What’s New in LANSA Version 13 Service Pack 2?

The second Service Pack for LANSA Version 13 includes new features and

some enhancements.

Web Application Module
Enhancements

Windows 64-bit Support

IBM i User Profile Handling

SuperServer Enhancements

IDE Enhancements for IBM i
Administrators

Various WAM enhancements are
introduced in SP2.

Visual LANSA now supports the
generation and compilation of both
Windows 32-bit and 64-bit
applications.

IBM i user profiles can now be
validated, and IBM i passwords can
be changed using the IBM special
APIs with interfaces to RDML and
LANSA Open.

SuperServer connections can now be
made between all supported
platforms: IBM i, Windows and
Linux.

Export lists can be generated
automatically when checking in or
delivering objects to an IBM i server,
and objects can be refreshed
selectively in the Repository.

Before deploying your Version 13 applications, please take time to thoroughly
understand the new MSI Deployment mechanism.

Note that Version 13.0 iSeries Exports cannot be imported to V13.0 SP1 or later

versions.

This document also contains What's New in LANSA Version 13? and What's

New in LANSA Version 13 SP1?



Edition Date May 30, 2014
© 2014 LANSA



Web Application Module Enhancements

LANSA Version 13 Service Pack 2 introduces many new features and
enhancements for WAMs:

jQuery Mobile WAM Enhancements
Support for file uploads to a webroutine
New XHTML Weblets

Upgraded Third-Party Libraries

WAM Editor Enhancements



jQuery Mobile WAM Enhancements

Commonly used jQuery Mobile weblets have been made easier to use and
various new weblets have been introduced.

Easier to Design jQuery Mobile WAMs

New jQuery Mobile Weblets

Other improvements to jQuery Mobile

Note that the jQuery Mobile look and feel has changed:
e New Flat Ul

e  Two themes: Light and Dark
e  Themeroller based theming

e  Widgets can be pre-rendered for better performance.



Easier to Design jQuery Mobile WAMs

Simplified default versions of a number of jQuery Mobile Weblets have been
introduced for ease of use.

These include the button (std_button_s1):

Footer Content

Use the previous versions of these weblets (std_button_v2 and std_anchor_v2)
only if you need to add content to them.



New jQuery Mobile Weblets

New jQuery Mobile weblets are available:

Autocomplete
Mal
Maine 2
Maryland &5 e
Massachusetis (¥
{
Image
&4 Register
& Speakers

"¢ Presentations

4 Organizers

Loader

oy

Loading

Progress bar

The Autocomplete weblet
provides suggestions while
you type into the field.

The suggestions are provided
by a webroutine using Ajax.

The Image weblet displays an
image.

The weblet has an option to
load the image only when it
comes into view, which helps
render the page faster.

The Loader displays a small
loading overlay when jQuery
Mobile loads in content via
AJAX, or when you want to
perform an action that
momentarily blocks user
interaction.

Progress bar displays the status
of a determinate process.

It can also be used to display a
value as a percentage of its
maximum value.



Other improvements to jQuery Mobile

Input Box Weblet

The Input Box weblet now supports input type="number” to bring the correct
keyboard to mobile devices.

112131415161 7181910
1001 1E&i@}”
= S| [ ) ' e

asc @ 0 space return

Generated Lists for jQuery Mobile

Generated lists for jQuery Mobile are now similar in structure to the lists
generated for Technology Service XHTML. You have access to columns by
variable name.

Previously the XHTML and jQuery Mobile list methods were different, with the
jQuery Mobile’s method giving more flexibility in adding content to the list
entry at the expense of making it less easy to use in the WAM Editor.

You can still use the more flexible and complex method by using the jQuery
Mobile std_html_list weblet.



Support for File Uploads to a Webroutine

You can use the file upload weblet to select files to upload to the application
server (into a temporary directory). The webroutine that receives the file upload
can then manipulate the uploaded files as required.

+ Select files

Filel.jpg Upload

File2.jpag Upload

For more information, see the description of the XHTML File Upload

(std_fileupload) weblet and for the jQuery Mobile File Upload (std_fileupload)
weblet.


its:lansa087.chm::/Lansa/WAMengb8_2640.htm
its:lansa087.chm::/Lansa/WAMengb9_2105.htm

New XHTML Weblets
New XHTML Mobile weblets are available:

The Image weblet displays an
image.

The weblet has an option to load
the image only when it comes into
view, which helps render the page
faster.

The Loader displays a small
loading overlay when jQuery

O Mobile loads in content via
AJAX, or when you want to
loading perform an action that
momentarily blocks user
interaction.

Progress bar displays the status of
eo a determinate process.

It can also be used to display a
value as a percentage of its
maximum value.



Upgraded Third-Party Libraries
Third-party libraries have been upgraded:

\'\,_: jaue’-{ jQuery Core 1.9.1

wrfte less, do more.

jQuery UI 1.10.3

’jauer/ jQuery Mobile 1.4.2

mobile

jQuery Timepicker Plugin 1.4.3

12/31/2012 | B | | 06:00 AM

CKEditor 4.2.1
@ CKEditor

lﬁ.MDBISCHDLL Mobiscroll 2.9.5

Phat wrstomma oty chaly gl fom piaidire foor fomad divanes




WAM Editor Enhancements

The WAM Editor now inspects the design of a web routine for use of deprecated
weblets and lets the user know if they are using deprecated weblets. This test is
done when a web routine's design is opened in the WAM Editor.



Windows 64-bit Support

Visual LANSA now supports the generation and compilation of both Windows
32-bit and 64-bit LANSA applications.

e A 64-bit Visual LANSA runtime is provided in addition to the 32-bit
runtime

e  64-bit deployments are supported in addition to 32-bit deployments

When Should Windows 64-bit Support be Enabled?
Installation Considerations

Programming Considerations

32-bit and 64-bit Applications Accessing the Same Database
Notable Environmental Differences



When Should Windows 64-bit Support be Enabled?

We recommended that Windows 64-bit support is only enabled when there is
corporate requirement for it.

Windows 64-bit support should only be installed on a Build machine, not
developer machines.

Drawbacks
Using Windows 64-bit support has some drawbacks:

¢  You must obtain your own 64-bit compiler, either Visual Studio 2010
Professional (or later) or Visual Studio 2012 Express for Desktop (or later).

e  Compile times are longer because both 32-bit and 64-bit DLLs are always
built.

e  Functions which use DISPLAY, REQUEST or POPUP commands will fail
to compile also in 32-bit DLLs.

Features not Supported

There are LANSA features that do not function or are not supported in 64-bit
applications:

e  Graphics Server

e  Web Functions

e  ZIP and specialized LANSA Built In Functions (BIFs)
e  Explorer Component AutoRefresh Property



Installation Considerations

It is presumed that 64-bit support is only enabled on the Build machine and that
developers do not enable it. As a consequence, when 64-bit support is enabled
both the 32-bit and 64-bit compiles are performed and both MSI packages are
built.

You cannot compile a function which contains DISPLAY, REQUEST and
POPUP commands - even the 32-bit compile will fail. This is why it is better
not to enable 64-bit support on Developer's machines. If developers need to
work on both RDML functions and 64-bit applications, two systems which use
the same repository can be installed on their machines

Compiler Installation

If a supported compiler is not installed before LANSA, the LANSA-shipped
compiler is installed and enabled. If you install a 64-bit compiler later, you need
to change this registry entry to disable the LANSA-shipped compiler:

On a 64- HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\LANSA
bit PC  to 0.

On a 32- HKEY_LOCAL_MACHINE\SOFTWARE\LANSA\MicrosoftCom;
bit PC

If Visual Studio is installed before LANSA, it is used as the compiler.

If the version of Visual Studio installed does not support 64-bit compiling,
install a version that does. LANSA will detect it when it is next started.



Programming Considerations

There are no increases in the maximum size of any LANSA feature because the
limits are considered sufficient. This ensures greater compatibility between 32-
bit and 64-bit applications. For example:

e The maximum size of an RDMLX List is still 2 billion rows, with each
entry being 2 billion bytes long.

e  The Built In Functions SND_TO_DATA_QUEUE and
RCV_FROM_DATA_QUEUE may be used interchangeably.

e Job Queue Emulation can use either a 32-bit or 64-bit Job Queue Monitor
and jobs may be submitted from either 32-bit or 64-bit. Note that the 64-bit
Job Queue Monitor will execute the submitted job as 64-bit, no matter which
platform submitted the job.

PC Other Files which are loaded using a 32-bit ODBC driver will need to create
a 64-bit DSN with the same name as that used to load the file, or use
CONNECT_SERVER when deployed to re-direct IO to a 64-bit driver.

An ActiveX included in LANSA RDML must be a registered 32-bit version. To
execute the ActiveX, a version must be registered which is of the same

processor architecture as the LANSA runtime. That is, if the LANSA runtime is
64-bit then the 64-bit ActiveX must be registered on the deployed PC.



32-bit and 64-bit Applications Accessing the Same Database

These considerations are particularly important when deploying an application
into a production system:

Do not create
mixed 32-bit and
64-bit
applications

Auto-generate
relative record
numbers

Database
upgraded by first
system upgraded

Be consistent

To avoid complexity, it is recommended that applications
are either 32-bit or 64-bit. For example, if you use both 32-
bit and 64-bit clients when using SuperServer, only use a
64-bit server. Because the clients are not directly accessing
the database, there is no complication.

Assign relative record numbers using auto-generation. If
relative record numbers are assigned using external files,
duplicates will occur unless the RPTH parameter is
assigned to the same path for both 32-bit and 64-bit
applications. A file that is currently using external files can
be changed to use auto-generation using the Upgrade tool
feature Convert Files to Use Identity Column.

Table upgrades are identified by comparing the previous
CTD file to the new CTD file being installed. Thus only the
first system upgraded should upgrade the database. This is
why database upgrade defaults to off during an MSI install
and why per-user installs disable database upgrade.

If an existing OAM is not there for 64-bit but is for 32-bit,
and vice versa, the user needs to control which is the latest
OAM. If 32-bit is the first environment to be installed,
continue that way for all Upgrades and Patches. Once the
64-bit environment is at the same level, the Upgrade/Patch
database change machine can be switched, but it is
inadvisable. Be consistent and use one machine from the
beginning.



Notable Environmental Differences

The system directory for 32-bit applications is of the form
x_win95\x_lansa. For 64-bit applications it is x_win64\x_lansa. Therefore
system variables like *SYS_DIR return a different value.

Visual LANSA is a 32-bit application. Hence interaction between Visual
Lansa and 64-bit generated DLLs cannot occur.

32-bit OAMs are always built because Visual LANSA requires the 32-bit
OAM to unload and load the data from the table. The 64-bit build command
always skips the SQL table build, presuming that 32-bit has already done it.

The Windows Installer has a known defect which converts the Target
directory in a Shortcut from c:\program files to c:\program files (x86).
Nonetheless, the shortcut still works correctly as if it was c:\program files.
Even if the 32-bit version of the Application is installed in
c:\program files (x86), it does not get executed, it is still the 64-bit version.
See the MSDN forum post 32bit MSI on 64bit OS: Converting shortcut target
path of 64bit app to 32 bit Path.

A similar situation occurs with Windows\system 32. The shortcut looks OK
but it does not find the object. It is not valid to create a shortcut that points to
this directory.


http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/a380e765-e062-4f84-89a3-d4072c46cbc4/

IBM i User Profile Handling
IBM i user profiles can now be validated, and IBM i passwords can be changed
using the IBM special APIs with interfaces to RDML and LANSA Open.

Using this functionality non-5250 users can find out when their password is
going to expire, and, if the password has not expired or been disabled, to change
it.

This functionality is implemented in Visual LANSA as Built-In Functions, and
in LANSA Open as Lce APIs. See:

e (CHECK_ IBMI SIGNON and CHANGE_IBMI SIGNON in the Technical
Reference.

e LceGetIBMiSignon and LceSetIBMiSignon in the LANSA Open Guide.


its:lansa015.chm::/Lansa/CHECK_IBMI_SIGNON.htm
its:lansa015.chm::/Lansa/CHANGE_IBMI_SIGNON.htm
its:lansa035.chm::/Lansa/LceGetIBMiSignon.htm
its:lansa035.chm::/Lansa/LceSetIBMiSignon.htm

SuperServer Enhancements

Until LANSA Version 13 Service
Pack 2 the possibities of establishing
a SuperServer connection between

different types of servers was limited.

<) <
\

Windows Server

IBM i Server

&

Windows Server

IBM i Server

Linux 3erver Linux 3erver

Now it is possible to establish a
SuperServer connection between any
two servers regardless of the
operating system they are

running

Windows Server 1.|" indows Server

IEI'u'IlSEnrer IBM i Server

\

Linux Server

=

Linux Server




IDE Enhancements for IBM i Administrators

New Check-In Features
Refresh Selected Objects



New Check-In Features

When objects are checked in or delivered to an IBM i system, an export list
containing the selected objects can be automatically generated on the IBM i:

EEM

< Check in Options [ =g ﬁ,l
X &
Process check in options |
4 &% Processes & Functi.., | Compile process/function -
= PSLINIX Create RDMLY Sample D... Debug enabled
= P5LTRGL PSLEVEMT trigger Allow program cbservability
= PSLTRG2 PSLTIMES trigger Produce RDML listing
& PSLUTLY Personnel System Utilitie... Produce DDS/RPG listing
= psLvall Validate event type Optimize compiled programs
= PSLVARL *DMEXHOURLYRATE Ignore Decimal Data Error
= sSTDGUD STD_GUID Field Level Tri... Dump code generator work areas
& STDTRIG Standard Triggers Produce documentor details
Generate HTML
Yalidate numerics -
[] Keep Locks | . oK —
Create export list on BMii | CKInnnn

You can change the default name of the export list. If you specify the name of
an existing export list, the new list will be appended to it.

For more information see Check In Options and Deliver To Options in the

Visual LANSA Administrator's Guide.


its:lansa011.chm::/Lansa/l4wADM03_0110.htm
its:lansa011.chm::/Lansa/l4wADM03_0165.htm

Refresh Selected Objects

Instead of doing a full refresh of all the objects in the repository, you can refresh
the details of selected objects which are already in the local repository by right-
clicking and selecting Refresh:

Item | Description
4 E Active Partition (5Y5)
" Fields
. Files
> ™ Forms
4 = Functions |
‘ﬁ. PSUNIK Crants DOIRAL Y Ca
= |stpGup | ¥ | Open
= |PSLTRGL c L
i | ompile
PSLTRGZ |
= PSLVALL | Execute
= |PSLVARL | Debug b
4 4 Processes
. 3 Delete from Repository
& B :
e Find
¥ D B Quick Export
¥E § Checkln
L
E o Check Out
o
Check Out Readonly
& H <
o~ | @ Unlock
& | g FRefresh
5 Sett
» “_-_, ecurity Ings

Object data is downloaded from the Master in batches and then trickled into the
local Repository to avoid impacting performance on the local machine. You can
use F5 at any time to force the objects to be refreshed immediately.

For more information see Refresh Master Object List in the Visual LANSA
Administrator's Guide.


its:lansa011.chm::/Lansa/l4wADM03_0045.htm

What's New in LANSA Version 13 SP1?

The first Service Pack for LANSA Version 13 includes some enhancements and
new features.

Visual LANSA The new Table Layouts can be managed directly from
usability the ribbon.
enhancements The management of DirectX Styles has been integrated

into the ribbon.

You can choose which commands are included in the
QuickAccess Toolbar.

You can customize the editor Status Bar.

The User-Designed Controls (UDC) have been made
easier to use and there are some sample designs
available.

A new CRUD Wizard generates a rich client
application similar to the IDE interface.

New Images and Styles are available for use in rich
client applications.

The context sensitivity of help text in the editor has
been improved. The help is invoked using F1 (not F2
as previously).

WAM enhancements Webroutines support POST in JSON Format.

Weblets that send requests now have a new property,
vf_wamevent, for VLF developers to set a WAM
event.

Undo/Redo has been improved in the WAM Editor.

Logical Modeler The Logical Modeler now supports long file names.

LANSA Open LANSA Open includes support for Unicode, Boolean
columns and long names.



Before deploying your Version 13 applications, please take time to thoroughly
understand the new MSI Deployment mechanism.

Note that Version 13.0 iSeries Exports cannot be imported to V13.0 SP1.
This document also contains What's New in LANSA Version 13?

Edition Date April 1, 2014
© 2013 LANSA



Table Layouts

The new Table layouts can be managed directly from the ribbon:

Ej E Height P @ Width &
Mew Rows i bk L . Columns e WI:::thI 5 i ‘ Add | Delete
olurmn_!

Layout Row_3
Layout Manager - DEMCOMI1

TEnCEs |

*

q

The Table layout manager makes creating and managing application interfaces
easy. In the majority of cases the older layout managers are no longer required.

See Table Layout.



DirectX Styles

DirectX styles can be managed from the ribbon:

| Height :
L . 7 A | @ E F'ElgdH igh 3,
e n— ied Height

e

AR S Style {b Private  Mouseower ;qt;g  Layout Row 2 Columne
Local Styles
Design  Source /

*NULL
XDXStyles - DirectX Styles

AaBb AaBb Y- 3 AaBb
Background CarchctiveltemBG Centered ContentBackground

AaBb AaBb AaBh AaBb
DragQwver Edit Error Heading

Hint HintArrow Itemn ItermHeading Label

AaBb = & Aaeo

LargeFont LargeFonts LargeHeading MouseCwer MouseCverBorder

AaBb AaBb AaBb AaBb AaBb
Popup PopupButton SpinEdit Transparent Tree

See Dynamic Styles.



QuickAccess Toolbar

The Quick access toolbar provides easy access to commonly used commands:

' ™ L o » = | demcom0l - test - LANSA Editor*

| s
Home Design Tools
= - | ¥ v FullCheck ~
ﬁ - - e - &= o Build
Repository Text Search  Views Open Compile = s
Find Ohbjects
Repository P Compile P
Repository ”F}Eigr'!“_ Sou.ri:e Reposi.
. Function Opt
|E Repuository - = Begin_Com Eo
i | Height{Z
X & ap) Define_Com
| : | Displa

You can now choose the commands it contains:



= | demcom01 - test - LANSA Editor*
Cl%tnmize Quick Access Toolbar 3¢

B Build
4 CheckIn
B Close

&= Compile
§. Connection History

i..:{ Debug
&% Deployment Tool

W Error Log
Bﬁ Execute
G} Execute History

Bl Irnport

% Message Files

&> MNext Component

[# Open

== Open Objects

db Previous Component
i Quick Export

B Repository Find
Bﬂave

B, System Information
B Text Search

» Version 12 Menu Bar
@ Web Error Log



Status Bar

You can choose the information displayed in the status bar:

Customize Statusbar x

&= Audit Stamps
= Configuration
4 Cursor Location
A Font

B Language

* Partition

LT Status Messages

| » Target Runtime

E'[ Task

&} Technology Service

a Uszer

DirectX | LANSAXHTML | ENG | PCXTASK | PCXUSER | DEM

EM % gadgets - = [




User-Designed Controls

Creating user-designed controls (UDC) has been made easier:

CAROUSEL - Sample =

There are sample UDC designs available which you can use in your
applications:

Controls . Design = Source | Repository Details | Repository Help | Cross References
Commen User Designed All Controls -
W = | B i
Carousel
Carousel with user designed content .
- xDemoCarouselDesign Il Caphion i hn
Bl Tile S e e e e e
E¥ Tile with user designed content S e
“ xDemaTileDesign e
A | | SRR TIt|E ........................................
XDXUDCOnDemandDesign T RSEEE
Gaplioin s e e S e R S
Tree e
Tree with user designed content St R R S R S
“ 1« xDemoTreeDesign e
Book s S nn R e R e S e
Book ith user designed cotent e
- xDemoBookDesign e e

The F1 help text provides information about the control you are working with.




= 4 : .
o Tree (Prim_Tree) —
°  E» DirectX Only
Tree i= a member of a group of list related primitive controls referred to as User Designed
@& Controls.
Tree organises individual design panels in to a hierarchical structure very similar to that of tree £
e view (ZPrim_trvw).
UDCs can be manipulated by the use of the typical LANSA list commands ADD_ENTRY,
@ UPD_ENTRY etc. When entries are added to the list, an instance of the desian is made, fields
can be passed in, and a corresponding list item is made. UDCs control the pasition of the item
& within the list, manage selection, focus, expand/collapse etc., and communicate with the | 5
individual item designs through a series of predefined methods published on an interface
specific to the type of UDC. For Prim_Tree this is #Prim_Tree.iTreeDesign
'ﬂ All UDC= are use a parameterized type to define the class of the design to be created each time
= an entry is added. This is specified on the DEFINE_COM as below

(i) Assistant | .. Compile




CRUD Wizard

You can create LANSA applications modeled on the LANSA IDE using a
simple wizard:

. Hame i Description - i Name I""’"'J ]
Name 1  Description_1 I g o —
Name 2 Description_2 i [Deercion. |
[Name_3 iption_3
Name d Description_4

Mame5  Description_s

Name 6 Description_6

MName, 7 Description T

Name & Description_8

Name § Descripti

MName_ 10 Description_10 Proxy

Document

Object Browser

See Create an Application Using a Wizard in the Visual LANSA Developer
Guide.



its:lansa013.chm::/Lansa/L4wDev06_1710.htm

New Images and Styles

New images are available for use in rich client applications:

Repository Design | Source

& Bitrmaps B v
1% 2] @

x -

Itemn | Description Build 5t Up

B xImageView32 Views 32 -

B xImageViewlh View 16

B xmageStop32 Stop 32

B xIrmageStoplh Stop 16

& xImageSettings32 Settings 32

B xImageSettingsli Settings 16 I},

B xImageSavedll32 Save All 32

B xImageSaveAllld Save All 16

B xmageSaved? Save 32

B xrmageSaveld Save 16

8. xImageRepository32  Repository 32

& xIrmageRepositorylé  Repository 16

8 xIrmageRefresh32 Refresh 32

& xIrmageRefreshli Refresh 16

Two new visual styles are available to demonstrate DirectX capabilities:



il

XDXStyles

Style

s '

Mew

Style

Private MMouseowver

# Visual Style

A

Mew

Layout

Mame
b
b @K
P L
b M
PN
P @ o
b P
> @ Q
PR
P @S
@ T
b U
P @V
bW
“@x
# XDXStyles
@xDemoStyla
P@Ey
b @z
P@D’ther

Description

DirectX Styles
h‘ Samples Styles




POST in JSON Format
Webroutines now support POST in JSON format:

S

5 & &

lefresh  Home Print
% Browse t Contents '@ SET —|_| Tutorial

3.13.1 JSON Convenience Wrapper

LANSA ships a JavaScript library that provides you with an easy
way to get to the fields and lists returned in JS0N responses or to
post data in JSOMN. You also use the list methods to get to JS0ON lists
returned in a web page. To use this library, add external resources
¥WIDCIS1 (JavaScript file json2.js) and XWJ003 (lavaScript file
std_json.js) to yvour webroutine.

Also see

Requesting a Webroutine

Getting Fields

Frocessing Lists

Getting Messages

Context Data

Building a 150N Request

Adding Fields to the 150N Request
Adding a List to the JS0N Request
Defining 150N Request List Headers
Adding Entries to the 130N Request List
Fosting the lson Request

See JSON Support in the Web Application Modules (WAMs) Guide.


its:lansa087.chm::/Lansa/WAMengb3_0080.htm

vf_wamevent

Weblets that send requests now have a property vf_wamevent for VLF
developers to set a WAM event:

Mame Value

(4 N < button_v2

rCWith Parameters
= name concat{'o', position(), '_LANSA_18438")
= capton Caption
= currentrowhfield STOROWNUM
= currentrownurmval position()
= submitExtraFields document({" )/ emi-data/kmlfsonfnot{@id)]
= hide_if Falsa
= formname LANSA
ri= pos_absolute_design
ri= width_design

= height_design
= on_click_wamname Shweh WAMName
= on_click_wrname
= protocol
= show_in_new_window False
= target_window_name <xsbif xminsaxsi="http://www.w3.org /1999 /X5
= disabled Falsa
= title
= tent class i
ri= presubmit_js
= confirm Falsa
= confirmText
ri= t3b_index
ri= default_button
[ = vi_wamevent | -




Undo/Redo

Undo/redo has been improved in the WAM Editor. Undo/redo is available in the
context menu:

Design | Scurce  Repesitory Details | Cross References
Web Page | ¥SL | MML SHI

Home Services

Messages:

LANSA Web Application Module About

LAMSA program library ABCDEFCHI]

Caption

Unda - Drop CirdeZ
Redo - Change Property Value Cerl+Y

Copy A 4 ’
Paste h o=
Select Al Crrl= A | ke

Hidden Content

Imsert HTML (3 |
Imsert HTRALS ®
Imgert Customn HTRAL...

< Open “layout” to edit
= Text r

Content Ares for “content” ¥

And in the ribbon:

(e ) 12t i i_*‘_ %, Cut
£ - -"E - \.& ':DFI}"

History Error Logs Execute Debug Paste &b Find ~ ]

Design | Source | Repository Details | Cross References Undo (Ctrl+Z)

Web Page |xsL Undo the last action




MSI Deployment

Before you deploy your Version 13 applications, please take time to thoroughly
understand the new MSI deployment mechanism.

A version number needs to be compiled into every DLL. You need to set the
version number in the Compile settings dialog and then rebuild the entire
application. The whole application must be in a single Package Version — a
single MSI. Do not try to put different parts of the application in different
Package Versions.

Compile -

Product Mame ||_,|!|,N5A |

Product Version | 1|| 'D||

File Version | 1|| ||]|||

Copyright Copyright

Trade Mark |Trade Mark

Comment | Comment

Compile

&

Style

For more information, see Deployment in this guide and What's New in the
Deployment Tool in the LANSA Application Deployment Tool guide.


its:lansa022.chm::/Lansa/l4wdplb1_0005.htm

What's New in LANSA Version 13?

Licensing

Microsoft DirectX
User Interface

Ability to Consume
.NET Components

WAMs for Mobiles

Internationalization
with UNICODE

Version Control
System Support

Deployment

Long Names

RDMLX
Enhancements

Windows Centric
Developmen

File Enhancements

Change of

New Version 13 licenses are required for both IBM i
and Windows.

The Microsoft DirectX user interface offers an
engaging end-user experience and richer
visualization of data in Visual LANSA.

Your LANSA programs can consume .NET UI and
non-Ul components.

You can now easily create Web Application Modules
for mobile applications.

LANSA provides full Unicode support.

Phase 1 of LANSA’s version control interface to BM‘l
party versioning tools is available.

LANSA applications can be packaged as standard
MSI (Microsoft Installer) packages for deployment.

rd
Long names are allowed to enable 3"~ party
integration and descriptive names.

New intrinsics and primitives, language GET/SET
commands etc. available.

Various enhancements have been made to LANSA to
reflect the fact that development centers more and
more on the Windows platform.

IBM I other files now support Unicode and binary
and varbinary fields.

The file library or collection can be overridden on

Collection/Library on import and deployment.

Import and
Deployment



Installation and New installation and development features have

Development been introduced to ensure ease of use and developer
productivity.

Visual LANSA The new version of the Framework utilizes and

Framework showcases the DirectX user interface.

Version 13 Features

This version of the Framework utilizes and showcases the new features in
LANSA Version 13, including the DirectX user interface.

Customized Quick Finds

The Quick Find box is a dialog that appears on the top right of the VLF
window.

The current behaviour is to search a list of all business object captions. This
can now be overridden so that the user searches a list of values that you
control.

And when the user selects one of your values, you control what happens.
Typically this would be a switch to a business object, or to an instance list
entry in a business object, or a command handler for a business object.

If necessary you can also signal that the list of searched values should be
rebuilt.
Button To Switch Between Monitors

A button has been added to allow users with multiple monitors to switch to
the other monitor. The button is located on the bottom left of the Framework
window.

Automatic Command Handler Float Feature

A new feature is available for frameworks where the user needs to see a full
size instance list and a full size command handler at the same time.

The feature makes the command handlers automatically float off to a separate
window when an instance list is clicked, or double-clicked.

If the user has two monitors, the command handlers can be made to
automatically float to the other monitor.

This leaves a full size instance list in the original window and allows the user
to resize their command handler window.

Popup Panel Hints for Instance Lists



If the framework is running in Direct-X mode, it is now possible to show a
popup panel when the user hovers over an instance list entry. This panel can
be used to give the user a quick overview of the item without opening any of
the command handlers for that item.

The end-user is able to disable the feature by right mouse clicking on the
instance list, if popups are not required.

Small VLF-WIN Improvements

When a user clicks on a cluster item in a tree view instance list, the Visual
ID1 and Visual ID2 are available. Previously, only the items identifying keys
were available.

When blank values are added to date instance list columns, the blank is
displayed rather than the value of the previous instance list entry.

Improved sort order of business objects when a user selects a command that
applies to multiple business objects.

LANSA Integrator The latest LANSA Integrator is shipped in Version
13.



Licensing
When installing Version 13 or upgrading to Version 13, you will be required to
obtain new Version 13 specific licenses.

New licenses are required for both IBM i and Windows, this includes both
server and client licenses and Hardware keys (Dongles).

Prior to upgrading to Version 13, you should send your CPU details to LANSA
Licensing for new Version 13 licenses.

There is a new method of applying Server and Integrator licenses.

In Version 13 all your licenses can be consolidated into a single central license
location for ease of management. You can consolidate various LANSA
configurations on the same CPU or many licenses from various CPUs into one
central location.

Refer to Product Licensing at the LANSA Support website for more details.


http://www.lansa.com/support/licensing/index.htm

Microsoft DirectX User Interface

Visual LANSA version 13.0 introduces the DirectX rendering engine. DirectX
is a collection of APIs embedded in to Windows that provide superior graphics
capabilities, opening the door to a world of new design possibilities.

_{:
@
— 2 e
)
T .

To see examples of what can be done with DirectX run the DirectX
Demonstration Application.

With the new Visual LANSA user-designed controls, the developer has almost
complete control over the user interface. For example:

e  There are gradient colors, rounded corners, transparency and opacity.

e  Dynamic styles and mouse events make it possible for the user interface to
react as the mouse enters, hovers over or leaves a control.

e  Context menus can be much more than just menus and animations allow
for developers to add valuable visual feedback for the user.

New Visual LANSA IDE
Dynamic Styles
Brushes



User-Designed Controls
Table Layout

Popup Panel (Prim_PPNL)
Scaling

Taskbar Integration
Animations

Adopting DirectX



DirectX Demonstration Application

Run the DirectX demonstration application to see examples of what can be done
with DirectX:

B DirectX Exarnples ==

Pwl'll.'beh

Veronica Brown (A0070)

User designed hints, context menus and drag and 'h. fogpotion SardosBiD
drop Development (DV)

Fred Bloggs (ADO90)
Resizing Controls...Think Document or Image fest Adetstration (FLE)
Viewers = Accounting {03)

Fred Smithson (AD193)
e Administration (ADM)
Use the Windeows taskbar to show progress and

application state M sintenEroeis)
Anne Simpson (API0T)

7
:
—— o =
7
7

Events firing on the crigin and following the parent Accounting (03)

chain
Shirley Jones (A1001)
Administraticn (ADM)
Internal Admin (01)
John Smythe (A1002)
Administration (ADM)
Purchasing (02) =

Simple Animations.
Animatiens..think Apple taskbar

Bouncing Balls
Animations...and what they SHOULDN'T be used for

-

To run the demonstration application, choose Partition Initialization when you
log on to LANSA on Windows:



r A
Visual LANSA Logon [

User ID: pCHUSEr

PHSSWDFEI' et

[T use Windows credentials

Partition Current Language Task ID
DEM PCXTASK
Francais

| ok | |systemInt... ]l[Eart’rtion Intt... ]l[ Messages | | Cancel | | Help |

In the Partition Initialization dialog choose Run Demonstration:

_
Partition Initialization [—ce-

[®] Mandatory Partition Initialization
[H] visual LANSA Framework

[H| Enable for the Web [
[H| LANSA Client field and file definitions
Demonstration material

IERun Demonstration:

i oK 1 [Shﬂw Last Log... ] [ Messages ] [ Cancel ] [ Help ]

When you click OK, the LANSA DirectX Examples application is run:



Dtect Enamples

e

wertical

mnd b s S B e 8 e T e s

Trew and Drag & Dvop
User Designed Control with panels im a tree strachure

Book

Lhed Designad Control with panels a3 pageiina
beok

Table Layout

Grid style laycut allowing components 1o ocoupy
the same space

Popup Pancts

User detigred kints, context maenud and drag and
drop

Scaling
Resizing Controls_.Think Document oo bmage
Viewers

Taskbar Integration

Use the Windows takbar to thow progress and
application state

Routed brents

Events firing on the ongin and following the parent
chain

Alison Sneddon

Simple Asimations
Animaticns...think Apple takbar s db o
DirectX Examples o . = | &
Dyt yie= Veronica Beown (ADO70] Fried Blogss (A0090] -
Adding changing snd remaang styles st runtiee ? Infarmation Services (INF) ? Fleet Administration (FLT)
Development [OV) Accounting 3)
Brushes Fred Saithson (AG193) Anne Simpson (ADSOT)
Gradient colors linear of radial, images and othes ? indsteation (ADME ? : ing LALIDY
Martenance 05) Arcounting [03)
Carousel
Shirkey Jones (A1001) Juhn Senythe (A1002)
Uses Diesigned Conteel with panels srganized in an ? iistention (ADMD ? e e
ical I IR
Sptci paten Internal Admin (01 Purchasing [01)
Tha Robert Smithe (A1003) Ruth Sméthesan (A10G4)
User Designed Control with panels i a horizontal o ? Fleet inistration (FLT) ? inisteation (ADM)
LDty Adminisr Adminkyation
: gr Purchasing B2) Arcounting [03)
Tiwa sl Dram i Devp Peter Smiths (AL005) Jack Srithers 310061
Uses Diesigrad Contrel with panels in 2 tree itnathute ? Adarinistsation (DK ? "
Purchating 00) Accounting 13
ook } ; George Snell (A1007) Alsom Snedden (A1005)
mwmdwﬁpﬂupigﬂml ? Tnkeenal Auditing (AUD) ? 3 ing (ALD)
Adeninigtrateon 0 Administration [01)
Tabds Loyt _ Dasnlam Snunhall (A1008) Kate Perry AT010}
Ermhﬂ:m‘mwm ? Intesmal Audkting (AUD) ? . ing (AUD])
L Purchating (00) Accounting 3)
Popup Paneh Christopher Ferron (A1011) Patrick Paul (A1012)
Uses desigrved hints, contest menus and drag and ? I (au) ? P ADND
= Adeninistration {011} Intemal Admin {1}

G




FERIIFFRID
FEFFIFRIRD
FEFFIFRIRIDY
FEFFRFREY
FIFFINY
FERFRFRD
FERFRIIRIRD
SFEFFIFIFRDY

FEFFRRRRDR

FIFFIFIRNDY




New Visual LANSA IDE

The LANSA IDE (Integrated Development Environment) supports the new
DirectX based features with new Dynamic Styles, Animation and Layout
helpers.

Ribbon vs. Menu and Toolbar

In the new IDE the ribbon merges menus, shortcuts and toolbars into a single
construct.

Ribbon uses a little more vertical space than a menu and toolbar, but this extra
space provides a very valuable area in which contextual information can be
shown.

For example the style helper shows how a style appears when the focus
component is a component that uses a style:

s | g et segocut |- | | [ _
' = o s 1 4 AaBbCcDd
> ] - B | 1 | U

The ribbon also allows you to create and configure styles in much the same way
as the Version 12 layout helper does. However, by having the helper in the
ribbon, you can see this information with a single click by bringing the sheet to
the front.

The layout helper is now also in the ribbon showing basic layout information
about the focus control without the need to show the layout helper dialog:

The ribbon changes as the context changes. For example, when a File is open,
there are no execute or debug options as a File is not executable.

Ribbons also simplify access to all commands. The most common activities,



save, compile, check in, close can be found in the quick access toolbar which is
always available. The remainder require little more than two or three keystrokes
or a couple of clicks and are easy to discover.

The properties and features available in the ribbon are limited to the most
commonly used, and specific views are available for editing the other
properties.



Dynamic Styles

Unlike Visual Styles which simply overwrite any existing style information
when applied to a control, Dynamic Styles can be added and removed at
runtime. This makes them akin to Cascading Style Sheets:

[#7  Directx Eamples =&

[ymamic Styles - :
Adding, changing and remaving styles at runtime Backgreund £l
Eold [

Brushes Borders
Gradient colors linear or radial, images and cther Font
contrals

Font Size
Carousel Tedt Color

Uzer Designed Control with panels organized in an
eliptical pattern Underdine

Tide

User Designed Control with panels in a horizontal or
wvertical grid

Tree and Drag & Drop

Uzer Designed Control with panels in a tree structure

Book
User Designed Control with panels as pages in a

book

Table Layout

Grid style layout allowing components o occupy
SeSmeac mollit anim id est
Popup Panels L

Dynamic Styles can be created as part of a Visual Style and accessed as read
only features:

Define_Com Class(#prim_vs.Style) Name(#LargeFonts) Bold(True)
Fontsize(72)

#Panel.Style <= #MyStyles<LargeFonts>

Alternatively they can be created at runtime in the same as any other component
instance and then applied to controls as required. Styles created this way are
entirely dynamic and can be modified at runtime to reflect user preferences:




Define_Com Class(#prim_vs.Style) Name(#Fontsize) Fontsize(10)

Evtroutine Handling(#Fontsize.Changed)
#DynamicStyle.FontSize := #FontSize
Endroutine

Multiple styles can be added or removed from a control:

Evtroutine Handling(#...)

#Control.Styles. Add(#MyStyles<LargeFonts>)
#Control.Styles. Add(#MyStyles<Underlineltalic>)
Endroutine

You can use dynamic styles to define rounded corners, borders top, left, right or
bottom, effects e.g. drop shadows, foreground and background brushes and
opacity masks.

Styles can be applied at Application level to alter the appearance of all controls:

Define_Com Class(#prim_vs.Style) Name(#Label) Cornerbottomleft(3)
Cornerbottomright(3) Cornertopleft(3) Cornertopright(3)

Evtroutine Handling(#Com_owner.Createinstance)
#Sys_Appln.Appearance.Label <= #Label

Endroutine



MouseOverStyles

All controls have two sets of styles: Styles and MouseOverStyles.
Styles are applied to the control and any child controls.

MouseOver Styles are applied to the control on MouseOver, i.e. when the
mouse enters the bounds of the control, and removed on MouseLeave. This
allows for simple declarative code rather than having to code lots of
MouseEnter events.

Composite controls such as Panel and Group box have a third set of styles,
PrivateStyles. Private Styles allow composites to continue to use the styles
supplied by their parent, and to have their own styles that aren’t passed on to
child controls. For example they can make a group box caption red without
making the contents red.



Brushes

Brushes allow for gradient colors, images and even other controls to be used to
fill the background, foreground, or borders of a style.

E Dstect Exampdes =)

Deynamic Styles =
Adding, changing sad remeing styles at runtinee

Erushe
Gradient colors lnear of radial, images and otfer g
contiols | ] b

AL SRR Y & § = -
Carousel

User Designed Conleel with paneh ceganized in an
ehptical patiein

Tile

Usex Designed Control with panels in a horizental oo
vertical gnd

Tree and Drag & Dvep

Usar Designed Conteal with panelt in a tree itnactur

Finoi

B &
P
s Designe Conewith pancls 1 pags .
bk
e |

Table Layout

Grid style laycat allowing components 1o o<iupy
the same tpace

Fopup Panels.

User designed hints, context menus and drag and
drop

G

There are several types of brushes available:
Linear Brush

Radial Brush

Solid Brush

Image Brush

Visual Brush



Linear Brush

The image below shows a Linear Brush transitioning from gray to white:

[ (=] O

:l_?

A linear brush is used to define a color transition that follows a line defined by
the start and end coordinates:

Define_Com Class(#prim_vs.Style) Name(#Style) Backgroundbrush(#Brush)
Define_Com Class(#Prim_Vs.LinearBrush) Name(#Brush) Colors(#Colors)
Define_Com Class(#Prim_Vs.BrushColors) Name(#Colors)

Define_Com Class(#Prim_Vs.BrushColor) Name(#Color1) Color(Gray)
Parent(#Colors)

Define_Com Class(#Prim_Vs.BrushColor) Name(#Color2) At(100)
Color(White) Parent(#Colors)



Radial Brush

The image below shows a radial brush transitioning from gray to white with an
origin of 100, 100 (bottom right):

- = | B |l

Radial brush is used to define a color transition that follows a line defined by
the start and end coordinates emanating from an origin:

Define_Com Class(#prim_vs.Style) Name(#Style) Backgroundbrush(#Brush)
Define_Com Class(#Prim_Vs.RadialBrush) Name(#Brush) Colors(#Colors)
Originleft(100) Origintop(100)

Define_Com Class(#Prim_Vs.BrushColors) Name(#Colors)

Define_Com Class(#Prim_Vs.BrushColor) Name(#Color1) Color(Gray)
Parent(#Colors)

Define_Com Class(#Prim_Vs.BrushColor) Name(#Color2) At(100)
Color(White) Parent(#Colors)

End_Com




Solid Brush

The image below shows a solid white brush with opacity of 75.

The brush has been applied to a panel on top of which is the foreground text.
Opacity of 75 allows the background to be visible through the panel:

€ | (5
Foreground

Solid brush is used to define a brush with a single color:

Define_Com Class(#prim_vs.Style) Name(#Style) Backgroundbrush(#Brush)
Define_Com Class(#Prim_Vs.SolidBrush) Name(#Brush) Color(White)
Opacity(75)



Image Brush

The image below shows an image brush at 30% opacity with overlaid fields:

€ SHEEn)
Ermnployee Mumber ABCDE
Ermployee Surname ABCDEFGHUELMMNOPQRST
Employee Given Mame(s) |ABCDEFGHUKLMMOPQRST
Street Mo and Mame afbBcCdDeEfFgGhHITJKKILm
Suburk or Town afbBcCdDeEfFgGhHITJKKILmM
State and Country afbBcCdDeEfFgGhHITKKILm

Image brush is used to render an image as the content of the brush. The image
can be sized, repeated and reflected. A typical use for an image brush is as a
watermark or background image for a form:

Define_Com Class(#prim_vs.Style) Name(#Style) Backgroundbrush(#Brush)

Define_Com Class(#Prim_Vs.imageBrush) Name(#Brush) Image(#Globe)
Opacity(30) Sizing(BestFit)



Visual Brush

A visual brush allows an image of another control to be used as the background
or foreground of a style. This is particularly useful for drag and drop images. As
with image brushes the image of the control can be resized or repeated.

4 & Purchasing (02)

Damian

101 Sackville Road
Ingleburn

NSW 2150

Home Phone - 605 8686
[> & Accounting (03) T [ 5 =
Srumhall
4 * Fleet Administration (FLT)

a & Administration (01)



User-Designed Controls

User-designed controls are a new form of visual list similar to tree view or grid.
However, user-designed controls have no predefined appearance, and the user
has free reign over the design of the items that will be constructed. Items are
added using the typical list commands, Add_Entry, DIt_Entry, SelectList etc.

Each user-designed control has its own design interface (e.g.
#Prim_Tile.iTiledesign, #Prim_Tree.iTreedesign), which is implemented by a
reusable part which allows the design instance to respond to focus, selection,
expand/collapse in the case of tree, and other events.

You can also define the repository fields you want to use and these are mapped
in to the design instance on add.

A user-designed control can use either a single class of design or many
depending on requirement.

Define_Com Class(#prim_Tile<#MyTileDesign>) Name(#Tile)...



Tile (Prim_Tile)

Tile items are laid out in a grid pattern governed by the rules of a flow layout:

Veronica Brown (A0070)

‘ Information services (INF)
Development (DV)
Ben Jones (A1001)

‘ Administrator dept (ADM)
Internal admin snv (01)
Peter Smiths (A1005)

‘ Administrator dept (ADM)
Purchasing section (02)

Damian Snashall (A1009)

George Pattison (A1013)
i Administrator dept (ADM)
Internal admin srv (01)
Gary Neave (A1017)
i Information services ([INF)
Purchasing (02)
David Mccully (A1021)
ministrator dept
i Admini dept (ADM)
Internal admin srv (01)
Mary Robinson (A1025)
ministrator dept
i Admini dept (ADM)
Internal admin srv (01)
Valerie Turner (A1030)
nformation services
i Inf ices (INF)
Administration (01)

Fred john alan Bloggs (A0090)
Fleet administration (FLT)
Accounting (03)

John Smythe (A1002)
Administrator dept (ADM)
Purchasing section (02)

Jack Smithers (A1006)
Travel department (TRVL)
Accounting (03)

William Perry (A1010)
Internal auditing (AUD)
Accounting (03)

John Moore (A1014)
Administrator dept (ADM)
Purchasing section (02)

Paul Zacharia (A1018)
Group accounts (GAC)
Purchasing (02)

Kelly Thompson (A1022)
Marketing department (MKT)
Purchasing (02)

Tony Lewis (A1026)

Group accounts (GAC)
Accounting (03)

John Blake (A1031)
Managemnt informatic (MIS)

Executive informatio (EI}

Fred Smithson (A0193)
Administrator dept (ADN)
Maintenance (05)

Robert Smithe (A1003)
Fleet administration (FLT)
Purchasing (02}

George Snell (A1007)
Internal auditing (AUD)
Administration (01)

Christopher Perrin (A1011)
Internal auditing (AUD)
Administration (01}

Bradley Woods (A1015)
Administrator dept (ADM)

Internal admin snv (01)

Charles Dickens (A1019)
Legal department (LEG)
Contracts, local (01)
David Reid (A1023)
Legal department (LEG)
Accounting (03)

Alan Morrison (A1027)
Administrator dept (ADM)
Internal admin snv (01)
Paul Lincoln (A1032)
Information services (INF)
Accounting (03)

-0

Anne Miss simpson (A0907)
Internal auditing (AUD)
Accounting (03)

Paul Smithson (A1004)
Administrator dept (ADM)
Accounting section (03)

Allan Sneddon (A1008)
Internal auditing (AUD)
Administration (01)

Patrick Paul (A1012)
Administrator dept (ADM)
Internal admin srv (013

Jack Turner (A1016)

Fleet administration (FLT)
Administration (01)

Adam peter Douglas (A1020)
Administrator dept (ADM)
Internal admin srv (01)

John Taylor (A1024)
Marketing department (MKT)
Administration (01)

Andrew Maxwell (A1028)
Group accounts (GAC)
Financial control (FC)
Warren peter Verey (A1111)
Administrator dept (ADM)

Internal admin srv (01)



Tree (Prim_Tree)

Tree items are added to the tree and behave like a simple list. However, by
setting the ParentItem the item can be nested within another tree item. When an
item is collapsed or expanded, the tree shows the necessary items.

Search [

. ministrator dept (ADM)

b a Internal admin srv (01)
a & Purchasing section (02)

20 cobbitty avenue,

Werrington,

Msw. 2100
Home Phone - 047 629 0442
" Peter 72 mullane avenue,

Smiths Baulkham hills,

Nsw., 2147

Home Phone - 674 4316
John 2 burton road,
Moore Lane cove,

Nsw. 2100
b & Accounting section (03)

Heme Phone - 452 6392
b & Sales & marketing (04)

> h Maintenance (05)
b & Personnel section (06)
b a Vehicle maintenance (09)
> ﬁ Internal auditing (AUD) -




Carousel

Carousel shows individual designs, in this case a simple image and label in

either a linear or elliptical pattern. For simplicity, the example above uses the
same image repeatedly.

N

fufjrranthi Palfnla Anne Miss simpson Bk

{trimi




Book

Book shows individual designs, in this case a simple image and label as if they

were pages of a book. For simplicity, the example above uses the same image
repeatedly.

Anne Miss simpson Ben Jones

(b . S e |




Table Layout

Table layout is new layout manager similar in concept to the Version 12 Grid
layout or a table in Microsoft Word.

T e Height 1 = 4@ B Width 1 =| & _

LS @S v Fixed Height [T 4 j L v Fixed Width [] = i 5 - ﬁ v
Mew Rows Columns Add Delete
Layout Row_3 Column_5

il

TEnCEs

A table is split in to a series of columns and rows, each of which occupies a
percentage or fixed pixel width portion of the space available. Controls to be
laid out are given a layout item that specifies a row and column, and further
allows a row span and column span to be specified.

Unlike most layout managers, Table allows controls to occupy the same space,
greatly simplifying the creation of complex UI layouts.

The code below defines a table of 3 columns and 4 rows, the fourth being of
fixed height. The table item manages #Control and will resize it to fill the first
row.

Define_Com Class(#prim_tblo) Name(#TableLayout)
Define_Com Class(#Prim_tblo.Column) Name(#TColumn1)
Parent(#TableLayout)

Define_Com Class(#Prim_tblo.Column) Name(#TColumn2)
Parent(#TableLayout)

Define_Com Class(#Prim_tblo.Column) Name(#TColumn3)
Parent(#TableLayout)



Define_Com Class(#Prim_tblo.Row) Name(#TRow1) Parent(#TableLayout)
Define_Com Class(#Prim_tblo.Row) Name(#TRow?2) Parent(#TableLayout)
Define_Com Class(#Prim_tblo.Row) Name(#TRow3) Parent(#TableLayout)
Define_Com Class(#Prim_tblo.Row) Name(#Trow4) Height(70)
Parent(#TableLayout) Units(Pixels)

Define_Com Class(#Prim_tblo.Item) Name(#Tableltem1) Column(#TColumn1)
Columnspan(3) Manage(#Control) Parent(#TableLayout) Row(#TRow1)

See Table Layout Manager in the Visual LANSA Developer Guide.


its:lansa013.chm::/Lansa/L4wDev06_1715.htm

Popup Panel (Prim_PPNL)

Popup panels are effectively an extension to the concept of user-designed
controls. Rather than hints, popup menus and drag image being of a predefined
type, popup panels can be used to show fully programmable reusable parts
instead.

All controls now have Popup and HintPopup properties. By attaching a Popup
to a control, on a right click, the popup will be shown. Similarly, by attaching a
hint popup, when the hint is required the popup will be shown.

Similar to Popup menus, a Prepare event is fired shortly before the hint is to be
shown allowing for the user to configure the popup content as required.

™ Smithson -
‘ Fred
" Smithe % Smith
‘ Robert ‘ Paul
"% Spell % Spedd
b Geo rge 4  Allan
" Perrin "% Paul
| Christopher 4 Patrich
"% Woods "% Turne:
é Bradley b Jack

In the image above, a popup panel is used to show additional information about
the active item. Similarly below, on a right click, not only is there a typical
context menu, but also a contextual tool bar.



"% Pattison "% Moore
| George 4 John

™ Mccully S Menulteml
‘ David MMenultern
Menultem3
:;i;: Menultemd
~ 5
Habincon Menultem5b
| Mary - TNy
% Turner " Blake
‘ Yalerie ‘ John

Unlike hints and popup menus, Popups are fully function reusable parts and can
therefore take focus and react to keyboard input. This allows for similar context
processing as seen in Microsoft Office.

The code below shows a Tile with hint and context popups.

Define_Com Class(#prim_Tile<#MyTileDesign>) Name(#Tile)
Hintpopup(#HintPopup) Parent(#COM_OWNER) Popup(#ContextPopup)
Define_Com Class(#prim_ppnl) Name(#HintPopup)
Content(#HintPopupContent)

Define_Com Class(#PopupPanelEmployeeDetails) Name(#HintPopupContent)
Define_Com Class(#prim_ppnl) Name(#ContextPopup)
Content(#ContextPopupContent)

Define_Com Class(#PopupPanelContextPopup) Name(#ContextPopupContent)



Scaling

Scaling allows a control to appear smaller or larger without changing the height
and width properties. This is typically useful when viewing images, but can also
be used to enhance the visibility of all application features. Scaled controls are
still bound by the size of their parent control.

(87 Duectx Ecametes - [ | 0 ] |

L .2

Eook

User Designed Control with panels as pages ina
bz

Table Layeut

Grid style laycan allowang compenents 10 cooupy
the same space

Pogup Paneks

User designed hints, confed menus and drag and

Taskbar Integration

Use the Windows taskbar bo show progness and
application state

Fouted Evenits
Events firing on the origin and following the parent
chain

Simple Andmations
Anifrater_ Rk Apple trikbar

Bouncing Balls
Animaticrs...and what they SHOULDH'T be wed for 1%

All controls now have ScaleHeight, ScaleWidth, ScaleOriginTop and
ScaleOriginLeft properties. In conjunction with the static properties, controls
also have an in built Scale animation method.

The code below makes a button scale to 50% larger and then back to normal
size, and gives the impression of the button jumping out of the screen briefly

Define_Com Class(#prim_phbn) Name(#Button) Caption('Click Here")
Displayposition(1) Parent(#COM_OWNER) Tabposition(1)
Evtroutine Handling(#Button.mouseEnter)

#Button.Scale( 150 150 150 )

#Button.Scale( 100 100 150 150 )

Endroutine



Taskbar Integration

Visual LANSA desktop applications can now interact with the Windows
Taskbar

Windows TaskbarInfo allows a percentage progress to be specified as well as

overlay images. ProgressStyle allows for the colour and behaviour of the
progress to be modified as well.

#Application.TaskBarInfo.ProgressStyle := Paused
#Application.TaskBarInfo.Overlaylmage <= #Pausel6

The code above set the taskbar to a paused state, resulting in a yellow color and
overlays a pause image:

LIE



Animations

Animations are nothing new. Even the green screen had blinking text.

In the modern world however, animations go a little further and allow
developers to add a little glitz and glamor, as well as providing a means of
highlighting features to the end user whenever there is a need to draw attention
to a particular area of the screen.

Perhaps the most important single feature of animations is that they operate
entirely in their own thread meaning that animations can execute while other
longer processing is going on.

There are two types of animation:

Transitions

Control Animations



Transitions

Transitions are little more than a more interesting way of bringing a panel to the
front, similar to the way slide transition in Microsoft PowerPoint.

Today, when we want to bring a panel to the front we write code that looks
similar to the below.

#Panel2.Visible := True
#Panel1.Visible := False

This shows a secondary panel and hides the currently visible one. The
processing is instant and the effect is simple.

However, with transitions we can make one panel fade while the other appears,
or have one roll down from the top of the screen to cover one on top.

Define_Com Class(#prim_anim) Name(#Animation)

Define_Com Class(#prim_anim.Transition) Name(#Flip) Source(#Panel1)
Target(#Panel2) Transitiontype(Flip) Parent(#Animation)

Evtroutine Handling(#Button.Click)

#Animation.Start

Endroutine

The code above defines a simple animation that uses the Flip transition. This
will be available as a feature of all controls eventually resulting in much more
concise code.

Evtroutine Handling(#Button.Click)
#Panel1.TransitionTo(#Panel2 Flip)
Endroutine



Control Animations

Control animations allow for much more varied animations. There are move,
fade, rotate, scale and many more types of animation, each of which can be used
to affect the state of a specific control.

Importantly however, animations cannot put a control in state that cannot be
described by the properties of the control. So, while a control’s properties are
not being updated during the animation, when complete the animation the
control is still subject to the normal Visual LANSA rules.

For a simple example, a button that is positioned by a layout can still be moved
by an animation to or from a given point, but when the animation finishes the
layout will again take control and position the button.

For simplicity, some animations are available as features of controls.

Evtroutine Handling(#Button.Click)
#Button.Scale(200)
#Button.FadeOut

Endroutine

The code above will start scaling the button to twice its width and then start
fading out.

More complex animations can be achieved by building composite animations
that move multiple controls

Define_Com Class(#prim_anim) Name(#Animation)

Define_Com Class(#Prim_anim.Opacity) Name(#ShowBanner) Duration(2000)
Manage(#Banner) Opacity(100) Parent(#Animation)

Define_Com Class(#Prim_anim.opacity) Na me(#ShowGlobe) Duration(2000)
Manage(#Globe) Opacity(100) Parent(#Animation)

Define_Com Class(#Prim_anim.MoveFrom) Name(#BannerInFromLeft)
Duration(2000) Manage(#Banner) Parent(#Animation)

Define_Com Class(#Prim_anim.MoveFrom) Name(#GlobeInFromBelow)
Duration(2000) Manage(#Globe) Parent(#Animation)

This example is taken from the DirectX Sample splash screen. It takes 2
seconds to make a Banner and Globe 100% opaque while at the same moving
them from off the screen in to view.

Complex animations may have many component pieces and all will be executed



when the animation starts. Each piece has a StartTime property that can be
modified so that the animation can run in a specific sequence.



Adopting DirectX

When running an application in Version 13, it will continue to behave exactly as
it did in version 12. Only by actively choosing to use the DirectX rendering
option will the application change. This can be done at application, form or even
panel level. For many users, this transition may be almost seamless. For some
however, DirectX rendering may subtly impact the behavior of the existing
application.

LANSA has gone to great lengths to ensure that “flicking the DirectX switch” is
as simple and uneventful as possible, and that the user interface remains close to
that of version 12. However, with such an array of new functionality and the
restrictions imposed by the adoption of new underlying technologies, some
change is inevitable

Adopting DirectX Rendering
DirectX Changes
Samples Source



Adopting DirectX Rendering

Whilst every effort has been made to ensure that as much of the Win32
appearance has been honoured as possible, circumstances dictate that it is
simply impossible to provide a DirectX runtime that precisely reflects that of
Win32.

Before enabling for DirectX, you need to answer one question. Do you really
need to? If the answer is no, you should continue using version 13 as you did
version 12.

Enabling for DirectX
Strategies
Test, Test, Test



Enabling for DirectX

Visual LANSA allows DirectX to be applied at panel, form or application level.
Once DirectX is enabled, all child panels will also use DirectX, specific Win32
controls notwithstanding.

If we set the runtime to DirectX, all forms, panels and controls within the
application will use DirectX rendering.

If we set a form to use DirectX, child panels and controls will use DirectX
rendering.

If we set a panel to use DirectX, panels and controls will use DirectX rendering.



Strategies

In practical terms, there are two strategies for the adoption of DirectX —
Wholesale or piecemeal.

Piecemeal is the less invasive strategy. This allows individual forms or panels to
start using DirectX related features e.g. new controls or animations, without
affecting the remainder of the application. It is worthy of note however that this
will enforce a TrueType font to be used, and it may therefore be necessary to
change the font for the remainder of the application to ensure consistency.

The wholesale approach simply means that the runtime is switched to use
DirectX and that as a result the entire application will render using DirectX.



Test, Test, Test

Regardless of the strategy employed to start using DirectX, the majority of
applications may well behave slightly differently. For some it will be as subtle

as a change in font; for others, parts of the application will not behave quite the
same as before and may cause runtime errors.

It is strongly recommended that you perform a full test of your applications
before enabling any productions systems.



DirectX Changes

The following sections detail individual changes and explain the reasons for the
change and how they may impact existing applications. Where possible,
workarounds and simple ways in which these issues can be overcome are
specified.

Default Appearance

Transparency and Opacity

Routed Events

Mouse Events

Visual Styles

True Type Fonts

Win32 & DirectX (ActiveX and Graphs)

UpdateDisplay



Default Appearance

Below are images of the same form running firstly as it would appear in version
13 using Win32 and secondly as DirectX.

B Simple Form Running in Win32 @EI&J

Emploves Mumber |

Employes Surmame

Emploves Given Mame(z]

ok ] I LCancel I
# ' Simple Form Running in DirectX AR X
Ermnployee Mumber
Ermnployee Surname
Ermnployee Given Marme(s]
| oK Cancel

The code for this form is available in the Sample Source section of this
document.

Functionally, the two forms are identical. However, the font used for the text is
different. Win32 defaults to MS Sans Serif 9 while Direct X defaults to Segoe
Ul 9.

Ms Sans Serif is an old font and was created a long time ago when screens were
much smaller and had much lower resolutions. The result is that on a modern
screen, running a modern resolution, it looks rather “blocky” compared to the
smooth edges and nicely rounded corners of a modern True Type font.

For most users the change of font may well be of no consequence. However,
Segoe Ul is slightly wider, and as can be seen form the two images, and this
may cause some text to wrap, show ellipses or be truncated.



Transparency and Opacity

DirectX rendering introduces transparency and opacity. By default in DirectX
all panels and labels are considered transparent unless a specific Style has been
applied. This new appearance can lead to issues.

Below, a simple form toggles between address and employee details. When the
button is clicked, the address details are enabled and brought to the front.

(G || S |

Emploves Mumber I Shuw.ﬁ.ddress I

Employes Surmame

Emploves Given Mame(z]

Street Mo and Marme [ Chow Detail! ]

Suburb or Tawn
State and Country
Post / Zip Code 1]

L

The code for this form is available in the Sample Source section of this
document.

However, the results with DirectX rendering are somewhat different.

=

i | B S
Etrgeiohieedidrhlaene | Show Address
Boipldyes Tomame
e apet Crveriddarme(s)

Post / Zip Code ]




| | D@&

Etrgeiideedidrilaens Show Details
Boipldyes Tomame

e apet Crveriddarme(s)
Post / Zip Code ]

L

Regardless of the DisplayPosition of the Address and Details panels, both are
plainly visible.

The need for this default stems from the desire to build complex layered forms
and to still be able to see watermark images or backgrounds applied to it. If they
were opaque, it would be necessary to visit every panel and label and
specifically apply a transparent style.

A simple work around for this situation is to set the inactive panel to
Visible(False) rather than Enabled(False).



Routed Events

To simplify the coding of complex reusable parts and in particular the design
panels for the new user- designed controls, an event detected on a control is now
passed up the parent chain.

Typically for user-designed control, the panels displayed are constructed of little
more than labels and images. However, with the existing event processing, each
of the labels would take the click event and not pass it on. The result would be
that the user would need to code every click event for every child control. By
routing the event up the parent chain, coding is greatly simplified.

Of course, it may be necessary to know which of the controls actually fire the
event initially. The EVTROUTINE command already has the Com_Sender
selector, but this only ever reports the control firing the event. So, the Origin
selector has been added. Regardless of how many layers of parent are used,
Origin will contain a reference to the instance on which the event was actually
started.

Evtroutine Handling(#Com_owner.Click) Origin(#Origin)

Endroutine

The only exception to this rule is when the event crosses a reusable part
boundary. Reusable parts are black boxes as such and the rules of encapsulation
dictate that what goes on within a reusable part must stay within a reusable part.
So, in this situation, as far as the parent is concerned, the origin is the reusable
part itself.

As at the time of release of this document, the Origin control is still available
across the reusable part boundary. This is a known issue.

Clearly though, this change of event behavior may have some side effects. In a
simple example where there is a click event for both child and parent
components, in Win32 the two events would remain separate. However, with
DirectX processing and event routing a click on the child would result in both
the child click and parent click firing. This is an unusual situation and it is
unlikely that many customers will encounter it, but nevertheless it is
conceivable and should be catered for.

To counter unwanted event propagation, the Handled Selector has been added to
EVTROUTINE. By setting Handled to true the event is no longer passed
beyond the routine being processed.



Evtroutine Handling(#Button.Click) Handled(#Handled)
* Stop the event going any further up the parent chain.
#Handled := True

Endroutine



Mouse Events

When an application is using DirectX, there are changes to the way in which the
list controls (Tree, Grid etc.) appear. Most notably, when the mouse is over an
item in the list, the item will be highlighted. In the image below, the first item in

.. th . i )
the list is the FocusItem. The 5 item has the mouse over it and is therefore the
Currentltem.

[ # | DirectX | == ﬁr
Delete
Ermployee Mumber | Employee Surname Employee Given Marme(s)
ADDT0 EROWMN VERONICA —
AD030 ELOGGS FRED JOHM ALAN
A0193 SMITHSOMN FRED
ADa07 MISS SIMPSON ANME
A1001 JOMES BEM
A1002 SMYTHE JOHN
A1003 SMITHE Robert
A1004 SMITHSOMN PAUL
A1005 SMITHS PETER
A1006 SMITHERS JACK
A1007 SMELL GEORGE
A1008 SMEDDON ALLAMN
A1009 SMASHALL DAMIAN

The code for this form is available in the Sample Source section of this
document.

All LANSA lists use a Currentltem concept that maps the equivalent field
values from the list and into the equivalent variables. Currentltem effectively
represents the item last processed in the list. This might be the last item clicked
on, which will also be the FocusItem, or perhaps the last item processed in a
Selectlist loop.

Historically, it was common to see processing similar to the above where the
Delete button would cause the deletion of the currently selected item with code
similar to the following.

Evtroutine Handling(#Delete.Click)

If (#List.Currentltem *IsNot *null)

DIt_Entry Number(#List.Currentltem.Entry) From_List(#List)
Endif

Endroutine



This code effectively assumes the Currentltem and Focusltem are going to be
one and the same, and for most scenarios prior to DirectX that would be the
case.

However, in DirectX, MouseOver processing has been added for all lists and
takes effect immediately. Even if the related event routines aren’t coded, the
runtime is still determining what the Currentltem is and this can affect the
values of variables.

Relying on Currentltem is not good practice outside of a Selectlist as it can be
corrupted. For single selection lists you should always use the Focusltem.



Visual Styles

Visual Styles have historically ignored the BorderColor property for reasons
that are unclear. Borders were painted black unless a theme was applied in
which case the theme took over and applied a border color of its own.

Under DirectX, the border color as specified will now be applied. This may
cause issues for some customers who have erroneous values specified in their
Visual Styles. The obvious workaround is to correct the Visual Style.

As at the time of release of this document, Visual Style BorderStyle is ignored
in a DirectX runtime. All borders are shown as a single line.



True Type Fonts

DirectX rendering only supports True Type fonts. This is simply a reflection of

the underlying Microsoft technologies. True Type and Open Type, an extension
of True Type, are industry standards and designed to render smoothly regardless
of the font size used.

Where a font cannot be rendered, Visual LANSA uses Segoe UL.

Fonts such as MS Sans Serif, which is not True Type, typically have modern
True Type alternatives. The MS Sans Serif equivalent is Microsoft Sans Serif.

If you intend to adopt DirectX, it is strongly recommended that you change your
application to use a True Type font. This may cause issues with text no longer
fitting in the available space and it is recommended that you review any changes
you have made.



Win32 & DirectX (ActiveX and Graphs)

There are compatibility issues when trying to work with both Win32 and
DirectX in the same UI space. As with fonts, this is a reflection of the
underlying technology.

For many customers, the adoption of DirectX may well occur in individual
forms bolted on to existing applications, or perhaps as panels embedded in
existing forms. This technique is fine as DirectX will work within Win32 quite
happily. However, the reverse is not quite so simple, and Win32 controls don’t
necessarily behave in the way one might think.

Win32 controls cannot occupy part of the same render level as DirectX and are
therefore placed on a different level. This results in a situation where child
Win32 controls that are bigger than their parent will cause scrolling issues. In
the image below, the browser is parented to a panel which has been scrolled. See
how the top of the browser coincides with the top of the panel scroll bar on the
right. As this is a Win32 application, the browser is correctly clipped.

(5 win22 =HECN X

m

]
=] =
: . o rim s ! g
R
|

h
Typical LANSA Projects Spotlight g
B Wil A = L
=+ Give green-screen or 5250 1 : : . ¢
applications a new GUI front-end Bl iFusion.net Native Mobile App Builder ¢
iFusion.net is a software platform Build mobile apps using your ol

« Create new Web, Windows or that combines IBM and Microsoft EERESESTT YOUT i
System i applications with ease R current RPG & DDS or LANSA skills E

2 feal, FREE 30-day trial -

Asstrrmotn senddlnne and hianinnnn nrahi#nabrn Tha dnnine in o fnian

The code for this form is available in the Sample Source section of this
document.

However, in the same form running as DirectX (below), scrolling the panel
causes the ActiveX to move, but not to clip. See how the browser is now above



the panel scrollbar on the right.

r. DirectX e SN R v g e e e ==

LLLLLTL. (

Technology Products Case Studies

Innovate

aon't

Agile computer systems are key to your

business success i1 o i : I

With LANSA, you can create amazing new
applications and breathe new life into legacy
systems. Your business can innovate faster and
become more agile. LANSA provides the
software development platform, tools, advice,
training and support — all in a one-stop package.

o MOEILE DEVELOPMENT o APPLICATION DEVELOPMENT o IEM 5YSTEM i MODERNIZATION o APPLICATION INTEGRATION W 2

current RPG & DDS or LANSA skills
FREE 30-day trial

System i applications with ease Microsoft technology

)

. . . 1]

Typical LANSA Projects Spotlight ]
-

C d

< Publish a Web service from your T a . . d

legacy system in 1 hour iW‘ Jerer Native Mobile App Builder

: P i s L

= Create new Web, Windows or Pushing the limits of IBM i and Build mobile apps using your ¢

1

C

+ Give green-screen or 5250 G en s e
4 1

—

The only practical solution to this issue is to ensure that the Win32 control is
sized appropriately, probably by use of a layout manager, and does not exceed
the size of its parent.

As at the time of release of this document, Memo (Prim_memo) and Listview
(Prim_ltvw) are still Win32 controls.



UpdateDisplay

In Win32 the UpdateDisplay method could be called on a control to force the
screen to refresh during a long running process. The Win32 runtime was able to
address individual controls specifically and in effect could update a small
portion of the UI.

However, the DirectX runtime works in a different manner and this is no longer
possible. UpdateDisplay will cause the whole of the form to update.

In most circumstances this will be of little consequence. However, in situations
where UpdateDisplay is called repeatedly, this will cause noticeable
performance degradation.

A typical situation where that occurs is when a Progress Bar is used. Progress
Bars automatically use UpdateDisplay to ensure that they reflect their latest
value. In the example below a simple loop is executed and the progress bar and
start button caption are updated every iteration.

B Win32 E=anal X |

=

In Win32 above, the start button is not updated. The UpdateDisplay is specific
to the Progress Bar. However, in DirectX, the whole form gets updated.

=

B DirectX E=anal X |

The code for this form is available in the Sample Source section of this
document.

To counteract this situation, rather than updating the progress bar or specifically
executing UpdateDisplay every iteration, a simple test can be added so that the



update only occurs every 10th time.



Samples Source
Default Appearance

Transparency and Opacity
Mouse Events
Win32 & DirectX (ActiveX and Graphs)

UpdateDisplay



Default Appearance

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(119)
Clientwidth(336) Componentversion(1) Height(157) Left(175) Top(215)
Width(352)

Define_Com Class(#EMPNO.Visual) Name(#EMPNQO) Componentversion(1)
Displayposition(1) Left(8) Marginleft(130) Parent(#COM_OWNER)
Tabposition(1) Top(8)

Define_Com Class(#SURNAME.Visual) Name(#SURNAME)
Componentversion(1) Displayposition(2) Left(8) Marginleft(130)
Parent(#COM_OWNER) Tabposition(2) Top(32)

Define_Com Class(#GIVENAME.Visual) Name(#GIVENAME)
Componentversion(1) Displayposition(3) Left(8) Marginleft(130)
Parent(#COM_OWNER) Tabposition(3) Top(56)

Define_Com Class(#PRIM_PHBN) Name(#OK) Buttondefault(True)
Caption('&OK") Displayposition(4) Left(164) Parent(# COM_OWNER)
Tabposition(4) Top(88)

Define_Com Class(#PRIM_PHBN) Name(#Cancel) Buttoncancel(True)
Caption('&Cancel") Displayposition(5) Left(252) Parent(#COM_OWNER)
Tabposition(5) Top(88)

Evtroutine Handling(#Com_owner.Createlnstance)

Case (#sys_appln.RenderStyle)

When (= DirectX)

#Com_owner.Caption := "DirectX"

When (= Win32)

#Com_owner.Caption := "Win32"

Endcase

Endroutine

End_Com



Transparency and Opacity

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(114)
Clientwidth(522) Height(152) Left(106) Top(204) Width(538)

Define_Com Class(#PRIM_PANL) Name(#Details) Displayposition(1)
Height(108) Left(15) Parent(#COM_OWNER) Tabposition(2) Tabstop(False)
Top(13) Width(338)

Define_Com Class(#PRIM_PANL) Name(#Address) Displayposition(2)
Enabled(False) Height(108) Left(15) Parent(#COM_OWNER) Tabposition(1)
Tabstop(False) Top(13) Width(338)

Define_Com Class(#PRIM_PHBN) Name(#MoveToFront) Caption('Show
Address") Displayposition(3) Left(360) Parent(#COM_OWNER) Tabposition(3)
Top(8) Width(153)

Define_Com Class(#EMPNO.Visual) Name(#EMPNQO) Componentversion(1)
Displayposition(1) Height(20) Left(8) Parent(#Details) Tabposition(1)
Define_Com Class(#SURNAME.Visual) Name(#SURNAME)
Componentversion(1) Displayposition(2) Height(20) Left(8) Parent(#Details)
Tabposition(2) Top(24)

Define_Com Class(#GIVENAME.Visual) Name(#GIVENAME)
Componentversion(1) Displayposition(3) Height(20) Left(8) Parent(#Details)
Tabposition(3) Top(48)

Define_Com Class(#ADDRESS1.Visual) Name(# ADDRESS1)
Componentversion(1) Displayposition(1) Height(20) Left(8) Parent(#Address)
Tabposition(1) Width(300)

Define_Com Class(#ADDRESS2.Visual) Name(# ADDRESS?2)
Componentversion(1) Displayposition(2) Height(20) Left(8) Parent(#Address)
Tabposition(2) Top(24) Usepicklist(False) Width(300)

Define_Com Class(#ADDRESS3.Visual) Name(# ADDRESS3)
Componentversion(1) Displayposition(3) Height(20) Left(8) Parent(#Address)
Tabposition(3) Top(48) Width(300)

Define_Com Class(#POSTCODE.Visual) Name(#POSTCODE)
Componentversion(1) Displayposition(4) Height(20) Left(8) Parent(#Address)
Tabposition(4) Top(72) Usepicklist(False) Width(249)

Evtroutine Handling(#MoveToFront.Click)

If (#Details.DisplayPosition <> 1)

#Details.DisplayPosition := 1

#Details.enabled := True

#Address.enabled := False



#MoveToFront.Caption := "Show Address"
Else

#Address.DisplayPosition := 1
#Details.enabled := False
#Address.enabled := True
#MoveToFront.Caption := "Show Details"
Endif

Endroutine

End_Com



Mouse Events

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(306)
Clientwidth(462) Componentversion(1) Height(344) Left(103) Top(200)
Width(478)

Define_Com Class(#PRIM_Trvw) Name(#List) Columnbuttonheight(19)
Componentversion(2) Displayposition(1) Fullrowselect(True) Haslines(False)
Height(261) Keyboardpositioning(SortColumn) Left(8) Linesatroot(False)
Parent(#COM_OWNER) Tabposition(1) Top(40) Viewstyle(UnLevelled)
Width(444)

Define_Com Class(#PRIM_TVCL) Name(#TVCL_1) Displayposition(1)
Level(1) Parent(#List) Source(#EMPNQO) Width(27)

Define_Com Class(#PRIM_TVCL) Name(#TVCL_2) Displayposition(2)
Level(2) Parent(#List) Source(#SURNAME) Width(33)

Define_Com Class(#PRIM_TVCL) Name(#TVCL_3) Displayposition(3)
Level(3) Parent(#List) Source(#GIVENAME) Width(40)

Define_Com Class(#PRIM_SPBN) Name(#Delete) Caption('Delete")
Displayposition(2) Left(8) Parent(#COM_OWNER) Tabposition(2) Top(8)
Width(137)

Evtroutine Handling(#Com_owner.Createlnstance)

Case (#sys_appln.RenderStyle)

When (= DirectX)

#Com_owner.Caption := "DirectX"

When (= Win32)

#Com_owner.Caption := "Win32"

Endcase

Select Fields(#List) From_File(pslmst)

Add_Entry To_List(#List)

Endselect

Endroutine

Evtroutine Handling(#Delete.Click)

If (#List.Currentltem *IsNot *null)

DIlt_Entry Number(#List.Currentltem.Entry) From_List(#List)

Endif

Endroutine

End_Com



Win32 & DirectX (ActiveX and Graphs)

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(574)
Clientwidth(965) Componentversion(1) Height(612) Left(112) Top(184)
Width(981)

Define_Com Class(#PRIM_PANL) Name(#Panel) Displayposition(1)
Height(481) Horizontalscroll(True) Left(80) Parent(#COM_OWNER)
Style(#Style_1) Tabposition(1) Tabstop(False) Top(56) Verticalscroll(True)
Width(793)

Define_Com Class(#VA_WEBCTL.WebBrowser) Name(#Browser)
Displayposition(1) Height(600) Left(0) Parent(#Panel) Tabposition(1) Top(0)
Width(775)

Define_Com Class(#PRIM_VS.Style) Name(#Style_1)
Backgroundbrush(#RadialBrush_1)

Define_Com Class(#PRIM_VS.BrushColors) Name(#BrushColors_1)
Define_Com Class(#PRIM_VS.BrushColor) Name(#BrushColor_1) At(25)
Color(255:255:255) Parent(#BrushColors_1)

Define_Com Class(#PRIM_VS.BrushColor) Name(#BrushColor_2) At(100)
Color(32:155:204) Parent(#BrushColors_1)

Define_Com Class(#PRIM_VS.RadialBrush) Name(#RadialBrush_1)
Colors(#BrushColors_1) Originleft(100) Origintop(100) Radiusleft(125)
Radiustop(125)

Evtroutine Handling(#Com_owner.Createlnstance)

Case (#sys_appln.RenderStyle)

When (= DirectX)

#Com_owner.Caption := "DirectX"

When (= Win32)

#Com_owner.Caption := "Win32"

Endcase

Endroutine

Evtroutine Handling(#Com_owner.initialize)

#Browser.Navigate( www.lansa.com )

Endroutine

End_Com



UpdateDisplay

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #PRIM_FORM) Clientheight(124)
Clientwidth(498) Componentversion(1) Height(162) Left(261) Top(195)
Width(514)

Define_Com Class(#PRIM_PGBR) Name(#ProgressBar) Displayposition(1)
Left(8) Maximumvalue(10000) Minimumvalue(0) Parent(#COM_OWNER)
Tabposition(1) Top(8) Value(1) Width(481)

Define_Com Class(#PRIM_PHBN) Name(#Start) Caption('Start (0)")
Displayposition(2) Height(41) Left(8) Parent(#COM_OWNER) Tabposition(2)
Top(72) Width(177)

Evtroutine Handling(#Com_owner.Createlnstance)

Case (#sys_appln.RenderStyle)

When (= DirectX)

#Com_owner.Caption := "DirectX"

When (= Win32)

#Com_owner.Caption := "Win32"

Endcase

Endroutine

Evtroutine Handling(#Start.Click)

#ProgressBar.value := 0

Begin_Loop To(10000)

#ProgressBar.value += 1

#Start.Caption := ("Start (&1)").Substitute( #ProgressBar.Value.Asstring )
End_Loop

Endroutine

End_Com



Ability to Consume .NET Components

Your LANSA programs can consume .NET UI and non-UI components:
e  Graphs

e  Buttons

e  Barcode scanners

e  Device specific interfaces

You register 3rd party .NET controls into the repository and then use the
exposed events, methods and properties in RDLMX.

For more information, refer to .NET Components in the Visual LANSA
Developer Guide.

Repository
B Repository
Mew x A )

Itemn i Description

4 i Active Partition (DEM)
® Fields

4 Files

* ™ Forms
= Functions
* 4% Processes
4 @ Resources
» o ActiveX
" ma Bitmaps
> [,} Cursors
4 External Resources
> Icons
* A& Multilingual Variables
+ B System Variables
4 Visual Styles
» met \MET Components
Reusable Parts
* " Business Objects
* ot Web
.} Organizers
+ B System Information


its:lansa013.chm::/Lansa/L4wDev07_0365.htm




WAMs for Mobiles

The jQuery Mobile TSP provides an enhanced HTML 5 solution for mobile
devices based on the jQuery Mobile touch optimized web framework.

jQuery Mobile is a unified, HTML5-based user interface system for all popular
mobile device platforms, built on a jQuery and jQuery UI foundation. Its
lightweight code is built with progressive enhancement, and it has a flexible,
easily themeable design.

The jQMobile Technology service is a wrapper around the JavaScript library
that allows it to work in the LANSA IDE with drag-and-droppable weblets that
are configured by editing properties.

You can create your mobile WAMs using a Wizard which creates sampler
applications and design outlines for a mobile app:



(5, Visual LANSA Application Wizards [
*.‘ Visual LANSA
« Start
Choose your page layout and drag and drop the controls below.
' Design your WAM J pag ye i
¥ Sampler Webroutine Name Web_Page_2
¥ WebPage 2
+ Heading 1 Webpage Title Web Page 2
« Text Block 2
' List View 3
+ <Lit Data> H1 H2 e Text... u <form>  TextLink H
w [mage 4 Heading Text Block Image Farm Elements Link List View
DX 9 9
Heading 1
Text Block 2
List View 3
Image 4
&2 Back B Nest % Cancel | 2 Finish |

Also see LANSA Web Mobile Application Wizard.



its:lansa087.chm::/Lansa/WAMEngm1_0110.htm

Internationalization with UNICODE
LANSA now provides full support for Unicode:

Database tables support UNICODE data type in columns.

The IDE now displays all multilingual text using Unicode, so you see all
text in all languages displayed as you will see it when it executes.

Full support of Unicode in RDMLX components and functions.
User interfaces — forms and WAMs — support Unicode.

WAMs output UTF-8 regardless of language in use.

Support of UTF-8 (CCSID 1208) on IBM i Other Files

Unicode string intrinsics ensure data integrity (AsNativeString and
AsUnicodeString).

Unicode field types Nchar and Nvarchar:

" Mew Field Iﬁ
Mame Mame Tzt
Description Mame —

[Field Type NChar |

Field Length 10 = || Open in editor
Decimals . (¥ Close

Reference Field

Identifier MAME

The introduction of Unicode has resulted in some changes to the Built-In
Function Rules. To see the changes refer to Built-in Function Rules in the
Technical Reference.


its:lansa015.chm::/Lansa/BIF_RULES.htm

Version Control System Support

Visual LANSA now supports using a Version Control System as a Master
Repository instead of an IBM i as the Master. This system configuration is
called VCS Master.

SELECTED SCENARIO

i \

Version Control System
4
Master
h i
) ( I INSTALLS
Developer PC Developer PC | HERE
Dreveloper PC . B p—
YECRL S,
Components SN 3
s A
\ J

Each Developer is “sandboxed” so that they do not interfere with other
developers' work until it is checked in to the VCS. Any VCS can be used but it
is essential that in-depth knowledge of the VCS is acquired.

VCS Master is designed to be used by Windows developers who have prior
knowledge of using a VCS. As such it can be likened to using a VCS with any
other Windows development environment, like Visual Studio.

All Version Control features such as branching, merging, comparing source,
labeling, etc. provide better control of your source code — but they require a
good deal of planning and discipline to make them work.

The VCS controls access to the source code, so LANSA task tracking and
LANSA security are ignored and source code audit stamps are not available.

Refer to LANSA guides for more details.



Deployment

LANSA applications are now packaged as standard Microsoft Installer (MSI)
packages for deployment:

| APP1_Client_en-us.msi
Type: Windows Installer Package

MSI integrates with SCCM (install management software), has better support
for multiple language installations and is more configurable which has allowed
version updating to be more targeted.

For more information, refer to What's New in the Deployment Tool.


its:lansa022.chm::/Lansa/l4wdplb1_0005.htm

Long Names

: rd : :
Long names have been introduced to enable 3~ party integration and
descriptive names.

Several different LANSA object types can be referred to in RDMLX partitions
by a name that is longer than the traditional ten characters. These object types
are:

e Fields

e Files

e Logical views

e VL Components
®  Processes

e  Functions

e WAMs

Long names can only be given to these LANSA objects in Visual LANSA.
The use of long names is an RDMLX partition-level setting:

Partition definition = Language Settings | Frameworks | Groups

* g |Description

* @ Task Tracking

4 @y RDMLY Settings
Enable Partition For Full RDMLX

I Enabled For Long Mames

Create Field As RDMLX
Create File As RDMLX
Create Component As Full RDMLX
Create Function As Full RDMLX
Enable Short Char Disable

* g Available Field Types
* g Universal Interface Options
* @ Supported Database Products



RDMLX Enhancements

A number of enhancements have been made to RDMLX:

New intrinsics and primitives

New language commands (GET/SET)
32K lines of code — limited by compiler
Recursive Stack raised from 50 to 250
Constructors for an instance

*NEW operator for inline construction

Assign Category for your own methods.



Windows Centric Development

e  Housekeeping and Administration tasks such as impact analysis are
available with equivalent functionality in Visual LANSA:

[] New List [é]
Mame Impact List 2 Create
Type Impact M Cancel
Stored As Repository List .
Is Favorite
Identifier oL

See Impact Analysis.

e  The use of Identity columns in tables removes the requirement for RPTH
files.

e  Post-mortem Debugging has been enhanced: LANSA executables now
automatically produce a dump file if an unhandled exception such as an
access violation occurs. This shortens the turnaround time for resolving these
rare issues and makes it much easier to capture the program state with hard to
reproduce issues.

e  Version information, such as product name, product and file version and
copyright, can be included in LANSA objects when they are compiled. This
information is visible in the DLL's properties:



-

& df_prm02.dll Properties

| General I Sea.u'rt}r| Details | Previous Versions

Property Walue
Description
File descrption  DF_PRM0Z
Type Application extension
File wersion 3000

Product name ApplicationA
Product version  1.2.0.0

Copyright LANSA

Size 355 KB

Date modified 271072012 6:41 PM
Language English {United States)

Legal trademarkks TM
Criginal flename DF_PRMOIZ.DLL

Remove Properties and Personal Information

ok J[ Cancel [

Lpply




Impact Analysis

Impact lists allow you to find objects that relate to a specific object so that you

can assess the impact of a planned change.

x| Qualified Object Description Processing Job Start Time Job End time
2 - Completed  ImpactlstSearchMylist  SearchEnded -Found87Results 8/05/2012 12:30:42PM  8[05/2012 12:30:53PM
8 X ¥ DF_ELDATX Standard ROMLY date
% FP_EIDN Standard Identifier
¥ % FP_ENUM Standard Number
¥ KATETEXT Standard TEXT
(=] % STD_ALPHA Standard alpha field
¥ STD_AMNT Standard AMOUNT
X % STD_BIN Standard Binary field
; * STD_BOOL Standard Boolean
=] ¥ STD_CENT Standard CENTURY
% STD_CHKBX Standard check box
: ¥ STD_CMPAR Standard comparison GTfE...
o) ¥ STD_CODE Standard CODE
i *_STN._COne Standard CONF | OMG
(1) Assistant | &b Impact Analysis (@) Web Designs

m_ s

Using the List Type Impact, you can select the objects you wish to be included
in the list, and then, for each object type, you can specify a specific or common
filter to narrow your selection.

For example, a common filter could be to search for a full or partial name. A
specific filter could include, for each field in the object, the operators Like with
or without the asterisk (*) wildcard, Equal to, Greater than, Less than, Less
than or equal to as shown here:

e N T e e B e T ey s nyeevien ml s ||| Definition
I . ¢

Type Equal to v -

Field Length Equal to v ;' Definition

Decimals Equal to = Identifier oL37
Dbl Vol ey » MName MyList
Reference Field Equal to X = = ﬁm;:;;m

Field Label Equal to - | Object Types

Heading 1 Equal to v _ ﬂ; Files

Heading 2 Equal to ” y Filters

Heading 3 Equal to -

Edit code Equal to v %

Edit Word Equal to -

Keyboard Shift Equal to v ¥

Input Attributes Equal to v 5

Output Attributes Equal to - il

Your list can be saved as a Static list or as an Excel file enabling you to re-use it
again at a later time.



Run an Impact List
To run the impact list, click on the “Run” button in the impact list toolbar.
Clicking on the “Run” button will also save the impact list.

Review the results

The results will be displayed in the Impact Analysis output view.

x| Qualified Object Description Processing Job Start Time Job End time

2 - Completed ImpactlstSearchMylist  SearchEnded -Found87Results 8/05/2012 12:30:42PM  8f05/2012 12:30:53PM | ¢
! X 1% DF_ELDATX Standard ROMLX date
: Y FP_EIDN Standard Identifier
X % FP_ENUM Standard Number
: ¥ KATETEXT Standard TEXT
3 © % STD_ALPHA Standard alpha field
: ¥ STD_AMNT Standard AMOUNT
X % STD_BIN Standard Binary field
= . ¥ STD_BOOL Standard Boolean

= * STD_CENT Standard CENTURY

% STD_CHKBX Standard check box

: ® STD_CMPAR Standard comparison GTE...
] % STD_CODE Standard CODE

B W_STN COnE Standard CODE |OKEG

i) Assistant | b Impact Analysis | (@) Web Designs

Export

In the output view, click on the job heading. You will then be able to export the
list of objects produced by the impact analysis.

a. Export to Excel

With the job heading selected, click on the export to Excel icon. The list
of LANSA objects will be exported to a CSV file.

b. Export to a Static List

With the job heading selected, click on the Export as Static List option. A
dialog will open where you can choose the name and the type of list.



Change of Collection/Library on Import and Deployment

File library or collection can be changed on import and deployment to override
default behavior.

Rl C:\What's New'\Direct\, |£|EI-3—hJ

'i Source Partition - Unknown

Contents to import
4 V| User Objects
® Fields (7}
= Forms (3)
g Bitrnaps (37)
Al Multilingual Variables (82)
2 Visual Styles (1)
Reusable Parts (29)

| ¥

[ | Save As Repository List

[#| Override File Library To Partition Data Library Import Cancel

|| Remove Duplicate Long Names

By default OAMs are created in a sub-directory of the partition execute
directory, named after the partition default file library. For example, if the
partition default file library is DC@DEMOLIB in partition DEM, the OAM is
created in the directory X_DEM\DC@DEMOLIB\EXECUTE. If the file's
library is not the same as the Partition Default library, the Visual LANSA IDE
will put the OAM in the partition execute directory.

The default behaviour when deploying a File is to change the SQL Table and
OAM to use the partition default file library of the target partition.



File Enhancements

IBM i Other Files now support:

e Binary and Varbinary field types
e UTF-8 (CCSID 1208)

Boolean is supported as a repository field type.



Installation and Development

New installation and development features have been introduced to ensure ease
of use and developer productivity.

Supported Platforms

See Supported Versions at the LANSA Support website.

Upgrade Path
Any Version 12 system can be directly upgraded to Version 13.
Version 11(SP5) systems must first be upgraded to Version 12.

Note about Check-In and Check-Out

When you upgrade to Version 13, the repository state of all objects will be set to
Not Checked Out. This means that before upgrading all changes to objects in all
partitions must be checked into the IBM i.

After the upgrade, when an object is checked out to a PC, it is locked out and no
other PC can modify it. If you do not want to lock the object, check it out as
read-only. Both the Visual LANSA Editor and the IBM i have an unlock option
which you can use to allow another developer to access an object.

Open

. Compile
Execute
Debug [

) 4

Delete from Repository
Find

Quick Export

CheckIn

Check Out

Check Qut Readonly L}
Unlock

Bi:- ﬂm[]

Copy
Copy Mame

Properties

i %

Cross References
Security Settings

Ev

| Features


http://www.lansa.com/support/supportedversions.htm

Visual LANSA Framework

Version 13 Features

This version of the Framework utilizes and showcases the new features in
LANSA Version 13, including the DirectX user interface.

Customized Quick Finds

The Quick Find box is a dialog that appears on the top right of the VLF
window.

The current behaviour is to search a list of all business object captions. This
can now be overridden so that the user searches a list of values that you
control.

And when the user selects one of your values, you control what happens.
Typically this would be a switch to a business object, or to an instance list
entry in a business object, or a command handler for a business object.

If necessary you can also signal that the list of searched values should be
rebuilt.

Button To Switch Between Monitors

A button has been added to allow users with multiple monitors to switch to
the other monitor. The button is located on the bottom left of the Framework
window.

Automatic Command Handler Float Feature

A new feature is available for frameworks where the user needs to see a full
size instance list and a full size command handler at the same time.

The feature makes the command handlers automatically float off to a separate
window when an instance list is clicked, or double-clicked.

If the user has two monitors, the command handlers can be made to
automatically float to the other monitor.

This leaves a full size instance list in the original window and allows the user
to resize their command handler window.

Popup Panel Hints for Instance Lists

If the framework is running in Direct-X mode, it is now possible to show a
popup panel when the user hovers over an instance list entry. This panel can
be used to give the user a quick overview of the item without opening any of



the command handlers for that item.

The end-user is able to disable the feature by right mouse clicking on the
instance list, if popups are not required.

Small VLF-WIN Improvements

When a user clicks on a cluster item in a tree view instance list, the Visual
ID1 and Visual ID2 are available. Previously, only the items identifying keys
were available.

When blank values are added to date instance list columns, the blank is
displayed rather than the value of the previous instance list entry.

Improved sort order of business objects when a user selects a command that
applies to multiple business objects.



LANSA Integrator

Version 13 LANSA Integrator enhancements include:

e  Support of LANSA long field names

e  Support of BLOB/CLOB support

e  Support of Unicode fields

e JSONBindFileService which allows the reading and writing of JSON files

e  Support of implicit and explicit SSL/TLS connection to SMTP and POP3
services



	What's New in LANSA Version 13 SP2?
	Web Application Module Enhancements
	jQuery Mobile WAM Enhancements
	Easier to Design jQuery Mobile WAMs 
	New jQuery Mobile Weblets
	Other improvements to jQuery Mobile
	Support for File Uploads to a Webroutine 
	New XHTML Weblets
	Upgraded Third-Party Libraries
	WAM Editor Enhancements
	Windows 64-bit Support
	When Should Windows 64-bit Support be Enabled?
	Installation Considerations
	Programming Considerations
	32-bit and 64-bit Applications Accessing the Same Database
	Notable Environmental Differences
	IBM i User Profile Handling
	SuperServer Enhancements
	IDE Enhancements for IBM i Administrators
	New Check-In Features
	Refresh Selected Objects
	What's New in LANSA Version 13 SP1?
	Table Layouts 
	DirectX Styles 
	QuickAccess Toolbar
	Status Bar 
	User-Designed Controls
	CRUD Wizard
	New Images and Styles
	POST in JSON Format
	vf_wamevent
	Undo/Redo
	MSI Deployment
	What's New in LANSA Version 13?
	Licensing
	Microsoft DirectX User Interface
	DirectX Demonstration Application
	New Visual LANSA IDE
	Dynamic Styles
	MouseOverStyles
	Brushes
	Linear Brush
	Radial Brush
	Solid Brush
	Image Brush
	Visual Brush
	User-Designed Controls
	Tile (Prim_Tile)
	Tree (Prim_Tree)
	Carousel
	Book
	Table Layout
	Popup Panel (Prim_PPNL)
	Scaling
	Taskbar Integration
	Animations
	Transitions
	Control Animations
	Adopting DirectX
	Adopting DirectX Rendering
	Enabling for DirectX
	Strategies
	Test, Test, Test
	DirectX Changes
	Default Appearance
	Transparency and Opacity
	Routed Events
	Mouse Events
	Visual Styles
	True Type Fonts
	Win32 & DirectX (ActiveX and Graphs)
	UpdateDisplay
	Samples Source
	Default Appearance
	Transparency and Opacity
	Mouse Events
	Win32 & DirectX (ActiveX and Graphs)
	UpdateDisplay
	Ability to Consume .NET Components
	WAMs for Mobiles
	Internationalization with UNICODE
	Version Control System Support
	Deployment
	Long Names
	RDMLX Enhancements
	Windows Centric Development
	Impact Analysis
	Change of Collection/Library on Import and Deployment
	File Enhancements
	Installation and Development
	Visual LANSA Framework
	LANSA Integrator

