
Inno	Setup	Preprocessor
Inno	Setup	Preprocessor	(ISPP)	is	an	preprocessor	add-on	for	Inno
Setup.	ISPP	does	not	depend	on	any	particular	version	of	these
products.	The	only	requirement	is	that	version	must	be	1.3	or	higher.

Inno	Setup	Preprocessor	works	at	compile-time.	It	has	nothing	to	do
with	the	behaviour	of	setups.

The	main	purpose	of	ISPP	is	to	automate	some	pre	or	post	compilation
tasks	and	decrease	the	probability	of	typos	in	your	scripts.	For
example,	you	can	declare	ISPP	variable	(compile-time	variable)	–	your
application	name,	for	instance	–	and	then	use	its	value	in	several
places	of	your	script.	If	for	some	reason	you	need	to	change	the	name
of	your	application,	you'll	have	to	change	it	only	once	in	your	script.
Without	ISPP,	you	would	probably	need	to	change	all	occurences	of
your	application	name	throughout	the	script	(AppName,	AppVerName,
DefaultGroupName	etc.	[Setup]	section	directives).

Another	example	of	using	ISPP	would	be	gathering	version	information
from	your	application	by	reading	the	version	info	of	an	EXE	file,	and
using	it	in	AppVerName	[Setup]	section	directive	or	anywhere	else	(for
example,	in	[Code]	section).	Without	ISPP,	you	would	have	to	modify
your	script	each	time	version	of	your	application	changes.

Conditional	compilation	(inclusion	of	parts	of	the	script)	is	possible	with
ISPP,	therefore,	you	can	maintain	only	one	script	for	different
versions/levels	of	your	installation	packages	(trial	and	fully	functional,
lite	and	enterpise,	etc.).

Topics	in	this	section

Documentation	conventions
Directives
Visibility	of	identifiers
User	defined	macros
Expressions
Built-in	functions
Predefined	and	internally	defined	variables
BUILTINS.ISS	file

ms-its:isetup.chm::/topic_setupsection.htm
ms-its:isetup.chm::/topic_setupsection.htm
ms-its:isetup.chm::/topic_scriptcreating.htm

Extended	Command	Line	Compiler

Documentation	conventions

Directive	syntax	documenting	conventions
Directive	usage	syntax	in	this	reference	material	uses	the	following
conventions.

() Group	of	tokens.
[] Optional	token	or	group	of	tokens.
| Mutually	exclusive	tokens.
... Previous	token	or	group	of	tokens	can	be	repeated.
token Reserved	word	or	symbol(s).	Must	be	typed	exactly	as

shown.
<token> Non-terminal.	Its	syntax	is	either	shown	before,	or

explained.

Built-in	functions	prototypes	documenting	conventions
Built-in	functions	prototypes	are	shown	as	function	result	type,	function
name	and	list	of	formal	arguments	in	parentheses.	If	function	has	one
argument,	only	the	type	of	the	argument	is	mentioned.	Otherwise	after
the	type	of	the	argument	follows	an	integer	number	for	referencing	this
parameter	later	in	the	description	of	the	function.

Words	int,	str,	any,	and	void	are	used	to	specify	integer	type,
string	type,	any	type,	or	null	type	(also	referred	to	as	nothing,	void),
respectively.	Null	type	as	function	result	means	that	function	does	not
return	any	value.

Question	mark	(?)	after	the	type	of	an	argument	means	that	this
argument	is	optional.

Directives
In	ISPP	directives	can	be	used	in	two	ways:	simple	(standard),	or	inline.

Simple	directives	occupy	a	whole	line	and	must	begin	with	#	symbol.	A
whitespace	is	allowed	before	and	after	that	symbol.	The	name	of	the
directive	follows.

Inline	directives	can	appear	inside	the	text	line.	They	must	begin	and
end	with	defined	tokens.	Those	tokens	are	contolled	via	pragma
directive.	By	default	{#	and	}	are	assumed	as	starting	and	terminating
tokens,	respectively.

Please	note	that	conditional	blocks	cannot	be	mixed,	i.	e.	a	conditional
block	can't	be	started	by	inline	directive	and	finished	by	simple	one,	and
vice	versa.

See	also
Documentation	conventions.

Topics	in	this	section

define	directive
dim	directive
undef	directive
include	directive
file	directive
emit	directive
expr	directive
insert	directive
append	directive
if,	elif,	else	and	endif	directives
ifdef,	ifndef,	ifexsist,	ifnexist	directives
for	directive
sub,	endsub	directives
pragma	directive
error	directive

Visibility	of	identifiers
Variable	(as	well	as	macro)	declarations	can	be	defined	as	"public,"
"protected,"	or	"private."	To	define	a	specifically	public,	protected,	or
private	variable,	its	name	in	define	directive	should	be	prepended
with	one	of	the	keywords	(visibility	resolution	clauses):

#define	public	MyVar	12

#define	protected	MyVar	13

#define	private	MyVar	14

In	the	example	above,	none	of	the	last	two	declarations	undefine	any	of
the	previous,	though	they	share	the	same	identifier	(MyVar).	This	is
because	they	are	declared	in	different	visibilities.

Hereinafter	in	this	topic,	"variables"	also	refers	to	macros	as	well.

Public	variables	are	ordinary	variables	as	they	used	to	be	in	previous
versions	of	ISPP.	They	are	accessible	(unless	any	protected	or	private
identifiers	override	them,	see	below)	from	anywhere	after	the	point	they
are	declared.

Protected	variables	are	accessible	only	in	the	file	they	are	declared	in
(declaration	file)	and	in	files	included	by	declaration	file	via	include	or
file	directives.	They	can	be	said	(with	some	reserves)	that	they	are
public	variables	which	are	automatically	undefined	once	the	declaration
file	has	finished.

Private	variables	are	accessible	only	in	the	file	they	are	declared	in.
They	are	not	propagated	to	any	other	file,	be	it	included	or	"parent"	file.

Since	ISPP	does	not	have	semantics	of	pushing	and	popping	variable
value,	visibility	resolution	can	be	useful.

Note	that	you	cannot	explicity	refer	to	a	variable	in	a	specific	visibility
from	expressions.	Given	the	example	above,	if	MyVar	is	mentioned	in
expression	in	declaration	file,	its	identifier	refers	to	private	MyVar.	If	it	is
mentioned	in	included	file,	it	refers	to	protected	MyVar.	If	it	is
mentioned	in	one	of	the	files	above	the	declaration	file	on	the	include
stack	(i.	e.	one	of	the	files	from	which	a	chain	of	include	directives

resulted	in	processing	the	declaration	file),	it	refers	to	public	MyVar.

Also	note,	that	if	we'd	swap	last	two	declarations	from	the	above
example,	private	MyVar	would	become	inaccessible	(until	protected	is
undefined)	because	protected	would	be	declared	after	it	and,	therefore,
as	in	any	programming	language	would	take	precedence.	But	it
wouldn't	undefine	its	private	counterpart.

Each	file	can	set	a	default	visibility,	the	visibility	that	will	be	used	when
no	resolution	clause	is	specified	in	variable	declaration.	This	can	be
done	using	define	directive.

#define	protected

sets	protected	visibility	by	default.

The	default	visibility	isn't	used	when	evaluating	expressions,	it	is	only
used	when	a	variable	is	defined	or	undefined	without	explicity
specifying	its	visibility.	When	default	visibility	is	not	set,	public	is
assumed	by	default.	Note,	that	setting	default	visibility	is	not
propagated	on	included	or	parent	files.

In	macro	expressions,	avoid	using	identifiers	of	lower	visibility	than	the
one	macro	is	declared	in.	This	may	cause	"Undeclared	identifier"	errors
if	macro	is	called	from	another	file.

It	is	recommended	that	you	use	appropriate	visibility	when	declaring
variables	to	avoid	problems	with	unexpected	redefinition	of	a	variable
(for	example	in	included	third-party	file).	If	no	included	files	depend	on	a
variable,	declare	it	as	private.	If	they	do,	but	parent	file	doesn't,	declare
it	as	protected.	Declare	it	as	public	otherwise.	If	you're	unsure,	then
protected	visibility	is	the	common	case.

User	defined	macros
You	also	can	define	so	called	"macros"	in	your	scripts.	Those	macros
can	be	said	"user	defined	functions."	ISPP	doesn't	treat	macros	the	way
standard	(C	or	C++)	preprocessor	does.	Please	do	not	try	to	use	C
macros	in	ISS	scripts.

Macro	declaration	consists	of	formal	parameter	list	and	expression.
That	expression	is	evaluated	when	macro	is	called	(see	below).	The
result	of	the	macro	call	is	the	result	of	the	macro	expression.	Macro
expression	can	contain	parameter	names,	they	are	treated	as	usual
variables.

The	formal	syntax	of	macro	declaration	is	provided	in	define.

Please	note	that	there	must	be	no	space	between	macro	name	and
opening	parenthesis.

Actual	parameters	for	parameters	declared	as	by-reference	must	be
modifiable	l-values	(in	other	words,	other	defined	variables	or
expressions	that	evaluate	to	l-values).	If	macro	expression	modifies	by-
reference	parameter,	the	variable	that	is	passed	as	this	parameter	gets
modified.	By-value	parameters	can	also	be	modified	by	macro
expression	(using	assignment	operators),	but	this	modification	doesn't
affect	the	value	of	a	variable	which	could	be	passed	as	this	parameter.

Though	macro	can	only	contain	one	expression,	it	can	be	used	as	full
featured	user	defined	function,	because	ISPP	supports	sequential
evaluation	operator	(comma),	assignment	operators	(simple	and
compound)	and	conditional	operator	(?:).

See	also
Macros'	Local	array.

Topics	in	this	section

Macros'	Local	array

Expressions
ISPP	uses	C/C++-like	expression	syntax.	It	supports	simple	and
compound	assignment	operators,	conditional	operator,	and	sequential
evaluation	operator.	Although	ISPP	is	an	interpreter,	it	does	support
short	circuit	boolean	evaluation	and	never	evaluates	expressions
(therefore,	never	calls	macros	mentioned	in	those	expressions)	that
should	not	be	evaluated	due	to	specific	rules	(for	example,	when
conditional	operator	is	used,	always	only	2	out	of	3	operands	are
evaluated).

The	list	of	operators	and	their	meaning	can	be	found	at
http://msdn.microsoft.com .

http://msdn.microsoft.com

Differences	between	C	and	ISPP	expression	syntax
ISPP	does	not	support	a	number	of	operators	(reference,
dereference,	namespace	resolution,	member	selection,	etc.).

ISPP	treats	an	identifier	and	the	equality	sign	as	a	name	of	an
argument,	if	it	is	used	in	argument	list.

Arithmetic	division	operator	(slash)	performs	integer	division,	since
ISPP	does	not	support	floating	point	math.

ISPP	does	not	check	for	validity	of	expressions	is	certain	cases.
For	example,	in	conditional	expression,	"true"	operand	can	be	of
string	type,	whereas	"false"	operand	can	be	of	integer	type.	This	is
unacceptable	by	compiler,	but	is	allowed	in	interpreter.	However,	it
is	not	recommended	to	compose	such	expressions.

String	literals	can	be	quoted	by	both	single	and	double	quotes	(in
both	modes	–	C-style	or	Pascal-style).	If	a	literal	begins	with	a
single	quote,	it	must	also	end	with	a	single	quote.	Double	quotes
may	be	used	in	single	quoted	string	without	any	escaping,	and	vice
versa.	Within	a	string	the	character	used	to	quote	the	string	must
be	escaped	(the	manner	depends	on	current	state	of	"Pascal-style
string	literals"	parser	option).

Data	types
There	are	three	types	in	ISPP:	void,	integer,	and	string.	Variable	of	void
type	is	declared	by	just	specifying	its	name	after	define	directive
without	any	value.	Such	variables	should	be	used	with	ifdef	directive
or	Defined	function.

If	"allow	undeclared	identifiers"	parser	option	is	off	(the	default	state,
see	pragma),	an	error	is	raised	when	undefined	variable	is	mentioned.
Otherwise,	it	will	be	treated	as	a	value	of	type	void.

Void	is	compatible	with	integer	and	string	in	expressions.	For	example,
you	can	use	addition	operator	with	void	and	integer	operands,	in	this
case	void	operand	will	be	treated	as	zero.	In	conjunction	with	string,
void	operand	is	treated	as	an	empty	string.

Comments
Comments	may	be	embedded	in	expression	by	using	a	slash	and	an
asterisk.	For	example:

#emit	Var1	/*	this	is	a	comment	*/	+	Var2	/*	this	is

a	comment	*/

Also	one	line	comments	are	supported.	Those	comments	must	begin
with	a	semicolon.	Whole	text	after	the	semicolon	up	to	the	end	of	a	line
is	considered	comment.

#emit	Var1	+	Var2	;	this	is	a	comment

Please	note	that	line	spanning	feature	is	triggered	before	any	further
processing,	thus	a	comment	may	occupy	more	than	one	line:

#emit	Var1	+	Var2	;	this	is	\

		a	comment

Extended	macro	call	syntax
In	ISPP	it	is	possible	to	use	named	arguments	when	calling	user
defined	macro.	Given	the	declaration:

#define	MyMacro(int	A	=	2,	int	B	=	2)	A	+	B

This	macro	can	be	called	specifying	argument	names:

#emit	MyMacro(A	=	5,	B	=	10)

#emit	MyMacro(B	=	3)

#emit	MyMacro(B	=	10,	A	=	5)

If	a	name	is	specified	for	one	argument,	then	all	(required)
arguments	in	the	list	must	also	be	named.

The	order	of	named	arguments	does	not	matter.

Because	of	this	extension,	an	assignment	expression	must	be
enclosed	in	parentheses,	if	not	using	extended	call	syntax,	to	avoid
ambiguity:

#emit	MyMacro((MyVar	=	5),	10)

In	the	above	example,	the	equality	sign	is	treated	as	a	direct
assignment	operator.

Although	built-in	functions	do	not	have	named	arguments,	it	is	still
required	to	enclose	assignment	expressions	in	parentheses	when
calling	those	functions.

By	standard	rule	comma	is	used	to	separate	actual	parameters.	If
you	need	to	use	sequential	evaluation	operator,	you	must	include
the	expression	in	paretheses:

#emit	MyMacro((SaveToFile("script.txt"),	5),	10)

In	the	above	example,	the	first	comma	is	treated	as	the	sequential
evaluation	operator,	whereas	the	second	one	as	the	argument
delimitter.

Built-in	functions
Built-in	functions	are	provided	by	ISPP	itself	and	are	always	available	in
scripts.	Unlike	macros,	built-in	functions	do	not	have	named	arguments,
therefore	alternative	call	syntax	(using	argument	names)	may	not	be
used.	Result	type	is	always	the	same	unless	mentioned	otherwise	(e.	g.
ReadReg	function).

See	also
Documentation	conventions.

Topics	in	this	section

Defined	function
TypeOf	function
GetFileVersion	function
GetStringFileInfo	function
Int	function
Str	function
FileExists	function
FileSize	function
ReadIni	function
WriteIni	function
ReadReg	function
Exec	function
Copy	function
Pos	function
RPos	function
Len	function
SaveToFile	function
Find	function
SetupSetting	function
SetSetupSetting	function
LowerCase	function
EntryCount	function
GetEnv	function
DeleteFile	function
CopyFile	function
FindFirst	function
FindNext	function
FindClose	function
FindGetFileName	function

FileOpen	function
FileRead	function
FileReset	function
FileEof	function
FileClose	function
GetDateTimeString	function

Predefined	and	internally	defined	variables
There	are	number	of	predefined	variables	in	ISPP	which	basically
supported	for	compatibility	with	other	preprocessors.	Predefined
variables	cannot	be	undefined	or	redefined.	Some	of	them	have	special
purpose	and	their	value	can	vary	depending	on	certain	circumstances.
Depending	on	the	nature	of	a	predefined	varialbe,	redefinition	(or
overriding)	of	it	can	produce	unpredictable	results.	It	is	not
recommended	to	do	so.

__COUNTER__ int.	Automatically	increments	each	time	it	is
used	(afterwards).

__FILE__ str.	Returns	name	of	the	current	file.	Empty
string	for	the	root	file.

__INCLUDE__ str.	Returns	current	include	path	(or	paths
delimitted	with	semicolons)	set	via	#pragma
include.

__LINE__ int.	Returns	number	of	a	line	in	the	current
file	(not	a	translation),	on	which	the	variable
is	used	(or	macro	that	uses	this	variable	is
called).

__OPT_X__ void.	Defined	if	specified	option	set	via
#pragma	option	-x+	is	in	effect.	In	place
of	"X"	may	be	any	letter	from	"A"	to	"Z."	Use
Defined	function	to	test	whether	the	variable
is	defined.

__PATHFILENAME__ str.	Similar	to	__FILE__	but,	returns	full
pathname	of	the	file.	Empty	string	for	the	root
file.

__POPT_X__ void.	Defined	if	specified	parser	option	set
via	#pragma	parseroption	-x+	is	in
effect.	In	place	of	"X"	may	be	any	letter	from
"A"	to	"Z."	Use	Defined	function	to	test
whether	the	variable	is	defined.

__WIN32__ void.	Always	defined.
ISPP_INVOKED void.	Always	defined.
PREPROCVER int.	Returns	32-bit	encoded	version	of	ISPP.

Highest	byte	holds	major	version,	lowest	byte

holds	the	build	number.
WINDOWS void.	Always	defined.

Internally	ISPP	defines	some	special	variables.	These	variables	are
usual	public	variables	with	the	only	difference	that	their	declaration	is
handled	by	ISPP	automatically.	You	can	redefine	or	undefine	them.

CompilerPath str.	Points	to	a	directory	where	the	compiler	is
located.

SourcePath str.	Points	to	a	directory	where	the	current	script
is	located,	or	the	current	directory	if	the	script	has
not	yet	been	saved.

Ver int.	Returns	32-bit	encoded	version	of	Inno	Setup
compiler.	Highest	byte	holds	major	version,	lowest
byte	usually	holds	zero.

BUILTINS.ISS	file
The	BUILTINS.ISS	file	is	accompanying	the	Inno	Setup	Preprocessor.	It
is	automatically	included,	if	it	exists	in	the	compiler	directory,	as	if	the
very	first	line	of	your	script	contained	include	directive.	This	file
contains	common	declarations,	such	as	special	constants	for	using	with
some	built-in	functions,	and	some	useful	macros.	The	file	is	a	regular
Inno	Setup	Script	file	but	mostly	contains	only	ISPP	directives.

To	learn	more	about	the	functionality	provided	by	this	file	please	open	it
with	the	Inno	Setup	Compiler,	it	is	well	commented.

Extended	Command	Line	Compiler
Inno	Setup	Preprocessor	replaces	the	standard	Inno	Setup	Command
Line	Compiler	(ISCC.exe)	by	an	extended	version.	This	extended
version	provides	extra	parameters	to	control	Inno	Setup	Preprocessor.

Usage:	iscc	<script	name>	[options].	Or	to	read	from
standard	input:	iscc	-	[options].

Options	are	to	emulate	a	define	or	pragma	directive	are:

/d<name>[=<value>] Sets	#define	public	<name>
<value>

/$<letter>(+|-) Sets	#pragma	option	-<letter>
(+|-)

/p<letter>(+|-) Sets	#pragma	parseroption	-
<letter>(+|-)

/i<paths> Sets	#pragma	include	-<paths>
/s<string> Sets	#pragma	inlinestart	-

<string>

/e<string> Sets	#pragma	inlineend	-<string>
/v<number> Sets	#pragma	verboselevel	-

<number>

Other	valid	options	are:	"/O"	to	specify	an	output	path	(overriding	any
OutputDir	setting	in	the	script),	"/F"	to	specify	an	output	filename
(overriding	any	OutputBaseFilename	setting	in	the	script),	and	"/Q"	for
quiet	compile	(print	only	error	messages).

Example:	iscc	"c:\isetup\samples\my	script.iss"	/$c-
/pu+	"/dLic=Trial	Lic.txt"	/iC:\INC;D:\INC

ISCC	will	return	an	exit	code	of	0	if	the	compile	was	successful,	1	if	the
command	line	parameters	were	invalid	or	an	internal	error	occurred,	or
2	if	the	compile	failed.

pragma	directive

Syntax
pragma-directive: <pragma-option>

<pragma-itokens>
<pragma-msg>
<pragma-verblev>
<pragma-include>
<pragma-spansymb>

pragma-option: pragma	(option	|	parseroption)	-	<letter>	(+	|	-)	[-
<letter>	(+	|	-)]...

pramga-itokens: pragma	(inlinestart	|	inlineend)	<expr>

pragma-msg: pragma	(message	|	warning	|	error)	<expr>

pragma-verblev: pragma	verboselevel	<expr>

pragma-include: pragma	include	<expr>

pragma-spansymb: pragma	spansymbol	<expr>

Description
pragma	is	a	special	directive.	Please	note	that	if	ISPP	fails	to	parse
parameters	of	this	directive	(because	of	typo	or	wrong	sytax),	no	error
will	occur	–	only	a	warning	will	be	issued;	this	is	done	for	compatibility
with	other	preprocessors,	which	can	have	their	own	sytax	of	pragma
directive.

First	syntax	of	pragma	directive	controls	the	options,	which	ISPP	uses
to	read	the	source.	There	are	two	groups	of	options.	Each	group
consists	of	26	flags	(not	all	of	them	are	meaningfull	and	used	by	ISPP,
though).	Each	flag	has	an	assigned	latin	letter.	You	specify	options	by
typing	group	name	(option	or	parseroption),	then	the	letter
following	the	dash.	After	a	letter	a	plus	or	minus	sign	shall	be	specified.
Plus	sign	to	turn	the	option	on,	minus	to	turn	it	off.	Unrestricted	number
of	options	can	be	specified	at	once	(see	syntax).	The	list	of	options	is
provided	at	the	end	of	this	topic.

First	group	of	options	(option)	controls	the	options	of	the	whole	ISPP
engine,	while	second	group	(parseroption)	controls	options	specific
to	parser.	The	list	of	options	is	provided	at	the	end	of	this	topic.

Second	syntax	is	used	to	specify	inline	directive	terminators:	starting
and	ending,	respectively.	After	the	token	description	keyword
(inlinestart	or	inlineend)	a	string	type	expression	must	follow.	It
must	not	evaluate	to	an	empty	string.	Only	first	seven	symbols	from	the
string	are	taken.	It	is	allowed	to	specify	the	same	token	for	both	starting
and	ending	terminators.	By	default,	{#	(opening	brace	and	a	number
sign)	and	}	(closing	brace)	are	assumed.

Third	syntax	of	pragma	directive	issues	a	message	of	the	type
specified	by	the	keyword	following	the	directive	name.	Messages	and
warnings	are	sent	to	the	messages	window	of	the	compiler.	Errors	are
shown	(by	the	compiler)	using	message	boxes.	Expression	must	be	of
type	string.

Fourth	syntax	sets	the	level	of	verbosity.	When	the	verbose	mode	is	on
(see	below),	this	syntax	controls	the	level	of	importance	of	messages.

Least	important	messages	will	show	up	only	when	highest	verbose
level	(9)	is	set.

Fifth	syntax	sets	the	include	path.	Expression	may	specify	multiple
paths	delimitted	with	semicolons.	The	list	of	these	directories	is	used
when	ISPP	tries	to	find	a	file,	mentioned	in	include	directive.

The	last	syntax	sets	the	symbol	used	to	span	multiple	lines	together.
Expression	must	not	evaluate	to	an	empty	string.	Only	first	symbol	in
string	is	taken.

ISPP	options
c Indicates	that	the	translation	should	be	sent	to	the	compiler	after

preprocessing	is	done.	Default	state:	on.
e Specifies	whether	empty	lines	from	the	source	should	be	emitted

to	the	translation,	as	well	as	lines	with	ISPP	directives	should	be
replaced	with	empty	lines.	Default	state:	off.

v Turns	on/off	the	verbose	mode.	Default	state:	off.

Parser	options
b Short-circuit	boolean	evaluation.	Default	state:	on.
m Short-circuit	multiplication	evaluation.	(In	"0	*	A",	A	will	not	be

evaluated,	since	the	result	of	expression	is	known	to	be	zero.)
Default	state:	off.

p Pascal-style	string	literals.	In	off	state	uses	C-style	string	literals
(with	escape	sequences).	Default	state:	on.

u Allow	undeclared	identifiers.	If	an	undefined	identifier	is
encountered,	ISPP	will	raise	an	error	unless	this	option	is	turned
on,	in	which	case	a	standalone	identifier	(the	one	that	does	not
look	like	a	function	call)	will	be	considered	void	value.	Default
state:	off.

Examples
#pragma	parseroption	-b-	-u+

#pragma	option	-c-

#pragma	error	"Variable	value	is:	"	+	MyVar

#pragma	verboselevel	9

#pragma	inlinestart	"$("

#pragma	inlineend	")"

#pragma	include	__INCLUDE__	+	";D:\INCLUDE"

#pragma	spansymbol	"_"

define	directive

Syntax
define-directive: <default-visibility-set>

<variable-definition>
<macro-definition>

default-visibility-set: (define	|	:)	private	|	protected	|	public

variable-definition: (define	|	:)	[private	|	protected	|	public]
<ident>	[[<expr>]]	[[=]	<expr>]

macro-definition: (define	|	:)	[private	|	protected	|	public]	<ident>	(
[<formal-macro-args>])	<expr>

formal-macro-args: <formal-macro-arg>	[,	<formal-macro-arg>]...

formal-macro-arg: <by-val-arg>	|	<by-ref-arg>

by-val-arg: [<type-id>]	<ident>	[=	<expr>]

by-ref-arg: [<type-id>]	*	<ident>

type-id: any	|	int	|	str	|	func

Description
The	first	syntax	of	the	define	directive	sets	the	default	visibility	of
further	variable	and	macro	definitions	in	this	file.

If	no	visibility	declaration	occurs	in	a	file,	public	visibility	is	assumed	by
default.

The	second	syntax	defines	a	variable	named	ident,	or	assigns	a
value	to	an	element	of	an	array	named	ident.	If	none	of	the	public,
protected,	or	private	keywords	are	specified,	default	visibility	is
assumed	which	is	set	by	the	first	syntax	of	define	directive.

The	third	syntax	defines	a	macro	named	ident.	When	defining	a
macro	there	must	be	no	whitespace	between	macro	name	and	opening
parenthesis,	otherwise	it	will	be	treated	as	variable	declaration.

Examples
#define	MyAppName	"My	Program"	;	define	variable

#define	MyAppVer	GetFileVersion("MyProg.exe")	;

define	variable

#define	MyArray[0]	15	;	assign	a	value	to	an	array

element

#define	Multiply(int	A,	int	B	=	10)	A	*	B	;	define

macro

See	also
dim,	undef,	User	defined	macros,	Visibility	of	identifiers.

dim	directive

Syntax
dim-directive: dim	[private	|	protected	|	public]	<ident>	[<expr>]

Description
Declares	and	sets	dimension	of	an	array	variable.	All	elements	of	an
array	are	initialized	to	null	(void).	To	assign	a	value	to	an	element,	use
define	directive	specifying	array	index	in	square	brackets	after	array
idetifier.	It	is	also	possible	to	use	array	elements	as	the	left	operand	of
assignment	operators,	it	is	not	necessary	to	define	them	first.

If	the	default	visibility	(see	first	syntax	of	define)	differs	from	the	one
specified	in	dim	directive,	it	must	be	specified	in	define	as	well,	when
assigning	a	value	to	an	element.

Prior	to	using	array,	it	must	be	declared	with	this	directive.	You	cannot
apply	define	directive	on	an	element	of	an	array	that	has	not	been
defined	yet.

Examples
#dim	MyArray[10]	;	declare	an	array	of	10	elements

See	also
define,	undef,	Visibility	of	identifiers.

undef	directive

Syntax
undef-directive: (undef	|	x)	[private	|	protected	|	public]	<ident>

Description
Removes	variable	or	macro	from	the	list.	If	no	visibility	resolution	clause
(public,	protected,	or	private)	is	specified,	ISPP	first	tries	to
remove	private	(to	this	file)	variable,	if	there	is	no	private	(to	this	file)
variable	of	the	given	name,	it	will	try	to	remove	protected	and	so	on.
When	visibility	resolution	clause	is	specified,	only	the	variable	from	that
visibility	(in	case	of	protected	the	one	that	was	declared	earlier	and
closer	to	the	point	undef	was	used)	gets	deleted.

Examples
#undef	MyVar

#undef	MyMacro

#undef	public	MyVar

See	also
define,	dim,	Visibility	of	identifiers.

include	directive

Syntax
include-directive: (include	|	+)	<	<filename>	>

(include	|	+)	<expr>

Description
Includes	contents	of	the	file	preprocessing	it.

If	filename	is	enclosed	in	angle	brackets,	preprocessor	first	searches
for	the	file	in	the	directory	where	current	file	resides,	then	in	the
directory	where	the	file	that	included	current	file	resides,	and	so	on.	If
the	file	is	not	found,	it	is	searched	on	current	include	path,	set	via
pragma	includepath,	then	on	path	specified	by	INCLUDE
environment	variable.

If	filename	is	an	expression	(or	simply	specified	in	quotes),	it	is
searched	on	current	include	path	only.

This	directive	cannot	be	inline.

Examples
#include	<file.iss>

#include	"c:\dir\file.iss"

#include	AddBackslash(CompilerPath)	+	"common.iss"

See	also
file,	sub.

file	directive

Syntax
file-directive: file	<expr>

Description
Replaces	the	directive	with	the	name	of	a	temporary	file	containing
translation	of	the	specified	file.	Upon	end	of	compilation,	this	file	is
deleted.	Including	a	file	using	this	directive	creates	a	new	independent
instance	of	preprocessor	object,	passing	it	options	currently	in	effect
and	all	declared	identifiers.	Note	that	if	included	file	modifies	options	in
some	way,	they	are	not	propagated	back	to	current	preprocessor
object.

When	using	this	directive	in	the	Source	parameter	of	the	[Files]	section,
specify	DestName	–	temporary	file	name	does	not	match	the	original
name.

This	directive	can	be	only	inline.

Examples
[Setup]

LicenseFile={#file	"mylic.txt"}

See	also
include.

emit	directive

Syntax
emit-directive: (emit	|	=)	<expr>

Description
Replaces	the	directive	with	the	value	of	expr.

This	directive	is	likely	to	be	used	as	inline.	In	this	case,	its	name	can	be
omitted;	however,	if	an	expression	to	be	emitted	to	translation	begins
with	an	ambiguous	identifier	that	may	be	treated	as	directive	name,
emit	or	its	shorthand	symbol	(=)	must	be	specified.

Examples
[Files]

#emit	'Filename:	"file1.ext";	DestDir:	{'	+

MyDestDir	+	'}'

Filename:	"file2.ext";	DestDir:	{{#MyDestDir}}

#emit	GenerateVisualCppFilesEntries	;	user	defined

macro

[Code]

const

		AppName	=	'{#SetupSetting("AppName")}';

See	also
expr.

expr	directive

Syntax
expr-directive: (expr	|	!)	<expr>

Description
Evaluates	an	expression	ignoring	its	result.	This	directive	acts	like
emit	with	the	exception	that	it	doesn't	emit	anything	to	the	translation.

This	directive	is	intended	to	be	used	with	functions	that	produce	side
effects	and	do	not	return	any	significiant	value.

Examples
#expr	SaveToFile("preprocessed.iss"),

Exec("notepad.exe",	"preprocessed.iss")

See	also
emit.

insert	directive

Syntax
insert-directive: insert	<expr>

Description
Changes	the	insertion	point.	By	default,	each	line	is	processed	and
added	to	the	end	of	the	translation.	With	insert	directive	the	point	at
which	the	translated	line	is	added	to	the	translation	can	be	changed.
The	directive	takes	an	expression	that	must	evaluate	to	an	integer.	The
insertion	point	(specifically:	index	of	a	line	in	translation	before	which
subsequent	lines	will	be	inserted)	will	be	set	to	the	number	to	which
expression	evaluates.	All	lines	after	this	directive	will	be	inserted	at	that
insertion	point.	Insertion	point	is	automatically	incremented	each	time	a
line	is	added	to	the	translation,	so	that	each	line	is	inserted	after	the
one	previously	inserted.

It	is	not	recommended	to	use	script	generating	functions	(such	as
SetSetupSetting)	which	may	insert	a	line	by	themselves,	thus
shifting	a	part	of	the	traslation	one	line	down,	whereas	insertion	point	is
not	updated.	This	may	result	in	different	insertion	point	than	expected.

Find	built-in	function	can	be	used	to	produce	value	for	the	insert
directive.

Examples
#insert	FindSectionEnd("Icons")

#insert	FindSection("Setup")	+	1

#insert	Find(0,	"somefile.ext",	FIND_CONTAINS)

See	also
append.

append	directive

Syntax
append-directive: append

Description
Resets	the	insertion	point	(previously	set	by	insert	directive)	to	the
end	of	translation.	All	subsequent	lines	will	be	appended	to	existing
translation.

See	also
insert.

if,	elif,	else	and	endif	directives

Syntax
if-directive: if	<expr>

elif-directive: elif	<expr>

else-directive: else

endif-directive: endif

Description
The	if	directive,	with	the	elif,	else,	and	endif	directives,	controls
compilation	of	portions	of	a	source	file.	If	the	expression	you	write	(after
the	if)	has	a	nonzero	value,	the	line	group	immediately	following	the
if	directive	is	retained	in	the	translation	unit.

Each	if	directive	in	a	source	file	must	be	matched	by	a	closing	endif
directive.	Any	number	of	elif	directives	can	appear	between	the	if
and	endif	directives,	but	at	most	one	else	directive	is	allowed.	The
else	directive,	if	present,	must	be	the	last	directive	before	endif.

The	if,	elif,	else,	and	endif	directives	can	nest	in	the	text	portions
of	other	if	directives.	Each	nested	else,	elif,	or	endif	directive
belongs	to	the	closest	preceding	if	directive.

All	conditional-compilation	directives,	such	as	if	and	ifdef,	must	be
matched	with	closing	endif	directives	prior	to	the	end	of	file;
otherwise,	an	error	message	is	generated.	When	conditional-
compilation	directives	are	contained	in	include	files,	they	must	satisfy
the	same	conditions:	There	must	be	no	unmatched	conditional-
compilation	directives	at	the	end	of	the	include	file.

The	preprocessor	selects	one	of	the	given	occurrences	of	text	for
further	processing.	A	block	specified	in	text	can	be	any	sequence	of
text.	It	can	occupy	more	than	one	line.	Usually	text	is	program	text	that
has	meaning	to	the	compiler	or	the	preprocessor.

The	preprocessor	processes	the	selected	text	and	passes	it	to	the
compiler.	If	text	contains	preprocessor	directives,	the	preprocessor
carries	out	those	directives.	Only	text	blocks	selected	by	the
preprocessor	are	compiled.

The	preprocessor	selects	a	single	text	item	by	evaluating	the
expression	following	each	if	or	elif	directive	until	it	finds	a	true
(nonzero)	constant	expression.	It	selects	all	text	(including	other
preprocessor	directives)	up	to	its	associated	elif,	else,	or	endif.

If	all	occurrences	of	constant-expression	are	false,	or	if	no	elif

directives	appear,	the	preprocessor	selects	the	text	block	after	the
else	clause.	If	the	else	clause	is	omitted	and	all	instances	of
constant-expression	in	the	if	block	are	false,	no	text	block	is	selected.

Inline	conditional	directives	must	not	be	mixed	with	simple.	If	the	if
directive	is	simple	(it	occupies	one	line),	its	associated	directives
(elif,	else,	or	endif)	must	also	be	simple,	as	opposed	to	inline	(the
directives	that	are	embedded	in	text	lines).

Examples
#define	Lang

[Tasks]

#if	"English"	==	Lang	=

ReadIni(SetupSetting("MessagesFile"),	\

		"LangOptions",	"LanguageName")

		Description:	"For	all	users";	Name:	all

#elif	"German"	==	Lang

		Description:	"Fur	alle";	Name:	all

#else

#	error	Unsupported	language

#endif

ifdef,	ifndef,	ifexsist,	ifnexist	directives

Syntax
ifdef-directive: ifdef	<ident>

ifndef-directive: ifndef	<ident>

ifexist-directive: ifexist	<expr>

ifnexist-directive: ifnexist	<expr>

Description
You	can	use	the	ifdef,	ifndef,	ifexist,	and	ifnexist	directives
anywhere	if	can	be	used.	The	ifdef	identifier	statement	is
equivalent	to	if	1	when	identifier	has	been	defined,	and	it	is
equivalent	to	if	0	when	identifier	has	not	been	defined	or	has	been
undefined	with	the	undef	directive.	These	directives	check	only	for	the
presence	or	absence	of	identifiers	defined	with	define.

ifexist	and	ifnexist	directives	check	for	presence	and	absence	of
the	file,	respectively.

Examples
[Files]

#ifexist	"myfile.ext"

		Filename:	"myfile.ext";	DestDir:	{app}

#endif

#ifdef	Enterpise

		Filename:	"extra.dll";	DestDir:	{app}

#endif

See	also
FileExists	function

for	directive

Syntax
for-directive: for			{	<expr1>	;	<expr2>	;	<expr3>	}	<expr4>

Description
Use	for	directive	to	get	loop	behaviour.	for	takes	4	expressions,	each
of	which	has	its	own	purpose	and	term.	First	expression	(expr1)	is
called	"initialization	expression,"	second	expression	(expr2)	is	called
"condition,"	third	expression	(expr3)	is	"action,"	and	the	last	expresion
outside	braces	(expr4)	is	"loop	body."

The	logic	for	directive	follows	is:

		1.	The	initialization	expression	is	evaluated.

		2.	The	condition	is	evaluated.	If	it	evaluates	to	0,	the	loop	ends.

		3.	The	loop	body	is	evaluated.

		4.	The	action	is	evaluated.

		5.	Process	repeats	from	paragraph	2.

Examples
//	Call	AddFile	user	defined	procedure	200	times

#for	{i	=	200;	i	>	0;	i--}	AddFile

More	examples
FindFirst	function,	FileRead	function.

See	also
sub,	include.

sub,	endsub	directives

Syntax
sub-directive: sub	<ident>

endsub-directive: endsub

Description
sub	and	endsub	directives	are	used	to	declare	a	user	defined
procedure.	Procedure	is	a	closed	sequence	of	ISPP	directives	and/or
script	lines,	which	may	be	included	later	once	or	several	times.	As	of	its
logic,	a	user	defined	procedure	is	similar	to	an	external	file,	and	a	call
to	a	user	defined	procedure	is	similar	to	an	inclusion	of	an	external	file.

However,	procedures	can	be	called	from	within	expressions,	whereas
inclusion	of	a	file	requires	a	whole	directive	to	be	used.	Please	note,
that	it	is	strongly	not	recommended	to	call	procedures	that	emit	several
lines	to	translation	from	compound	expressions	or	directives.

A	procedure	is	called	by	simply	specifying	its	identifier,	with	which	it
was	declared.

A	procedure	is	not	processed	in	any	way	untill	it	is	called,	so	if	any
errors	exist	(invalid	directives,	syntax	errors)	in	the	body,	they	will	only
pop	up	when	the	procedure	is	called.

Examples
#sub	AddFile

		#if	Copy(FileName,	1,	1)	==	"A"

				Source:	{#FileName};	DestDir:	{app}\A

		#else

				Source:	{#FileName};	DestDir:	{app}

		#endif

#endsub

More	examples
FindFirst	function,	FileRead	function.

See	also
User	defined	macros,	if,	emit.

error	directive

Syntax
error-directive: error	<text>

Description
Directive	causes	Inno	Setup	compiler	to	issue	an	error	message	with
the	specified	text.	Unlike	pragma	error,	text	in	error	directive	is	not
parsed,	so	it	is	recommended	to	use	this	directive	instead	of	pragma
when	possible	to	avoid	possible	syntax	errors	that	may	hide	real	errors
your	script	is	trying	to	report.

Examples
#if	VER	<	0x04000000

		#error	A	more	recent	version	of	Inno	Setup	is

required	to	compile	this	script

#endif

See	also
pragma,	if.

Macros'	Local	array
In	context	of	macro	expression	additional	array	named	Local	is	valid.
Its	elements	can	be	used	for	temporary	storage	and	reusing	values	in
sequential	expressions.	This	array	belongs	to	one	context	of	macro
call,	that	means	that	values	stored	in	Local	array	are	neither
preserved	from	call	to	call	(including	recursive),	nor	are	they	accessible
from	anywhere	except	the	macro	expression.

#define	DeleteToFirstPeriod(str	*S)	/*	macro

declaration	*/	\

		Local[1]	=	Copy(S,	1,	(Local[0]	=	Pos(".",	S))	-

1),	\

		S	=	Copy(S,	Local[0]	+	1),	\

		Local[1]

Defined	function

Prototype
int	Defined(<ident>)

int	Defined	<ident>

Description
Special	function.	It	takes	an	identifier	as	opposed	to	an	expression.
Returns	non-zero	if	specified	identifier	is	defined	with	define	directive.

It	is	allowed	to	not	use	parentheses	with	this	function.

ReadReg	function

Prototype
any	ReadReg(int	1,	str	2,	str?	3,	any?	4)

Description
Reads	the	value	of	the	specified	key	in	system	registry.	First	parameter
is	the	root	key,	such	as	HKEY_LOCAL_MACHINE.	Constants	for	use
with	this	parameter	are	typically	declared	in	BUILTINS.ISS	file
accompanying	ISPP.	Second	parameter	specifies	a	subkey.	Third
parameter	specifies	the	name	of	the	value,	if	this	parameter	is	omitted,
a	default	value	is	assumed.	Last	optional	parameter	may	be	used	to
specify	the	default	value	that	will	be	returned	on	failure.

Note	that	this	function	can	return	value	of	any	type	depending	on	the
type	of	actual	value	in	registry.

TypeOf	function

Prototype
int	TypeOf(<ident>)

int	TypeOf	<ident>

Description
Special	function.	It	takes	an	identifier	as	opposed	to	an	expression.
Returns	one	of	predefined	values,	each	of	which	corresponds	to	a
particular	value	type	(void,	integer,	or	string),	if	an	identifier	is	a	variable
name,	or	identifier	type	(macro	or	function)	otherwise.	Values	that	this
function	returns	are	typically	declared	in	BUILTINS.ISS	file.

It	is	allowed	to	not	use	parentheses	with	this	function.

GetFileVersion	function

Prototype
str	GetFileVersion(str)

Description
GetFileVersion	function	takes	string	argument	which	must	be	set	to
the	name	of	the	file	whose	version	information	is	to	be	queried.	The
function	returns	string	composed	of	four	decimal	numbers	delimitted
with	periods.	If	file	does	not	contain	valid	version	info,	the	function
returns	an	empty	string.

ISPP	also	has	GetStringFileInfo	function,	which	also	can	be	used	to
retrieve	file	version	(using	"FileVersion"	or	"ProductVersion"	as	second
parameter).	The	difference	is	that	GetFileVersion	takes	it	from	fixed
block	of	version	info,	unlike	GetStringFileInfo,	which	extracts	string	from
language	specific	block.

GetStringFileInfo	function

Prototype
str	GetStringFileInfo(str	1,	str	2,	int?	3)

Description
GetStringFileInfo	function	retrieves	string	from	specified	file's
(first	argument)	version	information	resource.

Second	argument	is	the	name	of	the	version	info	string-value.	This
should	be	one	of	the	predefined	strings.	Those	strings	and	shortcut
macros	are	typically	declared	in	BUILTINS.ISS	file.

Third	optional	argument	should	specify	language	and	charset	identifier.
For	example:	0x04BE0409	stands	for	"English	(United	States)."	If	this
parameter	is	omitted,	ISPP	scans	for	all	available	version	info	blocks	to
find	the	value.

The	function	returns	an	empty	string,	if	it	was	unable	to	retrieve	the
desired	string-value.

Int	function

Prototype
int	Int(any	1,	int?	2)

Description
Function	converts	an	expression	to	its	integer	representation.	If	the
expression	is	an	integer,	the	result	of	the	function	is	the	expression
value.	If	the	expression	is	void,	the	result	is	0.	If	the	expression	is
string,	ISPP	tries	to	convert	it	to	integer;	if	such	attempt	fails,	an	error	is
raised	unless	second	parameter	specifies	the	default	value.

Str	function

Prototype
str	Str(any)

Description
Function	converts	an	expression	to	string.	If	the	expression	is	integer,
the	result	is	its	string	representation.	If	the	expression	is	void,	the	result
is	an	empty	string.	Otherwise	the	result	is	the	value	of	the	expression.

FileExists	function

Prototype
int	FileExists(str)

Description
Returns	non-zero	value	if	the	file	(whose	name	specified	as	parameter)
exists.

FileSize	function

Prototype
int	FileSize(str)

Description
Returns	size,	in	bytes,	of	the	specified	file.	If	the	file	does	not	exist,	the
result	is	-1.	Beware	of	ISPP	supporting	only	signed	32	bit	integers:	for
files	larger	than	2	GB	(and	smaller	than	4	GB)	the	result	is	negative.

ReadIni	function

Prototype
str	ReadIni(str	1,	str	2,	str	3,	str?	4)

Description
Reads	the	value	from	an	INI	file.	Argument	1	must	be	the	name	of	the
INI	file,	argument	2	–	the	name	of	a	section	in	the	INI	file,	the	third
argument	is	the	key	in	the	section	to	read.	Last	optional	argument	can
be	used	to	provide	the	default	value	that	will	be	returned	on	failure,	if	it
is	omitted,	an	empty	string	is	returned.

WriteIni	function

Prototype
void	WriteIni(str	1,	str	2,	str	3,	any	4)

Description
Writes	specified	value	to	an	INI	file.	Argument	1	is	the	name	of	the	INI
file,	argument	2	–	the	name	of	a	section	in	the	INI	file,	argument	3	–	the
name	of	a	key	in	the	section.	Last	argument	should	be	set	to	the	value
you	wish	to	be	written	to	the	INI	file,	it	can	be	of	any	type.

Function	does	not	return	any	significiant	value.

Exec	function

Prototype
int	Exec(str	1,	str?	2,	str?	3,	int?	4,	int?	5)

Description
Executes	specified	executable	file.

First	argument	shall	specify	filename	of	the	module	to	execute.

Second	argument	may	be	used	to	specify	command	line	to	execute.

Third	argument	may	be	used	to	specify	the	working	directory	of	the
process.

Fourth	argument	should	be	set	to	zero,	if	you	don't	wish	to	wait	for	the
process	to	finish,	and	non-zero	otherwise.	By	default,	non-zero	value	is
assumed.

Fifth	argument	can	be	any	of	the	SW_*	constants	typically	defined	in
BUILTINS.ISS	file.	For	GUI	processes,	it	specifies	the	default	value	the
first	time	ShowWindow	is	called.	By	default,	SW_SHOWNORMAL	(i.	e.
1)	is	assumed.

If	fourth	argument	is	omitted	or	is	non-zero,	the	function	returns	the	exit
code	of	the	process.	Otherwise,	the	function	result	indicates	whether
the	process	has	been	successfully	launched	(non-zero	for	success).

Copy	function

Prototype
str	Copy(str	1,	int	2,	int?	3)

Description
Function	extracts	a	substring	from	the	first	string	type	parameter.	The
1-based	index	of	the	character	from	which	the	substring	should	start	is
specified	in	second	argument.	The	third	argument	specifies	the	number
of	characters	to	take,	if	it	is	omitted,	all	characters	up	to	the	end	of	the
string	are	copied	to	the	result.

Pos	function

Prototype
int	Pos(str	1,	str	2)

Description
Pos	searches	for	first	parameter	within	second	parameter	and	returns
an	integer	value	that	is	the	index	of	the	first	character	of	first	string
within	second.	Pos	is	case-sensitive.	If	substring	is	not	found,	Pos
returns	zero.

RPos	function

Prototype
int	RPos(str	1,	str	2)

Description
RPos	searches	for	first	parameter	within	second	parameter	and	returns
an	integer	value	that	is	the	index	of	the	first	character	of	last	occurence
of	the	first	string	within	second.	RPos	is	case-sensitive.	If	substring	is
not	found,	RPos	returns	zero.

Len	function

Prototype
int	Len(str)

Description
Returns	the	length	of	the	given	string.

SaveToFile	function

Prototype
void	SaveToFile(str)

Description
This	function	saves	current	translation	to	the	specified	file.

Function	does	not	return	any	significiant	value.

Find	function

Prototype
int	Find(int	1,	str	2,	int?	3,	str?	4,	int?	5,	str?

6,	int?	7)

Description
Find	function	is	intended	to	be	used	with	insert	directive.	Function
returns	the	index	of	the	line	in	a	translation	depending	on	specified
criteria.

First	parameter	denotes	the	index	of	the	line	to	start	the	search	from,
usually	it	is	set	to	zero.

Second,	fourth,	and	sixth	parameters	should	specify	string(s)	to	search
within	each	line.	Only	the	second	parameter	must	be	specified	whereas
fourth	and	sixth	may	be	omitted.

Third,	fifth,	and	seventh	parameters	should	specify	the	search	flags	for
each	string	meaning	that	third	parameter	specifies	flags	for	second,	fifth
for	fourth,	and	seventh	for	sixth.

If	any	of	the	'flags'	parameters	is	omitted	but	the	string	parameter
preceding	it	is	specified,	FIND_MATCH	|	FIND_AND	(i.	e.	0)	is
assumed.

Values	for	third,	fifth,	and	seventh	parameters	of	Find	function	are
typically	declared	in	BUILTINS.ISS	file.	See	Find	flags	topic	for	the
description	of	each	value.

See	also
insert.

Topics	in	this	section

Find	flags

SetupSetting	function

Prototype
str	SetupSetting(str)

Description
SetupSetting	function	parses	[Setup]	section	in	current	translation	to
find	the	key	whose	name	is	specified	as	function	parameter.	Function
returns	the	value	of	that	key	if	it's	found,	or	an	empty	string	otherwise.

ms-its:isetup.chm::/topic_setupsection.htm

SetSetupSetting	function

Prototype
void	SetSetupSetting(str	1,	str	2)

Description
SetSetupSetting	function	modifies	or	generates	[Setup]	section
directive	given	the	key	(first	parameter)	and	its	value	(second
parameter).

If	there	is	no	[Setup]	section	in	current	translation	(it	may	happen	that
function	is	called	before	that	section	in	a	script),	its	header	(as	well	as
directive	itself)	is	generated	by	this	function.

Please	use	this	function	carefully	–	it	should	not	be	called	when	ISPP	is
in	insert	mode	(i.	e.	after	insert	directive).

The	function	does	not	return	any	significiant	value.

LowerCase	function

Prototype
str	LowerCase(str)

Description
LowerCase	returns	a	string	with	the	same	text	as	the	string	passed	in
its	parameter,	but	with	all	letters	converted	to	lowercase.	The
conversion	affects	only	7-bit	ASCII	characters	between	'A'	and	'Z'.

EntryCount	function

Prototype
int	EntryCount(str)

Description
Function	returns	the	total	number	of	entries	in	specified	section	in
current	translation.	It	does	not	count	empty	lines	or	comments.
Function	takes	care	of	multiple	sections	with	the	same	name	and
counts	all	of	them.

GetEnv	function

Prototype
str	GetEnv(str)

Description
Returns	the	value	of	the	environment	variable	whose	name	is	specified
as	the	parameter.	Returns	emtpy	string	if	variable	is	not	defined.

DeleteFile	function

Prototype
void	DeleteFile(str)

Description
Marks	file	for	deletion	after	compilation	is	done	(no	matter	successful	it
was	or	not).	Does	not	return	anything.

CopyFile	function

Prototype
void	CopyFile(str	1,	str	2)

Description
Copies	a	file.

FindFirst	function

Prototype
int	FindFirst(str,	int)

Description
FindFirst	searches	the	directory	specified	by	first	parameter	for	the
first	file	that	matches	the	file	name	implied	by	first	parameter	and	the
attributes	specified	by	second	parameter.	If	the	file	is	found,	the	result
is	a	find	handle,	that	should	be	used	in	subsequent	calls	to
FindGetFileName,	FindNext,	and	FindClose	function
functions,	otherwise	the	return	value	is	0.

The	first	parameter	is	the	directory	and	file	name	mask,	including
wildcard	characters.	For	example,	'.*.*'	specifies	all	files	in	the
current	directory).

The	second	parameter	specifies	the	special	files	to	include	in	addition
to	all	normal	files.	Choose	from	these	file	attribute	constants	typically
defined	in	BUILTINS.ISS	file	when	specifying	this	parameter:

faReadOnly Read-only	files
faHidden Hidden	files
faSysFile System	files
faVolumeID Volume	ID	files
faDirectory Directory	files
faArchive Archive	files
faAnyFile Any	file

Attributes	can	be	combined	by	OR-ing	their	constants	or	values.	For
example,	to	search	for	read-only	and	hidden	files	in	addition	to	normal
files,	pass	faReadOnly	|	faHidden	as	the	parameter.

Example
#define	FindHandle

#define	FindResult

#define	Mask	"*.pas"

#sub	ProcessFoundFile

		#define	FileName	FindGetFileName(FindHandle)

		#if	LowerCase(Copy(FileName,	1,	4))	==	"ispp"

				FileName:	{#FileName};	DestDir:	{app}\ispp

		#else

				FileName:	{#FileName};	DestDir:	{app}

		#endif

#endsub

#for	{FindHandle	=	FindResult	=	FindFirst(Mask,	0);

FindResult;	FindResult	=	FindNext(FindHandle)}

ProcessFoundFile

#if	FindHandle

		FindClose(FindHandle)

#endif

See	also
define,	sub,	if.

FindNext	function

Prototype
int	FindNext(int)

Description
FindNext	returns	the	next	entry	that	matches	the	name	and	attributes
specified	in	a	previous	call	to	FindFirst.	The	parameter	must	be	find
handle	returned	by	FindFirst.	The	return	value	is	non-zero	if	the
function	was	successful.

FindClose	function

Prototype
void	FindClose(int)

Description
FindClose	termiates	FindFirst/FindNext	sequence.	The
parameter	must	be	non-zero	find	handle	returned	by	FindFirst.

This	function	is	obsolete	since	1.2.	ISPP	automatically	frees	resources
allocated	in	a	call	to	FindFirst.

FindGetFileName	function

Prototype
str	FindGetFileName(int)

Description
Feed	FindGetFileName	with	the	find	handle	returned	by	FindFirst
to	get	the	name	of	the	file	found	by	the	last	call	to	FindFirst	or
FindNext.

FileOpen	function

Prototype
int	FileOpen(str)

Description
This	function	opens	a	text	file	for	reading	and	returns	the	file	handle	(or
zero	on	failure)	to	be	used	in	subsequent	calls	to	File*	functions.

FileRead	function

Prototype
str	FileRead(int)

Description
The	function	reads	the	next	line	in	a	text	file	opened	with	FileOpen.
The	only	parameter	should	be	the	file	handle	returned	by	FileOpen.

Example
#define	FileHandle

#define	FileLine

#sub	ProcessFileLine

		#pragma	message	FileLine

#endsub

#for	{FileHandle	=	FileOpen("c:\autoexec.bat");	\

		FileHandle	&&	!FileEof(FileHandle);	FileLine	=

FileRead(FileHandle)}	\

		ProcessFileLine

#if	FileHandle

		#expr	FileClose(FindHandle)

#endif

See	also
define,	sub,	pragma,	for,	if.

FileReset	function

Prototype
void	FileReset(int)

Description
The	function	resets	the	file	pointer	to	zero,	so	the	sugsequent	call	to
FileRead	will	read	the	first	line	of	the	file.	The	only	parameter	should
be	the	file	handle	returned	by	FileOpen.

FileEof	function

Prototype
int	FileEof(int)

Description
The	function	returns	zero	if	the	file	pointer	does	not	point	to	the	end	of
the	file,	or	non-zero	otherwise.	If	this	function	returns	non-zero	value,
subsequent	calls	to	FileRead	will	fail.	The	only	parameter	should	be
the	file	handle	returned	by	FileOpen.

FileClose	function

Prototype
void	FileClose(int)

Description
The	function	closes	open	file	and	releases	all	resources	allocated	by	a
call	to	FileOpen.	After	calling	FileClose,	the	file	handle	becomes
invalid.

This	function	is	obsolete	since	1.2.	ISPP	automatically	frees	resources
allocated	in	a	call	to	FileOpen.

GetDateTimeString	function

Prototype
str	GetDateTimeString(str,	str,	str)

Description
The	function	returns	the	current	date	and	time	as	a	string	using	the
specified	formatting.

The	first	parameter	is	the	format	string.	The	second	and	third
parameters	denote	the	DateSeparator	and	TimeSeparator	parameters
explained	below.

The	following	format	specifiers	are	supported:

d Displays	the	day	as	a	number	without	a	leading	zero	(1-
31).

dd Displays	the	day	as	a	number	with	a	leading	zero	(01-31).
ddd Displays	the	day	as	an	abbreviation	(Sun-Sat).
dddd Displays	the	day	as	a	full	name	(Sunday-Saturday).
ddddd Displays	the	date	using	the	system's	short	date	format.
dddddd Displays	the	date	using	the	system's	long	date	format.
m Displays	the	month	as	a	number	without	a	leading	zero	(1-

12).	If	the	m	specifier	immediately	follows	an	h	or	hh
specifier,	the	minute	rather	than	the	month	is	displayed.

mm Displays	the	month	as	a	number	with	a	leading	zero	(01-
12).	If	the	mm	specifier	immediately	follows	an	h	or	hh
specifier,	the	minute	rather	than	the	month	is	displayed.

mmm Displays	the	month	as	an	abbreviation	(Jan-Dec).
mmmm Displays	the	month	as	a	full	name	(January-December).
yy Displays	the	year	as	a	two-digit	number	(00-99).
yyyy Displays	the	year	as	a	four-digit	number	(0000-9999).
h Displays	the	hour	without	a	leading	zero	(0-23).
hh Displays	the	hour	with	a	leading	zero	(00-23).
n Displays	the	minute	without	a	leading	zero	(0-59).
nn Displays	the	minute	with	a	leading	zero	(00-59).
s Displays	the	second	without	a	leading	zero	(0-59).
ss Displays	the	second	with	a	leading	zero	(00-59).
t Displays	the	time	using	the	system's	short	time	format.
tt Displays	the	time	using	the	system's	long	time	format.
am/pm Uses	the	12-hour	clock	for	the	preceding	h	or	hh	specifier.

Displays	'am'	for	any	hour	before	noon,	and	'pm'	for	any
hour	after	noon.	The	am/pm	specifier	can	use	lower,	upper,

or	mixed	case,	and	the	result	is	displayed	accordingly.
a/p Uses	the	12-hour	clock	for	the	preceding	h	or	hh	specifier.

Displays	'a'	for	any	hour	before	noon,	and	'p'	for	any	hour
after	noon.	The	a/p	specifier	can	use	lower,	upper,	or	mixed
case,	and	the	result	is	displayed	accordingly.

/ Displays	the	date	separator	character	given	by	the
DateSeparator	parameter.	If	DateSeparator	is	set	to	an
empty	string,	the	system's	date	separator	character	will	be
used	instead.

: Displays	the	time	separator	character	given	by	the
TimeSeparator	parameter.	If	TimeSeparator	is	set	to	an
empty	string,	the	system's	time	separator	character	will	be
used	instead.

'xx'/"xx" Characters	enclosed	in	single	or	double	quotes	are
displayed	as-is,	and	do	not	affect	formatting.

Format	specifiers	may	be	written	in	upper	case	as	well	as	in	lower	case
letters--both	produce	the	same	result.

Example
#define	MyDateTimeString	GetDateTimeString('ddddd',

'',	'');

#define	MyDateTimeString	GetDateTimeString('ddddd

tt',	'',	'');

#define	MyDateTimeString

GetDateTimeString('dd/mm/yyyy	hh:nn:ss',	'-',	':');

Translation	refers	to	the	preprocessed	script.

Current	translation	refers	to	current	output	of	ISPP,	the	translated
(preprocessed)	part	of	the	script	up	to	the	point	(or	line)	which	ISPP	is
currently	processing.

Find	flags

Description
One	of	the	following	four	values	must	be	specified:

FIND_MATCH	(0)	means	that	the	line	must	match	the	search	string.

FIND_BEGINS	(1)	means	that	the	line	must	start	with	the	search	string.

FIND_ENDS	(2)	means	that	the	line	must	end	with	the	search	string.

FIND_CONTAINS	(3)	means	that	the	line	must	contain	(i.	e.	it	also	can
match,	begin,	or	end	with)	the	search	string.

Any	of	the	following	modifiers	may	be	combined	with	one	of	the
previous	using	bitwise	OR	operator	(|):

FIND_CASESENSITIVE	(4)	means	that	comparison	must	be	case-
sensitive.

FIND_AND	(0)	means	that	this	criterium	(the	pair	of	arguments	in	Find
function)	must	be	met	as	well	as	previous	criteria.

FIND_OR	(8)	means	that	it	is	allowed	that	this	criterium	is	tested	even	if
previos	criteria	were	not	met.

FIND_NOT	(16)	means	that	this	criterium	must	not	be	met.

FIND_AND	and	FIND_OR	are	mutually	exclusive.	If	both	are	specified,
FIND_OR	takes	precedence.

Special	flags:

FIND_TRIM	(32)	means	that	leading	and	trailing	whitespaces	must	be
stripped	off	from	the	line	prior	to	testing	it	against	all	the	criteria.	This
flag	can	only	be	used	in	the	third	argument	of	the	Find	function.	It	is
not	mutually	exclusive	with	any	of	the	previously	mentioned	flags.

