
On	This	Page

MoonScript	Standard	Library
Printing	Functions

p(arg)

Table	Functions
run_with_scope(fn,	scope,	[args...])

defaultbl([tbl,]	fn)

extend(arg1,	arg2,	[rest...])

copy(tbl)

Class/Object	Functions
is_object(value)

type(value)

bind_methods(obj)

mixin(obj,	class,	[args...])

mixin_object(obj,	other_obj,	method_names)

mixin_table(a,	b,	[names])

Misc	Functions
fold(items,	fn)

Debug	Functions
debug.upvalue(fn,	key[,	value])

All	Pages

Language	Guide
Standard	Library
Command	Line	Tools
Compiler	API

MoonScript	0.2.6	-	Standard	Library

http://moonscript.org/reference
http://moonscript.org/reference/command_line.html
http://moonscript.org/reference/api.html


The	MoonScript	installation	comes	with	a	small	kernel	of	functions	that	can	be	
various	common	things.

The	entire	library	is	currently	contained	in	a	single	object.	We	can	bring	this	
requiring	 "moon" .

require	"moon"

--	`moon.p`	is	the	debug	printer

moon.p	{	hello:	"world"	}

If	you	prefer	to	just	inject	all	of	the	functions	into	the	current	scope,	you	can	require	
The	following	has	the	same	effect	as	above:

require	"moon.all"

p	{	hello:	"world"	}

All	of	the	functions	are	compatible	with	Lua	in	addition	to	MoonScript,	but	some	of	them	only	make
sense	in	the	context	of	MoonScript.



MoonScript	Standard	Library

This	is	an	overview	of	all	the	included	functions.	All	of	the	examples	assume	that	the	standard	library
has	been	included	with	 require	"moon.all" .



Printing	Functions

p(arg)

Prints	a	formatted	version	of	an	object.	Excellent	for	inspecting	the	contents	



Table	Functions

run_with_scope(fn,	scope,	[args...])

Mutates	the	environment	of	function	 fn 	and	runs	the	function	with	any	extra	
Returns	the	result	of	the	function.

The	environment	of	the	function	is	set	to	a	new	table	whose	metatable	will	use	
values.	 scope 	must	be	a	table.	If	 scope 	does	not	have	an	entry	for	a	value,	it	will	fall	back	on	the
original	environment.

my_env	=	{

		secret_function:	->	print	"shhh	this	is	secret"

		say_hi:	->	print	"hi	there!"

}

say_hi	=	->	print	"I	am	a	closure"

fn	=	->

		secret_function!

		say_hi!

run_with_scope	fn,	my_env

Note	that	any	closure	values	will	always	take	precedence	against	global	name	
environment.	In	the	example	above,	the	 say_hi 	in	the	environment	has	been	shadowed	by	the	local
variable	 say_hi .

defaultbl([tbl,]	fn)

Sets	the	 __index 	of	table	 tbl 	to	use	the	function	 fn 	to	generate	table	values	when	a	missing	key	is
looked	up.

extend(arg1,	arg2,	[rest...])



Chains	together	a	series	of	tables	by	their	metatable’s	 __index 	property.	Overwrites	the	metatable	of
all	objects	except	for	the	last	with	a	new	table	whose	 __index 	is	set	to	the	next	table.

Returns	the	first	argument.

a	=	{	hello:	"world"	}

b	=	{	okay:	"sure"	}

extend	a,	b

print	a.okay

copy(tbl)

Creates	a	shallow	copy	of	a	table,	equivalent	to:

copy	=	(arg)	->	{k,v	for	k,v	in	pairs	self}



Class/Object	Functions

is_object(value)

Returns	true	if	 value 	is	an	instance	of	a	MoonScript	class,	false	otherwise.

type(value)

If	 value 	is	an	instance	of	a	MoonScript	class,	then	return	it’s	class	object.	Otherwise,	return	the	result
of	calling	Lua’s	type	method.

class	MyClass

		nil

x	=	MyClass!

assert	type(x)	==	MyClass

bind_methods(obj)

Takes	an	instance	of	an	object,	returns	a	proxy	to	the	object	whose	methods	can	
providing	self	as	the	first	argument.

obj	=	SomeClass!

bound_obj	=	bind_methods	obj

--	following	have	the	same	effect

obj\hello!

bound_obj.hello!

It	lazily	creates	and	stores	in	the	proxy	table	the	bound	methods	when	they	

mixin(obj,	class,	[args...])



Copies	the	methods	of	a	class	 cls 	into	the	table	 obj ,	then	calls	the	constructor	of	the	class	with	the
obj 	as	the	receiver.

In	this	example	we	add	the	functionality	of	 First 	to	an	instance	of	 Second 	without	ever	instancing
First .

class	First

		new:	(@var)	=>

		show_var:	=>	print	"var	is:",	@var

class	Second

		new:	=>

				mixin	self,	First,	"hi"

a	=	Second!

a\show_var!

Be	weary	of	name	collisions	when	mixing	in	other	classes,	names	will	be	overwritten.

mixin_object(obj,	other_obj,	method_names)

Inserts	into	 obj 	methods	from	 other_obj 	whose	names	are	listed	in	 method_names

are	bound	methods	that	will	run	with	 other_obj 	as	the	receiver.

class	List	

		add:	(item)	=>	print	"adding	to",	self

		remove:	(item)	=>	print	"removing	from",	self

class	Encapsulation

		new:	=>

				@list	=	List!

				mixin_object	self,	@list,	{"add",	"remove"}

e	=	Encapsulation!

e.add	"something"

mixin_table(a,	b,	[names])



Copies	the	elements	of	table	 b 	into	table	 a .	If	names	is	provided,	then	only	those	names	are	copied.



Misc	Functions

fold(items,	fn)

Calls	function	 fn 	repeatedly	with	the	accumulated	value	and	the	current	value	
items .	The	accumulated	value	is	the	result	of	the	last	call	to	 fn ,	or,	in	the	base	case,	the	first	value.
The	current	value	is	the	value	being	iterated	over	starting	with	the	second	item.

items 	is	a	normal	array	table.

For	example,	to	sum	all	numbers	in	a	list:

numbers	=	{4,3,5,6,7,2,3}

sum	=	fold	numbers,	(a,b)	->	a	+	b



Debug	Functions

debug.upvalue(fn,	key[,	value])

Gets	or	sets	the	value	of	an	upvalue	for	a	function	by	name.

Generated	on	Thu	Jun	19	00:40:22	2014;	MoonScript	v0.2.6


	MoonScript Standard Library
	Printing Functions
	p(arg)
	Table Functions
	run_with_scope(fn, scope, [args...])
	defaultbl([tbl,] fn)
	extend(arg1, arg2, [rest...])
	copy(tbl)
	Class/Object Functions
	is_object(value)
	type(value)
	bind_methods(obj)
	mixin(obj, class, [args...])
	mixin_object(obj, other_obj, method_names)
	mixin_table(a, b, [names])
	Misc Functions
	fold(items, fn)
	Debug Functions
	debug.upvalue(fn, key[, value])
	Standard Library

