect:="DRIVER=SQL	Server;SERVER=ServerName;"	&	_

								"UID=user;PWD=;DATABASE=Northwind",	bstrTable:="Employees"

				If	appOffice.Table	=	""	Then

								appOffice.Table	=	"Employees"

				End	If

End	Sub

Show	All

Tag	Property
							

Returns	or	sets	information	about	the	command	bar	control,	such	as	data	that	can
be	used	as	an	argument	in	procedures,	or	information	that	identifies	the	control.
Read/write	String.

expression.Tag

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

To	avoid	duplicate	calls	of	the	same	class	when	tiggered	with	events,	define	the
Tag	property	unique	to	the	events.	The	following	example	demonstrates	this
concept	with	two	modules.

Public	WithEvents	oBtn	As	CommandBarButton

Private	Sub	oBtn_click(ByVal	ctrl	As	Office.CommandBarButton,	CancelDefault	As	Boolean)

				MsgBox	"Clicked	"	&	ctrl.Caption

End	Sub

Dim	oBtns	As	New	Collection

					

Sub	Use_Tag()

				

				Dim	oEvt	As	CBtnEvent

				Set	oBtns	=	Nothing

				For	i	=	1	To	5

								Set	oEvt	=	New	CBtnEvent

								Set	oEvt.oBtn	=	Application.CommandBars("Worksheet	Menu	Bar").Controls.Add(msoControlButton)

								With	oEvt.oBtn

												.Caption	=	"Btn"	&	i

												.Style	=	msoButtonCaption

												.Tag	=	"Hello"	&	i

								End	With

								oBtns.Add	oEvt

				Next

					

End	Sub

Example

This	example	sets	the	tag	for	the	button	on	the	custom	command	bar	to	"Spelling
Button"	and	displays	the	tag	in	a	message	box.

CommandBars("Custom").Controls(1).Tag	=	"Spelling	Button"

MsgBox	(CommandBars("Custom").Controls(1).Tag)

Show	All

Text	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

BalloonLabel	or	BalloonCheckbox	object:	Returns	or	sets	the	text	displayed
next	to	a	check	box	or	label	in	the	Office	Assistant	balloon.	Read/write	String.

Balloon	object:	Returns	or	sets	the	text	displayed	after	the	heading	but	before
the	labels	or	check	boxes	in	the	Office	Assistant	balloon.	Read/write	String.

CommandBarComboBox	object:	Returns	or	sets	the	text	in	the	display	or	edit
portion	of	the	command	bar	combo	box	control.	Read/write	String.

HTMLProjectItem	object:	Returns	or	sets	the	HTML	text	in	the	HTML	editor.
Read/write	String.

expression.Text

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

For	the	Balloon,	BalloonLabel,	and	BalloonCheckbox	objects,	you	can	specify
that	a	particular	graphic	be	displayed	by	using	the	following	syntax:	{type
location	sizing_factor},	where	type	is	bmp	(bitmap)	or	wmf	(Windows	metafile);
location	is	the	resource	ID	or	the	path	and	file	name;	and	sizing_factor	denotes
the	width	of	the	.wmf	file	(sizing_factor	is	omitted	for	.bmp	files).

The	Balloon	object	also	supports	underlined	text	and	text	that	has	one	of	the	16
system	palette	colors	applied	to	it.	To	display	underlined	text,	use	the	syntax	{ul}
or	{ul	1};	use	{ul	0}	to	turn	underlining	off.	To	change	the	color	of	text,	precede
the	text	string	with	the	character	sequence	{cf	number},	where	number	is	one	of
the	system	color	numbers	listed	in	the	following	table.

System	color	number Color
0 Black
1 Dark	red
2 Dark	green
3 Dark	yellow
4 Dark	blue
5 Dark	magenta
6 Dark	cyan
7 Light	gray
248 Medium	gray
249 Red
250 Green
251 Yellow
252 Blue
253 Magenta
254 Cyan
255 White

If	you	specify	a	number	other	than	one	of	the	preceding	system	color	numbers,
the	text	in	the	Office	Assistant	balloon	is	black.

Example

This	example	creates	a	new	command	bar	named	"Custom"	and	adds	to	it	a
combo	box	that	contains	four	list	items.	The	example	then	uses	the	Text	property
to	set	Item	3	as	the	default	list	item.

Set	myBar	=	CommandBars	_

				.Add(Name:="Custom",	Position:=msoBarTop,	_

				Temporary:=True)

With	myBar

				.Controls.Add	Type:=msoControlComboBox,	ID:=1

				.Visible	=	True

End	With

Set	testComboBox	=	CommandBars("Custom").Controls(1)

With	testComboBox

				.AddItem	"Item	1",	1

				.AddItem	"Item	2",	2

				.AddItem	"Item	3",	3

				.AddItem	"Item	4",	4

				.Text	=	"Item	3"

End	With

This	example	creates	a	new	Office	Assistant	balloon	with	a	heading,	text,	and
three	region	choices.	The	example	uses	the	Text	property	to	provide	balloon-
related	instructions	to	the	user	and	a	label	for	each	text	box.

With	Assistant.NewBalloon

				.Heading	=	"Regional	Sales	Data"

				.Text	=	"Select	a	region"

				For	i	=	1	To	3

								.CheckBoxes(i).Text	=	"Region	"	&	i

				Next

				.Show

End	With

This	example	creates	a	new	Office	Assistant	balloon	that	contains	underlined
heading	text,	red	text,	and	blue	text	that	is	also	underlined.

With	Assistant.NewBalloon

				.Heading	=	"Underlined	{ul	1}Heading{ul	0}"

				.Text	=	"Some	{cf	249}Red{cf	0}	text	and	some	"	&	_

				"underlined	{cf	252}{ul	1}Blue{ul	0}{cf	0}	text."

				.Show

End	With

This	example	creates	a	new	Office	Assistant	balloon	that	contains	a	Windows
metafile.

With	Assistant.NewBalloon

				.Heading	=	"Underlined	{ul	1}Heading{ul	0}"

				.Text	="{WMF	""C:\Favorites\MyPicture.WMF""}"

				.Show

End	With

TextOrProperty	Property
							

Returns	or	sets	the	word	or	phrase	to	be	searched	for,	in	either	the	body	of	a	file
or	the	file's	properties,	during	the	file	search.	The	word	or	phrase	can	include	the
*	(asterisk)	or	?	(question	mark)	wildcard	character.	Read/write	String.

Remarks

Use	the	question	mark	wildcard	character	to	match	any	single	character.	For
example,	type	gr?y	to	find	all	files	that	contain	at	least	one	instance	of	either
"gray"	or	"grey."

Use	the	asterisk	wildcard	character	to	match	any	number	of	characters.	For
example,	type	San*	to	return	all	files	that	contain	at	least	one	word	that	begins
with	"San."

Example

This	example	searches	the	C:\My	Documents	folder	and	all	of	its	subfolders	and
returns	all	files	whose	body	text	or	file	properties	contain	any	words	that	begin
with	"San."	The	TextOrProperty	property	sets	the	word	to	be	searched	for	and
limits	the	search	to	either	the	body	of	the	file	or	the	file	properties.

With	Application.FileSearch

				.NewSearch

				.LookIn	=	"C:\My	Documents"

				.SearchSubFolders	=	True

				.TextOrProperty	=	"San*"

				.FileType	=	msoFileTypeAllFiles

End	With

TipOfDay	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	Office	Assistant	displays	a	special	tip	each	time	the	Office
application	is	opened.	Read/write	Boolean.

Remarks

The	default	value	is	False.	TipOfDay	property	corresponds	to	the	Show	the	Tip
of	the	Day	at	startup	option	under	Show	tips	about	on	the	Options	tab	in	the
Office	Assistant	dialog	box.

Example

This	example	displays	the	Office	Assistant	in	a	specific	location	and	it	sets
several	options	before	making	the	Assistant	visible.

With	Assistant

				.On	=	True

				.Visible	=	True

				.Left	=	400

				.MoveWhenInTheWay	=	True

				If	Not	TipOfDay	Then	TipOfDay	=	True

				.Animation	=	msoAnimationGreeting

End	With

Title	Property
							

Sets	or	returns	the	title	of	a	file	dialog	box	displayed	using	the	FileDialog	object.
Read/write	String.

expression.Title

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

The	following	example	displays	a	File	Picker	dialog	box	using	the	FileDialog
object	and	displays	each	selected	file	in	a	message	box.

Sub	main()

				'Declare	a	variable	as	a	FileDialog	object.

				Dim	fd	As	FileDialog

				'Create	a	FileDialog	object	as	a	File	Picker	dialog	box.

				Set	fd	=	Application.FileDialog(msoFileDialogFilePicker)

				'Declare	a	variable	to	contain	the	path

				'of	each	selected	item.	Even	though	the	path	is	a	String,

				'the	variable	must	be	a	Variant	because	For	Each...Next

				'routines	only	work	with	Variants	and	Objects.

				Dim	vrtSelectedItem	As	Variant

				'Use	a	With...End	With	block	to	reference	the	FileDialog	object.

				With	fd

								'Change	the	title	of	the	dialog

								.Title	=	"Archive"

								'Use	the	Show	method	to	display	the	file	picker	dialog	and	return	the	user's	action.

								'If	the	user	presses	the	action	button...

								If	.Show	=	-1	Then

												'Step	through	each	string	in	the	FileDialogSelectedItems	collection.

												For	Each	vrtSelectedItem	In	.SelectedItems

																'vrtSelectedItem	is	a	String	that	contains	the	path	of	each	selected	item.

																'You	can	use	any	file	I/O	functions	that	you	want	to	work	with	this	path.

																'This	example	simply	displays	the	path	in	a	message	box.

																MsgBox	"Selected	item's	path:	"	&	vrtSelectedItem

												Next	vrtSelectedItem

								'If	the	user	presses	Cancel...

								Else

								End	If

				End	With

				'Set	the	object	variable	to	Nothing.

				Set	fd	=	Nothing

End	Sub

TooltipText	Property
							

Returns	or	sets	the	text	displayed	in	a	command	bar	control's	ScreenTip.
Read/write	String.

Remarks

By	default,	the	value	of	the	Caption	property	is	used	as	the	ScreenTip.

Example

This	example	adds	a	ScreenTip	to	the	last	control	on	the	active	menu	bar.

Set	myMenuBar	=	CommandBars.ActiveMenuBar

Set	lastCtrl	=	myMenuBar	_

			.Controls(myMenuBar.Controls.Count)

lastCtrl.BeginGroup	=	True

lastCtrl.TooltipText	=	"Click	for	help	on	UI	feature"

Show	All

Top	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

Top	property	as	it	applies	to	the	Assistant	and	CommandBar	objects.

Sets	or	returns	the	distance	(in	points)	from	the	top	of	the	Office	Assistant,	or
from	the	top	edge	of	the	specified	command	bar,	to	the	top	edge	of	the	screen.
For	docked	command	bars,	this	property	returns	or	sets	the	distance	from	the
command	bar	to	the	top	of	the	docking	area.	Read/write	Long.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Top	property	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	and	CommandBarPopup
objects.

Returns	the	distance	(in	pixels)	from	the	top	edge	of	the	specified	command	bar
control	to	the	top	edge	of	the	screen.	Read-only	Long.

expression.Top

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Example

As	it	applies	to	the	Assistant	and	CommandBar	objects.

This	example	moves	the	Office	Assistant	to	another	coordinate	and	sets	its	Top
property	for	subsequent	appearances.

With	Assistant

				.On	=	True

				.Visible	=	True

				.Sounds	=	True

				.Animation	=	msoAnimationBeginSpeaking

End	With

Assistant.Top	=	100

MsgBox	"Click	OK	to	move	the	Assistant	to	a	"	&	_

									"new	location."

Assistant.Top	=	500

This	example	positions	the	upper-left	corner	of	the	floating	command	bar	named
Custom	140	pixels	from	the	left	edge	of	the	screen	and	100	pixels	from	the	top
of	the	screen.

Set	myBar	=	CommandBars("Custom")

myBar.Position	=	msoBarFloating

With	myBar

				.Left	=	140

				.Top	=	100

End	With

Show	All

Type	Property
							

Type	property	as	it	applies	to	the	CommandBar	object.

Returns	the	type	of	command	bar.	Read-only	MsoBarType.

MsoBarType	can	be	one	of	these	MsoBarType	constants.
msoBarTypeMenuBar
msoBarTypeNormal
msoBarTypePopup

expression.Type

expression			Required.	An	expression	that	returns	a	CommandBar	object.

Type	property	as	it	applies	to	the	CommandBarButton,
CommandBarComboBox,	CommandBarControl,	and	CommandBarPopup
objects.

Returns	the	type	of	command	bar	control.	Read-only	MsoControlType.

MsoControlType	can	be	one	of	these	MsoControlType	constants.
msoControlActiveX
msoControlAutoCompleteCombo
msoControlButton
msoControlButtonDropdown
msoControlButtonPopup
msoControlComboBox
msoControlCustom
msoControlDropdown
msoControlEdit
msoControlExpandingGrid

msoControlGauge
msoControlGenericDropdown
msoControlGraphicCombo
msoControlGraphicDropdown
msoControlGraphicPopup
msoControlGrid
msoControlLabel
msoControlLabelEx
msoControlOCXDropdown
msoControlPane
msoControlPopup
msoControlSpinner
msoControlSplitButtonMRUPopup
msoControlSplitButtonPopup
msoControlSplitDropdown
msoControlSplitExpandingGrid
msoControlWorkPane

expression.Type

expression			Required.	An	expression	that	returns	one	of	the	above	objects.

Type	property	as	it	applies	to	the	SearchScope	object.

Returns	a	value	that	corresponds	to	the	type	of	SearchScope	object.	The	type
indicates	the	area	in	which		the	Execute	method	of	the	FileSearch	object	will
search	for	files.	Read-only	MsoSearchIn.

MsoSearchIn	can	be	one	of	these	MsoSearchIn	constants.
msoSearchInCustom
msoSearchInMyComputer
msoSearchInMyNetworkPlaces
msoSearchInOutlook

expression.Type

expression			Required.	An	expression	that	returns	a	SearchScope	object.

Type	property	as	it	applies	to	the	DocumentProperty	object.

Returns	or	sets	the	document	property	type.	Read-only	for	built-in	document
properties;	read/write	for	custom	document	properties.

expression.Type

expression			Required.	An	expression	that	returns	a	DocumentProperty	object.

Remarks

The	return	value	will	be	a	MsoDocProperties	constant.

MsoDocProperties	can	be	one	of	these	MsoDocProperties	constants.
msoPropertyTypeBoolean
msoPropertyTypeDate
msoPropertyTypeFloat
msoPropertyTypeNumber
msoPropertyTypeString

Example

As	it	applies	to	the	CommandBar	object.

This	example	finds	the	first	control	on	the	command	bar	named	Custom.	Using
the	Type	property,	the	example	determines	whether	the	control	is	a	button.	If	the
control	is	a	button,	the	example	copies	the	face	of	the	Copy	button	(on	the
Standard	toolbar)	and	then	pastes	it	onto	the	control.

Set	oldCtrl	=	CommandBars("Custom").Controls(1)

If	oldCtrl.Type	=	msoControlButton	Then

				Set	newCtrl	=	CommandBars.FindControl(Type:=	_

								MsoControlButton,	ID:=	_

								CommandBars("Standard").Controls("Copy").ID)

				NewCtrl.CopyFace

				OldCtrl.PasteFace

End	If

As	it	applies	to	the	DocumentProperty	object.

This	example	displays	the	name,	type,	and	value	of	a	document	property.	You
must	pass	a	valid	DocumentProperty	object	to	the	procedure.

Sub	DisplayPropertyInfo(dp	As	DocumentProperty)

				MsgBox	"value	=	"	&	dp.Value	&	Chr(13)	&	_

								"type	=	"	&	dp.Type	&	Chr(13)	&	_

								"name	=	"	&	dp.Name

End	Sub

Show	All

Value	Property
							

Value	property	as	it	applies	to	the	DocumentProperty	object.

Returns	or	sets	the	value	of	a	document	property.	Read/write	Variant.

expression.Value

expression			Required.	An	expression	that	returns	a	DocumentProperty	object.

Remarks

If	the	container	application	doesn't	define	a	value	for	one	of	the	built-in
document	properties,	reading	the	Value	property	for	that	document	property
causes	an	error.

Value	property	as	it	applies	to	the	PropertyTest	object.

Returns	the	value	of	a	property	test	for	a	file	search.	Read-only	Variant.

expression.Value

expression			Required.	An	expression	that	returns	a	PropertyTest	object.

Example

As	it	applies	to	the	DocumentProperty	object.

This	example	displays	the	name,	type,	and	value	of	a	document	property.	For	the
example	to	work,	dp	must	be	a	valid	DocumentProperty	object.

Sub	DisplayPropertyInfo(dp	As	DocumentProperty)

				MsgBox	"value	=	"	&	dp.Value	&	Chr(13)	&	_

								"type	=	"	&	dp.Type	&	Chr(13)	&	_

								"name	=	"	&	dp.Name

End	Sub

As	it	applies	to	the	PropertyTest	object.

This	example	displays	the	value	of	the	search	criteria	(if	it	exists)	in	a	message
box.	If	the	second	value	doesn't	exist,	the	example	displays	another	message.

With	Application.FileSearch.PropertyTests(1)

				If	.Value	=	""	Then

							MsgBox	"You	haven't	specified	a	value."

				Else

								MsgBox	"The	value	you've	set	is:	"	_

												&	.Value

				End	If

End	With

Visible	Property
							

Some	of	the	content	in	this	topic	may	not	be	applicable	to	some	languages.

True	if	the	specified	object	is	visible.	Read/write	Boolean.

expression.Visible

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Remarks

The	Visible	property	for	newly	created	custom	command	bars	is	False	by
default.

The	Enabled	property	for	a	command	bar	must	be	set	to	True	before	the	visible
property	is	set	to	True.

Example

This	example	steps	through	the	collection	of	command	bars	to	find	the	Forms
command	bar.	If	the	Forms	command	bar	is	found,	the	example	makes	it	visible
and	protects	its	docking	state.

foundFlag	=	False

For	Each	cmdbar	In	CommandBars

				If	cmdbar.Name	=	"Forms"	Then

								cmdbar.Protection	=	msoBarNoChangeDock

								cmdbar.Visible	=	True

								foundFlag	=	True

				End	If

Next

If	Not	foundFlag	Then

				MsgBox	"'Forms'command	bar	is	not	in	the	collection."

End	If

This	example	makes	the	Office	Assistant	visible	and	sets	its	animation.

With	Application.Assistant

				.Visible	=	True

				.Sounds	=	True

				.Animation	=	msoAnimationBeginSpeaking

End	With

Show	All

Width	Property
							

Returns	or	sets	the	width	(in	pixels)	of	the	specified	command	bar	or	command
bar	control.	Read/write	Integer.

expression.Width

expression			Required.	An	expression	that	returns	one	of	the	objects	in	the
Applies	To	list.

Example

This	example	adds	a	custom	control	to	the	command	bar	named	Custom.	The
example	sets	the	height	of	the	custom	control	to	twice	the	height	of	the
command	bar	and	sets	its	width	to	50	pixels.	Notice	how	the	command	bar
automatically	resizes	itself	to	accommodate	the	control.

Set	myBar	=	CommandBars("Custom")

barHeight	=	myBar.Height

Set	myControl	=	myBar.Controls	_

				.Add(Type:=msoControlButton,	_

				Id:=	CommandBars("Standard").Controls("Save").Id,	_

					Temporary:=True)

With	myControl

				.Height	=	barHeight	*	2

				.Width	=	50

End	With

myBar.Visible	=	True

Change	Event
							

Occurs	when	the	end	user	changes	the	selection	in	a	command	bar	combo	box.

Private	Sub	CommandBarComboBox_Change

				(ByVal	Ctrl	As	CommandBarComboBox)

Remarks

The	Change	event	is	recognized	by	the	CommandBarComboBox	object.	To
return	the	Change	event	for	a	particular	CommandBarComboBox	control,	use
the	WithEvents	keyword	to	declare	a	variable,	and	then	set	the	variable	to	the
CommandBarComboBox	control.	When	the	Change	event	is	triggered,	it
executes	the	macro	or	code	that	you	specified	with	the	OnAction	property	of	the
control.

Example

The	following	example	creates	a	command	bar	with	a
CommandBarComboBox	control	containing	four	selections.	The	combo	box
responds	to	user	interaction	through	the	CommandBarComboBox_Change
event.

Private	ctlComboBoxHandler	As	New	ComboBoxHandler

Sub	AddComboBox()

				Set	HostApp	=	Application

												

				Dim	newBar	As	Office.CommandBar

				Set	newBar	=	HostApp.CommandBars.Add(Name:="Test	CommandBar",	Temporary:=True)

				Dim	newCombo	As	Office.CommandBarComboBox

				Set	newCombo	=	newBar.Controls.Add(msoControlComboBox)

				With	newCombo

								.AddItem	"First	Class",	1

								.AddItem	"Business	Class",	2

								.AddItem	"Coach	Class",	3

								.AddItem	"Standby",	4

								.DropDownLines	=	5

								.DropDownWidth	=	75

								.ListHeaderCount	=	0

				End	With

				ctlComboBoxHandler.SyncBox	newCombo

				newBar.Visible	=	True

				

End	Sub

The	preceding	example	relies	on	the	following	code,	which	is	stored	in	a	class
module	in	the	VBA	project.

Private	WithEvents	ComboBoxEvent	As	Office.CommandBarComboBox

Public	Sub	SyncBox(box	As	Office.CommandBarComboBox)

				Set	ComboBoxEvent	=	box

				If	Not	box	Is	Nothing	Then

								MsgBox	"Synced	"	&	box.Caption	&	"	ComboBox	events."

				End	If

				

End	Sub

Private	Sub	Class_Terminate()

				Set	ComboBoxEvent	=	Nothing

End	Sub

Private	Sub	ComboBoxEvent_Change(ByVal	Ctrl	As	Office.CommandBarComboBox)

				Dim	stComboText	As	String

				

				stComboText	=	Ctrl.Text

				

								Select	Case	stComboText

								Case	"First	Class"

												FirstClass

								Case	"Business	Class"

												BusinessClass

								Case	"Coach	Class"

												CoachClass

								Case	"Standby"

												Standby

				End	Select

End	Sub

Private	Sub	FirstClass()

				MsgBox	"You	selected	First	Class	reservations"

End	Sub

Private	Sub	BusinessClass()

				MsgBox	"You	selected	Business	Class	reservations"

End	Sub

Private	Sub	CoachClass()

				MsgBox	"You	selected	Coach	Class	reservations"

End	Sub

Private	Sub	Standby()

				MsgBox	"You	chose	to	fly	standby"

End	Sub

Click	Event
							

Occurs	when	the	user	clicks	a	CommandBarButton	object.

Private	Sub	CommandBarButton_Click

				(ByVal	Ctrl	As	CommandBarButton,

				ByVal	CancelDefault	As	Boolean)

The	syntax	for	the	Click	event	includes	the	two	arguments	described	in	the
following	table.

Argument Description

Ctrl
Required	CommandBarButton.
Denotes	the	CommandBarButton
control	that	initiated	the	event.

CancelDefault

Required	Boolean.	False	if	the	default
behavior	associated	with	the
CommandBarButton	control	occurs,
unless	it’s	canceled	by	another	process
or	add-in.

Remarks

The	Click	event	is	recognized	by	the	CommandBarButton	object.	To	return	the
Click	event	for	a	particular	CommandBarButton	control,	use	the	WithEvents
keyword	to	declare	a	variable,	and	then	set	the	variable	to	the	control.

Example

The	following	example	creates	a	new	command	bar	button	on	the	File	menu	of
the	host	application	that	enables	the	user	to	save	a	workbook	as	a	comma-
separated	value	file.	(This	example	works	in	all	applications,	but	the	context	of
saving	as	CSV	is	applicable	to	Microsoft	Excel.)

Private	HostApp	As	Object

Sub	createAndSynch()

				Dim	iIndex	As	Integer

				Dim	iCount	As	Integer

				Dim	fBtnExists	As	Boolean

				

				Dim	obCmdBtn	As	Object

				Dim	btnSaveAsCSVHandler	as	new	Class1

				

				On	Error	GoTo	errHandler

							

				Set	HostApp	=	Application

				

				Dim	barHelp	As	Office.CommandBar

				Set	barHelp	=	Application.CommandBars("File")

				fBtnExists	=	False

				iCount	=	barHelp.Controls.Count

				For	iIndex	=	1	To	iCount

								If	barHelp.Controls(iIndex).Caption	=	"Save	As	CSV	(Comma	Delimited)"	Then	fBtnExists	=	True

				

				Next

				Dim	btnSaveAsCSV	As	Office.CommandBarButton

				If	fBtnExists	Then

								Set	btnSaveAsCSV	=	barHelp.Controls("Save	As	CSV	(Comma	Delimited)")

				Else

								Set	btnSaveAsCSV	=	barHelp.Controls.Add(msoControlButton)

								btnSaveAsCSV.Caption	=	"Save	As	CSV	(Comma	Delimited)"

				End	If

				

				btnSaveAsCSV.Tag	=	"btn1"

				btnSaveAsCSVHandler.SyncButton	btnSaveAsCSV

				Exit	Sub

				

errHandler:

				'	Insert	error	handling	code	here

End	Sub

EnvelopeHide	Event
							

Occurs	when	the	user	interface	(UI)	that	corresponds	to	the	MsoEnvelope	object
is	hidden.

Private	Sub	object_EnvelopHide()

object		A	variable	which	references	an	object	of	type	MsoEnvelope	declared
with	events	in	a	class	module.

Example

The	following	example	sets	up	event-handling	routines	for	the	MsoEnvelope
object.

Public	WithEvents	env	As	MsoEnvelope

Private	Sub	Class_Initialize()

				Set	env	=	Application.ActiveDocument.MailEnvelope

End	Sub

Private	Sub	env_EnvelopeShow()

				MsgBox	"The	MsoEnvelope	UI	is	showing."

End	Sub

Private	Sub	env_EnvelopeHide()

				MsgBox	"The	MsoEnvelope	UI	is	hidden."

End	Sub

EnvelopeShow	Event
							

Occurs	when	the	user	interface	(UI)	that	corresponds	to	the	MsoEnvelope	object
is	displayed.

Private	Sub	object_EnvelopShow()

object		A	variable	which	references	an	object	of	type	MsoEnvelope	declared
with	events	in	a	class	module.

Example

The	following	example	sets	up	event-handling	routines	for	the	MsoEnvelope
object.

Public	WithEvents	env	As	MsoEnvelope

Private	Sub	Class_Initialize()

				Set	env	=	Application.ActiveDocument.MailEnvelope

End	Sub

Private	Sub	env_EnvelopeShow()

				MsgBox	"The	MsoEnvelope	UI	is	showing."

End	Sub

Private	Sub	env_EnvelopeHide()

				MsgBox	"The	MsoEnvelope	UI	is	hidden."

End	Sub

OnUpdate	Event
							

Occurs	when	any	change	is	made	to	a	command	bar.

Private	Sub	CommandBars_OnUpdate()

Remarks

The	OnUpdate	event	is	recognized	by	the	CommandBar	object	and	all
command	bar	controls.	The	event	is	triggered	by	any	change	to	a	command	bar
or	command	bar	control	or	any	change	to	the	state	of	a	command	bar	or
command	bar	control.	These	changes	can	occur	due	to	a	text	or	cell	selection,	for
example.	Since	a	large	number	of	OnUpdate	events	can	occur	during	normal
usage,	developers	should	exercise	caution	when	using	this	event.	It	is	strongly
recommended	that	this	event	be	used	primarily	for	checking	that	a	custom
command	bar	has	been	added	or	removed	by	a	COMAddIn.

Returning	an	Object	from	a
Collection
			

The	Item	property	returns	a	single	object	from	a	collection.	The	following
example	sets	the	cmdbar	variable	to	a	CommandBar	object	that	represents	the
first	command	bar	in	the	CommandBars	collection.

Set	cmdbar	=	CommandBars.Item(1)

The	Item	property	is	the	default	property	for	most	collections,	so	you	can	write
the	same	statement	more	concisely	by	omitting	the	Item	keyword.

Set	cmdbar	=	CommandBars(1)

For	more	information	about	a	specific	collection,	see	the	Help	topic	for	the
collection	or	the	Item	property	for	the	collection.

	Microsoft Office Object Model

