g§&jProgramming FAR plugins

EncvoLopepia £OR DEVELOPERS

nhcyclopedia for Developers 1.75 SR2537

‘AR Manager - a console file manager for the Windows family of operating systems
ised on Win32 API). The program provides a comfortable user interface for working with
» systems (real and emulated) and files.

‘AR Manager is a command-line shell unfolding the abilities of the native Win32
nmand prompt. FAR Manager has a modular structure and can be easily extended with a
mber of plugins expanding its capabilities far beyond the simple console based command-
e shell.

senerally a FAR plugin is a DLL exporting specific functions and interacting with FAR
mnager in a certain way. By creating a custom plugin you can add a new command,
tor's function, or emulate a file system in the file panel (i.e. list archives, network
ources or the registry). Some of the standard and important FAR manager functions are
plemented as plugin modules, so you can never think of using FAR without using

igins. (See the Overview of plugin capabilities).

Programming FAR plugins - Encyclopedia for Developers» is the most
nprehensive reference guide to the plugin API for FAR Manager. It is meant for all these
ple creating or making their first steps in creating FAR plug-ins. The encyclopedia
tains authored API reference along with comments from 3-rd party professionals
serienced in this area (See the articles and notes).

Ve hope that this Encyclopedia will provide a very useful source of information in the
ycess of writing FAR Manager plugins.

Copyright © PlugRinG, 1999-2009.

Introduction W

About the proje

How to setup tt
License

Authors
Structures
Service functio

Exported functi

Dialog API
Viewer API

Panel API
Editor API

Far Standard F1
Localization
Custom API
Macros
Addons
Overview of pl
Professional etl
API History
Examples
Articles

FAQ

bout the Programming FAR plugins -
ncyclopedia for Developers project

1n | License | How to setup the Encyclopedia

Project's goal - to create a "full-functioning-plentiful” help file in russian and
english, for the C/C++ and Pascal programming languages. This
encyclopedia will be mostly of interest to developers of FAR Manager plugins.

The Encyclopedia exists in two variants - HTMLHelp
(pluginsr.chm/pluginse.chm) and OnlineHelp-version:

pluginsr.chm/pluginse.chm

Applicable in conjunction with MSDN (a variant with CHM/CHI-files,
"MSDN Library - July 2001").

pluginsr online

Online-version of the encyclopedia. Always available for browsing at the
following address: http://api.farmanager.com/

The Encyclopedia contains a wide variety of topics, besides the original topics
on Plugins API, that (we hope so) can help plugin developers to write their own
"creations".

Valentin Skirdin
vskirdin@mail.ru

Project coordinator

http://api.farmanager.com/
mailto:Valentin%20Skirdin%20%3Cvskirdin@mail.ru%3E?subject=Pluginse%20Help%20Project

icense

in | authors

1.

All rights to the "Programming FAR plugins - Encyclopedia for
Developers" are exclusively owned by the authors.

The Encyclopedia, may be distributed only by a permission from the
authors, provided the distribution package is not modified and no
commercial or other interest of the authors is violated. No person or
company may charge a fee for the distribution of the Encyclopedia without
a written permission from all the authors.

The Encyclopedia exists only in Russian and English languages and is
viewable in two forms - HTMLHelp
(FarEncyclopedia.ru.chm/FarEncyclopedia.en.chm) and as Online Help:
http://api.farmanager.com/.

Other sources are considered as violating the given license agreement.

THE ENCYCLOPEDIA IS DISTRIBUTED "AS IS". NO WARRANTY
OF ANY KIND IS EXPRESSED OR IMPLIED. YOU USE AT YOUR
OWN RISK. THE AUTHORS WILL NOT BE LIABLE FOR DATA
LOSS, DAMAGES, LOSS OF PROFITS OR ANY OTHER KIND OF
LOSS WHILE USING OR MISUSING THIS PRODUCT.

You may not use, copy, emulate, clone, rent, lease, sell, modify, decompile,
disassemble, otherwise reverse engineer, or transfer the licensed product, or
any subset of the licensed product, except as provided for in this agreement.
Any such unauthorized use shall result in immediate and automatic
termination of this license and may result in criminal and/or civil
prosecution.

Installing and using the Encyclopedia signifies acceptance of these terms
and conditions of the license.

If you do not agree with the terms of this license you must remove the
Encyclopedia files from your storage devices and cease to use the product.

All rights not expressly granted here are reserved by the authors. This also

http://api.farmanager.com/

implies that any issues concerning the Encyclopedia will be resolved by a
majority vote of the authors.

9. The authors reserve the right to change these terms and conditions from
time to time at their sole discretion.

We thank you for using the encyclopedia:
"Programming FAR plugins - Encyclopedia for Developers".

coordinator - Valentin Skirdin

Copyright © PlugRinG, 1999-2009.

/hat's new in Far Manager Encyclopedia 1.75
R2555?

in

October 2009

e Macro: checkhotkey function refined.

June 2009

e Process of going out of limits of "just API description" has begun...
New file names FarEncyclopedia.en.chm and FarEncyclopedia.ru.chm.

April 2009

¢ Added flags LIF_HIDDEN, LIF_GRAYED, MIF_HIDDEN,
MIF_GRAYED.

e Color palette now contains 10 more colors.

March 2009

e Macro: Eval function now has a second parameter, allowing just to check
macro sequence for correctness. Also, function return codes are described.

March 2009

e Macro: Menu.Select function returns -1, if not called from the menu.

March 2009

e Macro: macros can be assigned to mouse buttons. These constants can be
used in macro sequences: MsX, MsY, MsButton, MsCtrlState.

1 February 2009

e Macro: new function atoi - converts number from string representation into
numeric.

3 January 2009

e Macro: additions and adjustments in editor.sel function - it now works in
the editor, dialog edit lines, and command line.

e Fixed errors in ECTL_SELECT:

o block highlight was always cleared, even if parameters were incorrect

o block highlight was always cleared, even if specified string
(BlockStartLine) was absent (BlockStartLine was greater than number
of strings in editor)

o if BlockHeight was greater than number of strings in editor (i.e. try to
highlight a block by specifying the last line, with BlockHeight equal to
10), EditorControl returned FALSE, though the block was highlighted.

o when BlockWidth was equal to -1, the block highlight transaction for
BTYPE_COLUMN was incoplete - that could cause various problems
with blocks.

5 January 2009

e Macro: waitkey function has a second optional parameter - type of returned
value

e Macro: new function editor.sel handles blocks in text.

e Macro: new function key converts the value V into string equivalent of the
key name.

e Macro: Named keys (i.e. CtrlK) can be present in any expressions; in this
case they are treated as numbers.

5 November 2008

e A new color was added to the palette - COL_EDITORSCROLLBAR.

November 2008

e Dialogs with FDLG_SMALLDIALOG flag are drawn with shadow now.
To disable shadow drawing, set FDLG_NODRAWSHADOW flag.

1 September 2008

e New flags for MkLink function: FLINK_SYMLINKFILE,
FLINK_SYMLINKDIR allow Windows Vista/2008 symbolic links
creation. FLINK_SYMLINK flag renamed into FLINK_JUNCTION.

L August 2008

e User screen color is added to color palette.

5> August 2008

e Macro: CtrlBreak combination breaks macro execution.

e Macro: Added function S=trim(S[.Mode]) - removes all whitespace
symbols.

e Viewer API: VCTL_GETINFO command returned WindowSizeY value
that was less by 1 than the real value.

3 June 2008

e Macro: Now Dlg.ltemType returns the same value as
Dlg.GetValue(XXX,1).

7 June 2008

e Viewer API: added two events VE. GOTFOCUS and VE_KILLFOCUS.

5> May 2008

e New constants in FarDialogSettings enum:
FDIS_DELREMOVESBLOCKS ("Del removes blocks in edit controls")
and FDIS_MOUSECLICKOUTSIDECLOSESDIALOG ("Mouse click
outside a dialog closes it").

April 2008

e Macro: added functions to handle stack bookmarks BM.XXX().

) March 2008

¢ 6 new EditorControl commands for navigation positions ("stack
bookmarks") control in editor:
ECTL_ADDSTACKBOOKMARK,
ECTL_CLEARSTACKBOOKMARKS and
ECTL_DELETESTACKBOOKMARK - creating and deleting navigation
positions,
ECTL_GETSTACKBOOKMARKS - receiving navigation positions
information,
ECTL_NEXTSTACKBOOKMARK and
ECTL_PREVSTACKBOOKMARK - navigation in editor

) March 2008

e new panel flag: PELAGS_PANELLEFT.

7 March 2008

e Macro: added "Consts" macro area to store named constants.

5 March 2008

e Colors for long string markers in menus, lists and combo lists were added to
color palette.

e Macro: Added "Editor.RealPos" constant - current cursor position in the
string in editor (tab size independent).

e Macro: Some functions can have optional parameters.

e Macro: New prompt function - allows to input one text string.

L March 2008

e Macro: New V=akey(IN) function - returns name or code of the key that
initiated the macro.

L December 2007

e API: New command ACTL. REDRAWALL - redraw all FAR windows.

3 December 2007

¢ Plugins menu can be opened from a dialog.

e Plugin can export ProcessDialogEvent function to process dialog events.

1 December 2007

e Macro: Added function Result=replace(Str,Find,Replace,Cnt).

e API: New MCMD GETSTATE command for ACTL. KEYMACRO,
returns macro engine work status.

e Macro: Menu.Select function now has two parameters.

December 2007

e 2 new events for panel plugins: FE_GOTFOCUS and FE_KILLFOCUS.

e 2 new events for editor plugins: EE_GOTFOCUS and EE_KILLFOCUS.

¢ In dialogs, immediately after DN_INITDIALOG, DN_GOTFOCUS is fired
for the element with Focus=1.

December 2007

e Macro: Added function n=mod(n1.n2).

e Macro: Added function N=Menu.Select(S). Selects the first item that
contains S.

e New flag DIF_ NOAUTOCOMPLETE for edit strings - disables
autocomplete.

2 October 2007

e Macro: Added constant "MacroArea" - returns the name of current Macro
area.

e Macro: Bof/Eof/Empty/Selected in panels like QView/Info/Tree return

values for these types of panels. For regular panels, values are returned for
command line.

3 September 2007

e Now when DI_COMBOBOX is open, DN_KEY or DN_MOUSEEVENT
events are sent to the dialog procedure. This behavior can be controlled
using events DM_SETCOMBOBOXEVENT and
DM_GETCOMBOBOXEVENT.

) August 2007

e Bug: Macro: If menu item does not contain hot key, GetHotkey() returns
"0" instead of "".

e Macro: Added command $SelWord - selects a word.

e Bug: Macro: Some variables did not work in QuickView and Infopanel:
ItemCount, CurPos, Selected, Bof, Eof were always equal to 0; Empty was
always equal to 1.

August 2007

e Bug: If a plug-in disabled the mouse cursor tracking reaction
(LMRT_NEVER) for a list, the dialog procedure did not get
DN_MOUSECLICK event for mouse double click (Mantis#0000309).

¢ In the PluginPanelltem structure, FAR_FIND_ DATA structure was used
instead of WIN32 FIND DATA._ _FAR_USE WIN32 FIND DATA macro
should be used instead of FAR_USE_FARFINDDATA.

3 July 2007

¢ Added commands DM_GETEDITPOSITION and
DM_SETEDITPOSITION - line position control within edit strings and
dialogs.

July 2007

e Macro: Added function gethotkey.

e Macro: Variables beginning with a number (such as %3DO) were not
processed.

e Bug: DM_LISTGETCURPOS retrned wrong value after opening a
ComboBox, moving through the list and cancelling (pressing Esc).

L May 2007

e Macro: Added function Panel.SetPosldx - File panel positioning using
index.

) May 2007

e Macro: new functions asc() and chr.

3 March 2007
e Macros in the Registry can have REG_MULTI_SZ type.

¢ Added flag KSFLAGS_REG_MULTI_SZ.

1 March 2007

o After calling EditorControl(ECTL_SELECT) with BlockStartLine = -1,
next call to ECTL_GETINFO also returned -1 in BlockStartLine.

3 March 2007

e Macro: new functions waitkey() and eval.

) February 2007

e Added flag DIF_ NOTCVTUSERCONTROL for DI_USERCONTROL.

February 2007

e Macro: new words APanel.ColumnCount and PPanel.ColumnCount.

) January 2007

e New command: FCTL GETUSERSCREEN.

> January 2007

e For DI _VTEXT element, added handling of flags: DIF_ CENTERGROUP,
DIF_SEPARATOR, DIF_SEPARATOR?2, DIF_SHOWAMPERSAND.

e In DefDIgProc handler, DIF_ BTNNOCLOSE flag was not handled for
DN_BTNCLICK event.

¢ Incorrect DI_TEXT element drawing for conditions: DIF_CENTERTEXT
+ DIF_SEPARATOR + X1 not equal to "-1"

1 January 2007

e Rules regarding X2 and Y2 coordinates in the dialog elements are
hardened. Y2 should be always set, do not use 0.

3 January 2007

e EE CLOSE event was not fired for "?New File?".

¢ Incorrect color drawing for information dialog when FMSG_WARNING
flag was used in a Message function without buttons.

7 December 2006

e Macro: New states Help.FileName, Help.Topic and Help.SelTopic.

e The command ACTL_GETWINDOWINFO now fills the Name field for
help windows - contains the full path to the HLF file.

L December 2006

e Viewer API: Structure member ViewerMode.TypeWrap renamed to
ViewerMode.WordWrap

e Viewer API: Added command VCTL SETMODE.

3 November 2006
e Macro: $AKey.

L November 2006

e Bringing the API to 64bit compatibility:

e}

O O O O O

DlgProc: long Param2 -> LONG_PTR Param2 and returns
LONG_PTR instead of long

SendDIlgMessage: long Param2 -> LONG_PTR Param2 and returns
LONG_PTR instead of long

DefDlgProc: long Param2 -> LONG_PTR Param2 and returns
LONG_PTR instead of long

DialogEx: long Param -> LONG_PTR Param

FarMenultemEx: DWORD UserData -~ DWORD_PTR UserData
PluginPanelltem: DWORD UserData -> DWORD_PTR UserData
AdvControl: returns INT PTR instead of int

OpenPlugin: int Item -> INT_PTR Item

) September 2006

e Macro: fexist() understands file mask symbols *' and '?'.

e Macro: If the name contains "*' or '?', then fattr() will return the attributes of
the first found file.

e Macro: fexist() and fattr() do not longer work with the panels, new
functions were added to work with the panels: panel.fexist() and

panel.fattr().
> August 2006

e Corrected the description of the DN BTNCLICK event for
DI_RADIOBUTTON.

) July 2006

e New function: FSF.snprintf.

) June 2006
e Macro function "N=sleep(IN)".
e Macro constant "Far.Height".
e Macro constant "Far.Title".
e Macro constant "Title".

e Macro constant "Drv.ShowPos".

e Macro constant "Drv.ShowMode".

Long history, API history

xported functions - Common functions

in | exported functions

Function Description

Configure plugin configuration

ExitFAR before closing the FAR Manager
GetMinFarVersion get mininum FAR Manager version

GetPluginInfo

get plugin information

SetStartupInfo

global settings

e also:

Service functions, Structures, Archive support, Addons

onfigure

in | exported functions

The Configure function allows the user to configure the plugin module. It is
called when one of the items exported by this plugin to the "Plugin
configuration" menu is selected.

int WINAPI Configure(
int ItemNumber

),

arameters

ItemNumber

The number of selected item in the list of items exported by this plugin to the
"Plugin configuration" menu.

eturn value

If the function succeeds, the return value must be TRUE - in this case FAR
updates the panels. If the configuration is canceled by user, FALSE should be
returned.

emarks

If your plugin exports only one menu item then you can ignore ItemNumber.

xample
int WINAPI _export Configure(int ItemNumber)
{
switch(ItemNumber)
{
case 0:
return(Config());
}
return(FALSE);
}
e also:

GetPluginlnfo

XitFAR

in | exported functions

The ExitFAR function is called before FAR exits. In this function plugins can
release all used resources.

void WINAPI ExitFAR(void);
arameters

None.

eturn value

None.

e also:
ClosePlugin

ietMinFarVersion

in | exported functions

The GetMinFarVersion is called to get the minimum FAR version required for
the plugin to work correctly.

int WINAPI GetMinFarVersion(void);
arameters
None.

eturn value
This function must return an integer in the form OXZZZZXXYY:

Component Description

7777 build number (FAR 1.70.387 = 0x0183)
XX major version (FAR 1.70 = 0x01)

YY minor version (FAR 1.70 = 0x46)

It is recomended to use the macro MAKEFARVERSION.

emarks

If the required version is greater than the current FAR version, an error message
is displayed and the plugin is then unloaded.

xample

// For a plugin that requires FAR Manager 1.70 build
int WINAPI _export GetMinFarVersion(void)

{
return MAKEFARVERSION(1,70,591);

}

// And this plugin will work in FAR Manager version 1
int WINAPI _export GetMinFarVersion(void)

{
return MAKEFARVERSION(1,70,0);

}

e also:
MAKEFARVERSION, FARMANAGERVERSION

ietPlugininfo

in | exported functions

The GetPluginInfo function is called to get general plugin information.

void WINAPI GetPluginInfo(
struct PluginInfo *Info

),

arameters
Info

Points to a Pluginlnfo structure that should be filled by this function. The
plugin must fill this structure.

eturn value
None.

emarks

1. This function is called before the following actions:
o before the plugins configuration menu is shown
o before the plugin commands menu (F11) is shown
o before the disks menu (Alt-F1/Alt-F2) is shown
o when a command with a prefix is entered in the command line (for
example, net :\\share).
2. Because this function gets called frequently, time consuming operations
should not be done within it.
3. The Pluginlnfo structure passed to this function is already filled with zeros.
The plugin is required to fill the StructSize field of the structure.
4. FAR calls GetPluginInfo function rather often, therefore it is necessary to
minimize "computations" performed by this function when developing a
plugin.

xample

void WINAPI _export GetPluginInfo(struct PluginInfo *
{

Info->StructSize=sizeof(struct PluginInfo);
Info->Flags=PF_EDITOR|PF_DISABLEPANELS;

static char *PluginMenuStrings[1];
PluginMenuStrings[0]=GetMsg(MBrackets);

Info->PluginMenuStrings=PluginMenuStrings;
Info->PluginMenuStringsNumber=sizeof (PluginMenuStri
sizeof (PluginMenuStrings[0]);

e also:
Pluginlnfo

etStartupinfo

in | exported functions

The SetStartupInfo function is called once, after the DLL module is loaded to
memory. This function gives the plugin information necessary for further
operation.

void WINAPI SetStartupInfo(
const struct PluginStartupInfo *Info

),

arameters
Info
Points to a PluginStartupInfo structure.

eturn value
None.

emarks

1. In FAR Manager 1.65 or older this function is called first just after the DLL
module is loaded.

2. In FAR Manager 1.70 or later this function is called after
GetMinFarVersion.

3. The Info pointer is valid only until return, so the structure must be copied
to an internal variable for further usage:

static struct PluginStartupInfo Info;

void WINAPI _export SetStartupInfo(const struct P.
{

::Info=*Info;

}

4. If the plugin uses "standard functions" from the FarStandardFunctions
structure then the PluginStartupInfo.FSF member must be copied to an
internal variable for further usage:

static struct PluginStartupInfo Info;

static struct FarStandardFunctions FSF;

void _export SetStartupInfo(struct PluginStartup:
{

Info=*psInfo;

FSF=*psInfo->FSF;

Info.FSF=&FSF; // adjust the address in the l«

xported functions - Panel specific functions

in | exported functions

4 Attentkol?!file names passed to FAR must be in OEM code page. FAR also
passes file names in OEM code page. Before calling plugin functions
FAR calls SetFileApisToOOEM. If plugin uses anywhere
SetFileApisToANSI, it must call SetFileApisToOEM again before
returning control to FAR.

Function Description

ClosePlugin before closing an open plugin instance.

Compare overrides sorting algorithm

DeleteFiles delete files

FreeFindData frees memory, allocated by GetFindData

FreeVirtualFindData frees memory, allocated by GetVirtualFindData

GetFiles get files

GetFindData get file list

GetOpenPlugininfo get information about an open plugin instance

GetVirtualFindData get files

MakeDirectory make a directory

OpenFilePlugin open a file

OpenPlugin create a new plugin instance

ProcessEvent process events

ProcessHostFile execute archive commands

ProcessKey process keyboard events

PutFiles put files to the emulated file system

SetDirectory set current directory in the emulated file system

SetFindList transfers found files from the "Find file" dialog to the
emulated file system

e also:
Service functions, Structures, Archive support, Addons

losePlugin

in | exported functions

The ClosePlugin function closes an open plugin instance.

void WINAPI ClosePlugin(
HANDLE hPlugin

)i
arameters
hPlugin
Open plugin handle

eturn value
None

e also:
ExitFar

ompare

in | exported functions

A plugin can export the function Compare to override the default file panel
sorting algorithm.

int WINAPI Compare(
HANDLE hPlugin,
const struct PluginPanellItem *Itemil,
const struct PluginPanellItem *Item2,
unsigned int Mode

),

arameters
hPlugin

Plugin handle, returned by OpenPlugin or OpenFilePlugin.
Item1, Item?2

Pointers to PluginPanelltem structures to compare.

Mode
See Sort modes

eturn value

This function returns an int value that is:

-1 if Item1 < Item?2
O if Item1 == Item2
1if Item1 > Item2
- 2 if the default FAR compare function should be used for this sort mode.

emarks

The standard RTL gsort function that implements and unstable sorting algorithm
is used by FAR for sorting needs. In other words if array elements are equal to
the compare function then on the panels they will be shown in random order, that
changes upon each redrawing of the panel.

eleteFiles

in | exported functions

The DeleteFiles function is called to delete files in the file system emulated by
the plugin.
(FAR to plugin: "this file(s) from your panel need to be deleted").

int WINAPI DeleteFiles(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber,
int OpMode

),

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
Panelltem

Points to an array of PluginPanelltem structures. Each structure describes a
file to delete.

ItemsNumber
Number of elements in the Panelltem array.
OpMode

Combination of the operation mode flags. This function should process the
flag OPM_SILENT.

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

1. The plugin should process "its folders" by itself.

2. Itis considered a good form of behaviour to inquire the user about his/her
intensions (see also ACTL._GETCONFIRMATIONS, flags FCS_DELETE
and FCS_DELETENONEMPTYFOLDERS)

xample

int WINAPI DeleteFiles(HANDLE hPlugin, PluginPanellte
int ItemsNumber,int OpMode)
{

struct PluginPanelItem * curPI=&PanellItem[O];
for(int CurItem=0;
CurItem<ItemsNumber;CurItem++,
CUrPI++)
{
char* aFile=curPI->FindData.cFileName;
if (!RemoveFileFromFS(aFile))

{
char *MsgItems[]={"Delete failed","", "OK"};
MsgItems[1l] = GetErrorStringFS();
Message (MyNumber, ®, NULL, MsgItems,
sizeof(Msgltems)/sizeof(Msglitems[0]),1)
return(FALSE);
}

}
return(TRUE) ;

}

reeFindData

in | exported functions

The FreeFindData function is called to release the data allocated by
GetFindData
(FAR to plugin: "the list I requested, well, I no longer need it, free the memory").

void WINAPI FreeFindData(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.

Panelltem

Points to an array of PluginPanelltem structures previously allocated by
GetFindData.

ItemsNumber

Number of elements in the Panelltem array.

eturn value

None.

e also:
GetFindData

reeVirtualFindData

in | exported functions

The FreeVirtualFindData function is called to release the data allocated by
GetVirtualFindData.

void WINAPI FreeVirtualFindData(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.

Panelltem

Points to an array of PluginPanelltem structures previously allocated by
GetVirtualFindData.

ItemsNumber

Number of elements in the Panelltem array.

eturn value

None.

e also:
GetVirualFindData

etFiles

in | exported functions

The GetFiles function is called to get files from the file system emulated by the
plugin.
(FAR to plugin: "I want those files from your panel, destination is specified").

int WINAPI GetFiles(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber,
int Move,
char *DestPath,
int OpMode

),

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
Panelltem

Points to an array of PluginPanelltem structures. Each structure describes a
file to get.

ItemsNumber
Number of elements in the Panelltem array.

Move
If zero, files should be copied, if nonzero - moved.

DestPath

Destination path to put files. If OpMode flag OPM_SILENT is not set, you
can allow the user to change it, but in that case the new path must be copied to
DestPath.

OpMode

Combination of the operation mode flags. This function should be ready to
process OPM_SILENT, OPM_FIND, OPM_VIEW, OPM_QUICKVIEW and
OPM_EDIT flags. Also it can process OPM_DESCR and OPM_TOPLEVEL

to speed up operation if necessary.

eturn value

If the function succeeds, the return value must be 1. If the function fails, 0
should be returned. If the function was interrupted by the user, it should return
-1.

emarks

1. The plugin should process "its folders" by itself.

2. If the operation has failed, but part of the files was successfully processed,
the plugin can remove selection only from the processed files. To perform
it, plugin should clear the PPIF_SELECTED flag for processed items in the
PluginPanelltem list passed to function.

3. This function is called only for plugins that implement virtual file systems.
For this it is necessary to remove the OPIF_ REALNAMES flag when
GetOpenPluginlnfo is called, otherwise this function will never be called.

e also:
PutFiles, GetDirList, GetPluginDirList

ietFindData

in | exported functions

The GetFindData function is called to get the list of files in the current directory
of the file system emulated by the plugin.
(FAR to plugin: "let me look at your file list, allocate the memory yourself :-)").

int WINAPI GetFindData(

HANDLE hPlugin,

struct PluginPanelItem **pPanelItem,
int *pItemsNumber,

int OpMode

)

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
pPanelltem

Points to a variable that receives the address of a PluginPanelltem structures
array.

pltemsNumber
Points to a variable that receives the number of PluginPanelltem structures.
OpMode

Combination of the operation mode flags. This function should be ready to
process the OPM_FIND flag.

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

1. The memory for the requested data should be allocated by the plugin.
Because of that it is important to export the FreeFindData function so the
allocated memory will be freed when no longer needed.

2. If this function returns FALSE, the plugin will be closed.

3. In some cases (for example when searching in archives A1t - F7) a panel in

not created physically, so it necessary to check the return value of the
Control function, to prevent a crash in the most upappropriate moment
while carying out work for a none existant panel.

4. If you want to prevent your plugin from participating in the "search in
archive" ("[x] Search in archives" in the Find file dialog) then return
FALSE when OpMode contains the OPM_FIND flag.

e also:
FreeFindData

ietOpenPlugininfo

in | exported functions

The GetOpenPluginInfo function is called to get the information about an open
plugin instance.

void WINAPI GetOpenPluginInfo(
HANDLE hPlugin,
struct OpenPluginInfo *Info

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.
Info
Points to an OpenPluginInfo structure that should be filled by this function.

eturn value
None.

emarks

1. The OpenPluginlnfo structure passed to this function is already filled with
zeroes. The plugin is required to fill the OpenPluginInfo.StructSize field.

2. FAR calls GetOpenPluginInfo function rather often, therefore it is
necessary to minimize "computations" performed by this function when
developing a plugin.

e also:
OpenPlugininfo

etVirtualFindData

in | exported functions

The GetVirtualFindData function can be used to return a list of files to show in
another file panel in addition to the real files.

int WINAPI GetVirtualFindData(
HANDLE hPlugin,
struct PluginPanelItem **pPanelItem,
int *pItemsNumber,
const char *Path

),

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
pPanelltem

Points to a variable that receives the address of an array of PluginPanelltem
structures.

pltemsNumber
Points to a variable that receives the number of PluginPanelltem structures.

Path

Path for which the list of files is returned (the current directory on another
panel). The path is terminated with a backslash.

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

This function can be used to implement "delayed file copying". When delayed
copying is used, the files copied from a plugin panel to a file panel are shown on
the file panel immediately, but the physical copy operation is performed later,
when the plugin is closed or a special command is executed. Delayed copying
can be useful, for example, for plugins supporting Arvid.

e also:
FreeVirualFindData

lakeDirectory

in | exported functions

The MakeDirectory function is called to create a new directory in the file
system emulated by the plugin.

int WINAPI MakeDirectory (
HANDLE hPlugin,

char *Name,

int OpMode

)i

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
Name

Name of the directory. If OpMode flag OPM_SILENT is not set, you can
allow the user to change it, but in that case the new name must be copied to
Name (max. NM bytes).

OpMode

Combination of the operation mode flags. This function should be ready to
process OPM_SILENT flag.

eturn value

If the function succeeds, the return value must be 1. If the function fails, 0
should be returned. If the function was interrupted by the user, it should return
-1.

e also
OpenPlugin, OpenFilePlugin

penFilePlugin

in | exported functions

The OpenFilePlugin function is called to open a plugin which emulates a file
system based on a file passed to this function (an archive for example).

HANDLE WINAPI OpenFilePlugin(
char *Name,
const unsigned char *Data,
int DataSize

),

arameters

Name

Points to the full name of the file (including the path). This pointer is valid
only until return, so if the plugin will process this file, it should copy this
name to an internal variable.

The OpenFilePlugin function is also called when the user is going to create a
new file (when Shift-F1 is pressed). In that case Name is NULL and other
parameters are undefined. If a plugin does not support creating new files, it
must return INVALID HANDLE_VALUE, otherwise it must return the
handle of a new plugin instance that must be ready to process
GetOpenPluginInfo and PutFiles functions. If Name is NULL, the plugin
needs to request Name from the user in the PutFiles function.

Data

Points to data from the beginning of the file. It can be used to detect file type.
The plugin must not change this data.

DataSize

Size of the passed file data. Currently it can be from 0 to 128Kb, depending on
file size, but you should be ready to process any other value.

eturn value

e If the plugin will process the passed file, the return value must be new
plugin handle.

e If this file type is not supported, the return value must be
INVALID_HANDLE_VALUE.

e If operation is interrupted by the user, the value -2 (cast to the HANDLE
type) should be returned.

emarks

1. When <Enter> is pressed on a selected file, FAR queries all plugins that
export this function. The plugins are queried in alphabetic order (sorted by
the DLL name). When a plugin returns a value different from
INVALID_HANDLE_VALUE, FAR stops querying other plugins.

2. The size of data read from the file can be configured - TechInfo #63:

[HKEY_CURRENT_USER\Software\Far\System]
"PluginMaxReadData" : REG_DWORD

The key "System/PluginMaxReadData" of DWORD type :
maximum size of the data read from a file after al
it from the panels (Enter or Ctrl-PgDn) was made.
be passed to plugins to determine which plugin suj
type.

Can be any value in the range of 0x1000 to 0x8000(
The default value is 0x20000.

penPlugin

in | exported functions

The OpenPlugin is called to create a new plugin instance.

HANDLE WINAPI OpenPlugin(
int OpenFrom,
INT_PTR Item

),

arameters

OpenFrom

Identifies how the plugin is invoked. Can be one of the following values
(OPENPLUGIN_OPENFROM enum):

Constant Description

OPEN_DISKMENU Opened from the disks menu
OPEN_PLUGINSMENU Opened from the plugins menu (F11)
OPEN_FINDLIST Opened from the "Find File" dialog. The plugin will

be called with this identifier only if it exports the
SetFindList function, and SetFindList will be called
only if OpenPlugin returns a valid handle.

OPEN_SHORTCUT Opened using a folder shortcut command.

OPEN_COMMANDLINE Opened from the command line.. This type is used if
the plugin has defined a command prefix in the
GetPluginlInfo function, and this prefix, followed by
a colon, is found in the command line.

OPEN_EDITOR Opened from internal editor
OPEN_VIEWER Opened from internal viewer.
OPEN_DIALOG Opened from dialog

Item

Its meaning depends on the value of OpenFrom:

e For OPEN_DISKMENU, OPEN_PLUGINSMENU, OPEN_EDITOR
and OPEN_VIEWER Item is a position of the activated plugin item in the
exported items list in disks or plugins menu. If a plugin exports only one
item, this field is always zero.

For OPEN_FINDLIST Item is always zero.

For OPEN_SHORTCUT Item contains the address of a string that was
passed in the ShortcutData member of the OpenPlugininfo structure,
when saving the shortcut. The plugin can use it to store any additional
information about its current state. It is not necessary to save the
information about the current directory, because it is restored by FAR
when using folder shortcuts.

For OPEN_DIALOG Item contains adress of an OpenDIgPluginData
structure.

For OPEN_COMMANDLINE Item contains address of a string
containing the command line entered by the user. Plugin command prefix
is not included in this string, unless the PE_FULLCMDLINE flag is set.
For example, if a plugin defined the prefix ftp and the user entered
ftp://ftp.abc.com, Item will pointto //ftp.abc.com.
However, if PF_FULLCMDLINE is set, Item will point to
ftp://ftp.abc.com.

eturn value

If the function succeeds, the return value is a plugin handle. This handle will be
passed later to other plugin functions to allow them to distinguish different
plugin instances. Handle format is not important for FAR, it can be the address
of a new plugin class object, or the address of a structure with plugin data, or an
array index, or any other value but zero.

If the function fails, the return value must be INVALID_ HANDLE_VALUE.

emarks

1.

Note that you can use this function to implement FAR commands that work
without creating new panels. Just perform all necessary actions here and
return INVALID_HANDLE_VALUE.

If this functions returns zero, the plugin will be unloaded.

rocessEvent

in | exported functions

The ProcessEvent function informs plugin about different FAR events and
allows to process some of them.

int WINAPI ProcessEvent(
HANDLE hPlugin,
int Event,
void *Param

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.

Event
Event type. Can be one of the following values (FAR_EVENTS enum):

Event Description

FE_CHANGEVIEWMODE Panel view mode is changed.
Param points to a null-terminated string specifying
column types, for example N,S,D,T. Return value
must be FALSE.

FE_REDRAW The panel is about to redraw.
Param is equal to NULL.
Return FALSE to use the FAR redraw routine or
TRUE to disable it. In the latter case the plugin must
redraw the panel itself.

FE_IDLE Sent every few seconds. A plugin can use this event
to request panel updating and redrawing, if
necessary.

Param is equal to NULL.
Return value must be FALSE.

FE_CLOSE The panel is about to close.
Param is equal to NULL.
Return FALSE to close the panel or TRUE to cancel
it.

FE_BREAK Ctrl-Break is pressed.
Param currently can be only
(int)CTRL_BREAK_EVENT

Return value must be FALSE.

Processing of this event is performed in separate
thread, so the plugin must be careful when
performing console input or output and must not use
FAR service functions.

FE_COMMAND About to execute a command from the FAR
command line.
Param points to the command text.
he plugin should return FALSE to allow standard
command execution or TRUE if it is going to process
the command internally.

FE_KILLFOCUS Panel has lost keyboard focus.
Param = NULL.
Return value must be FALSE.

FE_GOTFOCUS Panel received keyboard focus.
The active panel receives the FE_GOTFOCUS event
immediately after its creation.
Param = NULL.
Return value must be FALSE.

Param

Points to data dependent on event type. Read events description for concrete
information.

eturn value

Return value depends on event type. Read events description for concrete
information.
Return FALSE for unknown event types

rocessHostFile

in | exported functions | archive support

The ProcessHostFile function is called to perform FAR archive commands. It is
recommended to use this function to perform additional operations on the file
that is handled by a file processing plugin.

int WINAPI ProcessHostFile(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber,
int OpMode

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.
Panelltem
Points to an array of PluginPanelltem structures. Each structure corresponds to
a selected file in the plugin panel.
ItemsNumber
Number of elements in the Panelltem array.

OpMode

Combination of the operation mode flags. For this function it is either 0 or
OPM_TOPLEVEL.

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

If the operation failed, but part of files was successfully processed, plugin can
remove selection only from the processed files. To perform it, the plugin should
clear PPIF_SELECTED flag in processed items in the PluginPanelltem list
passed to the function.

rocessKey

in | exported functions

The ProcessKey function allows to override standard control keys processing in
a plugin panel.

int WINAPI ProcessKey(
HANDLE hPlugin,
int Key,
unsigned int ControlState

),

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
Key

Virtual key code.
Key may have the PKE_PREPROCESS flag set.

ControlState

Indicates control keys state. One or more flags from the FAR_PKF_FLAGS
enum (except PKF_PREPROCESS).

For example, when Shift-F7 is pressed, Key is equal to VK_F7 and
ControlState is equal to PKF_SHIFT.

eturn value

Return FALSE to use standard FAR key processing. If the plugin processes the
key combination by itself, it should return TRUE

emarks

e FAR 1.70 build 2051 and earlier versions:
Because of FAR kernel implementation specifics this function does not
receive the following keys: Tab, Ctr1-F1, Ctr1l-F2,Ctrl1l-B,Cltr-
L,Ctrl-Q,Ctrl-T,Ctrl-0,Ctrl-P,Ctrl-I,Ctrl-uU,Alt-F1,
Alt-F2,Alt-F7,Ctrl-Down,Ctrl-Up,Ctrl-Left,Ctrl-
Right, Ctrl-Num5, F9, Shift-F10,Ctrl-0..9,Alt-Ins,
Ctrl-w,F11, Al1t-F9,F12,Ctrl-Taband Ctrl1-Shift-Tab.

Since 1.70 build 2052 those restrictions no longer apply (refer to the
remarks on the PKF_PREPROCESS flag)

utFiles

in | exported functions

The PutFiles function is called to put files to the file system emulated by the
plugin. (FAR to plugin: "those files are for you, you should place then on your
panel").

int WINAPI PutFiles(
HANDLE hPlugin,
struct PluginPanelltem *PanellItem,
int ItemsNumber,
int Move,
int OpMode

),

arameters
hPlugin

Plugin handle returned by OpenPlugin or OpenFilePlugin.
Panelltem

Points to an array of PluginPanelltem structures. Each structure describes a
file to put.

ItemsNumber

Number of elements in the Panelltem array.
Move

If zero, files should be copied, if nonzergo - moved.
OpMode

Combination of the operation mode flags. This function should be ready to
process OPM_SILENT flag. Also it can process OPM_DESCR.

If OPM_SILENT is not set, you can ask the user for confirmation and allow to
edit destination path.

eturn value

If the function succeeds, the return value must be 1 or 2. If the return value is 1,
FAR tries to position the cursor to the most recently created file on the active
panel. If the plugin returns 2, FAR does not perform any positioning operations.

If the function fails, 0 should be returned. If the function was interrupted by the
user, it should return -1.

emarks

1. If the operation has failed, but part of the files was successfully processed,
the plugin can remove selection only from the processed files. To perform
it, plugin should clear the PPIF_SELECTED flag for processed items in the
PluginPanelltem list passed to function.

e also:
GetFiles, GetDirList, GetPluginDirList

etDirectory

in | exported functions

The SetDirectory function is called to set the current directory in the file system
emulated by the plugin.

int WINAPI SetDirectory(
HANDLE hPlugin,
const char *Dir,

int OpMode
)i

arameters

hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.

Dir
Directory name. Usually contains only the name, without full path. To provide
basic functionality the plugin should also process the names '.."' and '\"'.

For correct restoring of current directory after using "Search from the
root folder" mode in the Find file dialog, the plugin should be able to
process full directory name returned in the GetOpenPluginInfo function. It is
not necessary when "Search from the current folder" mode is
set in the Find file dialog.

OpMode

Combination of the operation mode flags. This function should be ready to
process the OPM_FIND flag. If the OPM_FIND flag is set, the function is
called from Find file or another directory scanning command, and the plugin
must not perform any actions except changing directory and returning TRUE
if successful or FALSE if it is impossible to change the directory. (The plugin
should not try to close or update the panels, ask the user for confirmations,
show messages and so on.)

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

If the OPM_FIND flag is set in OpMode then:

1. It means that the SetDirectory function is called from the Find file dialog
(Alt-F7) or any other command that scans directory listings. Because if
that the plugin must not perform any other actions except changing
directory and returning TRUE if successful or FALSE if it is impossible to
change the directory.

2. The plugin should carefully process ".." and if changing to the parent
directory is not possible it should return FALSE. Otherwise the search can
enter an endless loop on panel of that plugin.

etFindList

in | exported functions

The SetFindList function is called to put the file names found by the Find file
command to the file system emulated by the plugin. The files should not be
physically copied or changed.

int WINAPI SetFindList(
HANDLE hPlugin,
const struct PluginPanellItem *Panelltenm,
int ItemsNumber

),

arameters
hPlugin
Plugin handle returned by OpenPlugin or OpenFilePlugin.
Panelltem
Points to an array of PluginPanelltem structures. Each structure describes a
file to put.
ItemsNumber
Number of elements in the Panelltem array.

eturn value

If the function succeeds, the return value must be TRUE. If the function fails,
FALSE should be returned.

emarks

e This function is typically used by the Temporary panel plugin
(TMPCLASS.CPP, function TmpPanel::SetFindList)

e Before calling this function, FAR calls the
OpenPlugin(OPEN_FINDLIST,0) function. The SetFindList function is
called only after a successful return of OpenPlugin.

xported functions - Editor specific functions

in | exported functions

Function Description
ProcessEditorInput process keyboard events
ProcessEditorEvent process editor events

e also:

Service functions, Structures, Archive support, Addons

rocessEditorinput

in | exported functions

The ProcessEditorInput function is called from the internal editor every time
there is user input (mouse or keyboard) to process.

int WINAPI ProcessEditorInput(
const INPUT_RECORD *Rec

),

arameters

Rec

Points to the INPUT _RECORD structure. This structure is defined in Win32
API and contains information about the last input (keyboard or mouse) event.

eturn value

If the plugin returns 0, the input event is processed by the FAR editor. The plugin
should return 1 if it has completely processed the event or if the event should be
discarded.

emarks

1. A plugin should correctly process incoming events by analysing
INPUT_RECORD.EventType fields and in the case of an unhandled
even to return control back to FAR.

2. While in macro playback keyboard events (KEY_EVENT) have a new type
- the INPUT_RECORD. EventType field equals 9x8001.

3. EditorControl commands can be called from this function, but be careful
when calling ECTL._PROCESSINPUT from here, because this command
calls the ProcessEditorInput function again. So the plugin should take
steps to prevent recursion at this place.

4. A plugin does not receive the following key combinations: Ctr1-W, F11,
Alt-F9,F12,Ctrl-Tab,Ctrl-Shift-Tab,Alt-Insand Ctrl-
Alt-Shift.

5. A plugin receives the following key combinations with the following
restrictions:

o Alt-F5 - if the PrintMan plugin is not installed
o Alt-F11 - if the editor is modal

o F6 - if switching to viewer is disabled (when calling Editor with the
EF_ENABLE_F6 flag omitted).

e also:
INPUT _RECORD

rocessEditorEvent

in | exported functions

The ProcessEditorEvent function informs plugins about different internal editor
events.

int WINAPI ProcessEditorEvent(
int Event,
void *Param

),

arameters
Event
Event type.
Can be one of the following values (EDITOR_EVENTS enum):
Event Description
EE_CLOSE One of the internal editors is closing.

Plugins can use this event to free internal data
structures. Note that several editors can be active at
the same time.

Param points to an integer variable containing the
EditorID parameter of the editor instance beeing
closed. The EditorID of the current editor can be
obtained earlier using the ECTL. GETINFO
EditorControl command. But the plugin should not
call the EditorControl function when processing this
event, because the editor is already closed.

Return value must be 0.

[Remark, .) .
Starting with FAR 1.70 build 1989 only

the following commands can be used from
EE_CLOSE ECTL_GETINFO and
ECTL GETBOOKMARKS.

EE_READ A new file has just been read. The plugin can use
EditorControl commands to modify the read data.
Param equals NULL.
Return value must be 0.

EE_SAVE The file being edited is about to be saved. The plugin
can use EditorControl commands to modify data

before saving.
Param equals NULL.

Return value must be 0.

EE_REDRAW The editor screen is about to redraw. Plugin can use
EditorControl ECTL. ADDCOLOR command to set
line colors.

Param can be one of the following vslue:

Constans Description

EEREDRAW_ALL The whole screen will be
redrawn

EEREDRAW_LINE Only the current line will be
redrawn

EEREDRAW_CHANGE | Redrawing caused by text
change

In the case of
EEREDRAW_CHANGE the
current line or the whole
screen might be redrawn. So if
changes were made to the
highlighting outside the
current line, it is recomended
to call ECTL. REDRAW when
you finished highlighting.
Otherwise those changes will
be seen only after cursor
movement or other actions that
cause screen redraw. Most
important is not to enter
recursion upon doing so.

Return value must be 0.

EE_KILLFOCUS Editor has lost keyboard focus.

Param points to a variable containing the EditorID
of the editor that looses focus.

Return value must be 0.

EE_GOTFOCUS Editor received keyboard focus.

Param points to a variable containing the EditorID
of the editor that receives focus.

Return value must be 0.

& Attention!

When processing EE_REDRAW it is HIGLY
UNDESIRABLE TO CALL Info.Message, Info.Menu,
Info.Dialog and Info.DialogEx. Calling those function
leads to recursive calling of EE_REDRAW.

Param

Points to data dependent on the event type.

eturn value

Return value depends on the event type.
Return 0 for unknown event types.

emarks

e EE_READ is called only once for each file.

o EE_SAVE is called every time F2 or Shift-F2 is pressed.

e EE_REDRAW is called every time the screen is redrawn (for example, after
moving the cursor).

xported functions - Viewer specific functions

in | exported functions

Function Description
ProcessViewerEvent process viewer events
e also:

Service functions, Structures, Archive support, Addons

rocessViewerEvent

in | exported functions

The ProcessViewerEvent function informs plugins about different internal
viewer events.

int WINAPI ProcessViewerEvent(
int Event,
void *Param

),

arameters
Event
Event type.
Can be one of the following values (VIEWER_EVENTS enum):
Event Description
VE_CLOSE One of the internal viewers is closing. Plugins can

use this event to free internal data structures. Note
that several viewers can be active at the same time.
Param points to an integer variable containing the
ViewerID parameter of the viewer instance being
closed. The ViewerID of the current viewer can be
obtained earlier using the VCTL GETINFO
ViewerControl command. But the plugin should not
call the ViewerControl function when processing this
event, because the viewer is already closed.

Return value must be 0.

VE_READ A new file has just been loaded.
Param = NULL.
Return value must be 0.

VE_KILLFOCUS Viewer has lost input focus.
Param points to a variable containing the ViewerID
value of the viewer instance that has lost focus.
Return value must be 0.

VE_GOTFOCUS Viewer has got input focus.
Param points to a variable containing the ViewerID
value of the viewer instance that has got focus.
Return value must be 0.

Param
Points to data dependent on the event type.

eturn value

Return value depends on the event type.
Return 0 for unknown event types.

emarks

* VE_READ is called only once for each file.

e also:
ViewerControl

xported functions - Dialog

in | exported functions

Function Description
ProcessDialogEvent process dialog events
e also:

Service functions, Structures, Archive support, Addons

rocessDialogEvent

in | exported functions

The ProcessDialogEvent function informs plugins about different dialog events.

int WINAPI ProcessDialogEvent(
int Event,
void *Param

),
arameters
Event
Event type.
Can be one of the following values (DIALOG_EVENTS enum):
Event Description
DE_DLGPROCINIT Event was sent to the dialog handler.

Param - pointer to the FarDialogEvent structure.

DE_DEFDLGPROCINIT Event was sent to the internal dialog handler.
Param - pointer to the FarDialogEvent structure.

DE_DLGPROCEND Dialog handler processed the event.
FarDialogEvent.Result contains the dialog handler
return value.

Param - pointer to the FarDialogEvent structure.

Param
Pointer to the FarDialogEvent structure.

eturn value

TRUE - the event was processed internally. FarDialogEvent.Result will be used
as dialog handler return value.

FALSE - the event should be processed by the internal handler of the Dialog API
kernel.

emarks

e also:
FarDialogEvent, events, Dialog API

ervice functions - Common

in
Function Description
AdvControl advanced control functions; can be called from
anywhere: panels, viewer or editor.
CharTable allows to get information about installed character
tables.
CmpName function compares a text string (for example, a file
name) with a pattern (mask).
GetMsg returns a message from the language file.
Menu shows a menu.
RestoreScreen restores a screen area previously saved by SaveScreen.
SaveScreen saves a screen area.
ShowHelp shows the specified FAR help topic for the specified
hif file.
Text writes a text string to the screen.
e also:

Exported functions, Structures, Archive support, Addons, Win32

structures and function

dvControl

in | service functions

The AdvControl function provides access to FAR services and allows to query
information. It can be called from anywhere: panels, viewer or editor.

INT_PTR WINAPI AdvControl(

int ModuleNumber,
int Command,
void *Param

),

arameters
ModuleNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo

function.

Command

Control command type. Can be one of the following values
(ADVANCED_CONTROL_COMMANDS enum):

Command

ACTL_COMMIT

ACTL_CONSOLEMODE

Description

"Commits" the results of the last operation with FAR windc
ACTL_SETCURRENTWINDOW).

Param is ignored (set to zero).

The function returns TRUE on success or FALSE in case of

Retrieves or sets console mode (FullScreen <-> Windowed)
Param can be one of the following constants:

Constant Description
FAR_CONSOLE_GET _MODE returns current console mode
FAR_CONSOLE_SET FULLSCREEN sets the console to fullscreen mode
FAR_CONSOLE_SET WINDOWED sets the console to windowed mod
FAR_CONSOLE_TRIGGER toggles console mode

The returned value is the current console mode. Can be one
constants:

Constant Description
FAR_CONSOLE_WINDOWED windowed mode

FAR_CONSOLE_FULLSCREEN fullscreen mode

ACTL_EJECTMEDIA

Allows to programmatically eject media from removable dr
ROM/USB/SUBST).

Param points to an ActlEjectMedia structure.

This command returns TRUE if the media was succesfully e
FALSE is returned.

ACTL_KEYMACRO

Various actions with macro commands.

Param points to an ActlKeyMacro structure.

The return value is TRUE if the command was executed suc
the execution failed (not enough memory, a macro comman
executed or played).

ACTL_GETARRAYCOLOR

Allows to get an array of all FAR colors.

Param points to an array of bytes to receive the current FAI
color is stored in one byte - high 4 bits is the background cc
foreground color.

If Param is equal to NULL, the size of the FAR color array :
indexes defined in farcolor.hpp can be used for accessing th
This command always returns the size of the FAR color arre

ACTL_GETCOLOR

Allows to get the FAR color with the specified index.
Param must contain one of the COL_* color indexes define
farcolor.hpp.

The return value is the color if a correct index was specifiec

ACTL_GETFARVERSION

Gets the FAR version.
Param either points to a variable of type DWORD, or it car
Version format:

HIWORD: = build number (FAR 1.
LOWORD: HIBYTE major version (FAR 1.
LOBYTE minor version (FAR 1.

~I ~I ~1

Param can be set to NULL.
This command returns the FAR version.

ACTL_GETFARHWND

Returns the window handle (HWND) of the current FAR Mai
Param is ignored (set to 0).

ACTL_GETCONFIRMATIONS

Returns information about the confirmation settings. Returr
FarConfirmationsSettings flags set according to ¢
"Confirmations" dialog.

Param is ignored (set to 0).

ACTL_GETDESCSETTINGS

Returns information about the file description settings. Rett
FarDescriptionSettings flags set according to opti
descriptions" dialog.

Param is ignored (set to 0).

ACTL_GETDIALOGSETTINGS

Returns information about the dialog settings. Returns a DW
FarDialogSettings flags set according to options in t
dialog.

Param is ignored (set to 0).

ACTL_GETINTERFACESETTINGS

ACTL_GETPANELSETTINGS

ACTL_GETPLUGINMAXREADDATA

ACTL_GETSYSTEMSETTINGS

ACTL_GETSYSWORDDIV

ACTL_GETWCHARMODE

ACTL_GETWINDOWCOUNT

ACTL_GETWINDOWINFO

ACTL_GETSHORTWINDOWINFO

Returns information about the interface settings. Returns a |
FarInterfaceSettings flags set according to options
settings" dialog.

Param is ingoner (set to 0).

Returns information about the panel settings. Returns a DW
FarPanelSettings flags set according to options in the
dialog.

Param is ignored (set to 0).

Returns the maximum data size that can be passed to Openl
DWORD of any value from 0x1000 to 0x80000 (4KB to 51
be ready to receive any other value. Param is ignored (set tc

Returns information about the system settings. Returns a DV
FarSystemSettings set according to options in the "S:
Param is ignored (set to 0).

Retrieves a string containing the word delimiter characters.
Param points to a string buffer in which the word delimiter:
Set Param to NULL to get string length (without the termin:
The maximum length of the buffer is 260 characters, includ
null.

Returns the FAR console working mode

Param is ingnored (set to 0).

Returns TRUE, is the FAR console mode is set to Unicode.
set to 8-bit mode.

Returns the count of open windows in FAR Manager.
Param is ignored (set to 0).

There is always at least 1 open window (file panels, or an e
FAR was started with a command line parameter -€ or -V)

Retrieve information about a FAR Manager window.
Param - Param points to a WindowInfo structure.

You must initialize the member WindowInfo.Pos before cal
WindowlInfo.Pos is equal to -1, information about the currer
The return value is TRUE if the window with the index Wir
and FALSE if there is no such window (in the latter case, th
structure is not filled).

Retrieve information about a FAR Manager window.
Param - Param points to a WindowInfo structure.

You must initialize the member WindowInfo.Pos before cal
WindowlInfo.Pos is equal to -1, information about the currer
The return value is TRUE if the window with the index Wir
and FALSE if there is no such window (in the latter case, th
structure is not filled).

In oppose to the ACTL_GETWINDOWINFO command the
WindowlInfo.TypeName and WindowInfo.Name members are
command can be called from any thread.

ACTL_POSTKEYSEQUENCE

ACTL_REDRAWALL

ACTL_SETARRAYCOLOR

ACTL_SETCURRENTWINDOW

ACTL_WAITKEY

Param

Post a sequence of internal key codes to the FAR keyboard
Param Param points to a KeySequence structure.

The return value is TRUE if the keys have been posted succ
case of an error.

The keys will be interpreted as soon as the plugin returns cc

Redraw all FAR windows.
Param is ignored (set to 0).

Allows to change a specified range of the FAR color schem
Param points to a FarSetColors structure.

The return value is TRUE if the range was successfully char
parameters in the FarSetColors structure were specified inc

Allows to switch to a specific FAR Manager window.
Param is an integer specifying the index of the window to s
numbering starts at 0).

The function returns TRUE if the switch was successful or F
failure (the window to switch to does not exist).

[Attentign!
M switching will not occur untill ACTL_COM
Manager receives control.

Allows to wait for a keystroke.

If Param is set to -1 or NULL - waits for any key

If Param is set to the internal key code - waits for that key.
Returns value is always zero.

Points to data dependent on the command type. See the command descriptions

for specific information.

eturn value

Return value depends on the command type. See the command descriptions for

specific information.

e also:
Control, EditorControl

harTable

in | service functions

The CharTable function allows to get information about installed character
tables.

int WINAPI CharTable(
int Command,
char *Buffer,
int BufferSize

),

arameters

Command

Either the number of the requested character table or one of the following
commands (the FARCHARTABLE_COMMAND enum):

Command Description
FCT_DETECT Autodetect the character table for given text
Buffer

If Command is equal to FCT_DETECT, specifies the address of a buffer with
text data. Otherwise, specifies the address of a CharTableSet structure that
receives information about the requested character table.

BufferSize

If Command is FCT_DETECT, BufferSize should contain the size of the
buffer with text data to analyze. Otherwise it is the size of the CharTableSet
structure.

eturn value

-1, if the requested table is not present or autodetection failed.

If successful, the function returns the number of the requested table and fills the
structure pointed by Buffer. In FCT_DETECT mode it returns the number of
the detected table and does not change Buffer data.

emarks

1. To enumerate all FAR character tables, start with Command equal to 0 and

increment it until the return value will be -1.
2. The CharTableSet structure is filled with OEM data if there where problems

while reading settigs of some table (when Command does not equals
FCT_DETECT).

‘mpName

in | service functions | FSF.ProcessName

The CmpName function compares a null-terminated text string (for example, a
file name) with a pattern (mask).

int WINAPI CmpName (
const char *Pattern,
const char *String,
int SkipPath

)i

arameters

Pattern

Address of the pattern string.
String

Address of the null-terminated text string.
SkipPath

If TRUE, the file path in String is ignored and only the file name is used in
comparison.

eturn value
TRUE if the string matches the pattern, otherwise FALSE.

emarks

The Pattern parameter can contain any characters allowed in file names and the
following special characters (wildcards):

Wildcard Description

* any number of characters

? any single character

[c,x-2] any character from the range specified in square
brackets; both individual characters and character
ranges can be specified.

For example, files ftp.exe, fc.exe and f.ext will meet the following mask
f*.ex?, the mask *Cco* corresponds to color.ini and edit.com, the mask [C-

ft]*.txt corresponds to config.txt, demo.txt, faq.txt and tips.txt.

ontrol

in | service functions

The Control function allows to request misc information and perform various
control actions for the panels and the command line.

int WINAPI Control(
HANDLE hPlugin,
int Command,
void *Param

),

arameters
hPlugin

Current plugin instance handle. To request information about the active panel
set this parameter to INVALID_HANDLE_VALUE. This allows to use this
function in plugin commands that work without creating new panel. The
INVALID_HANDLE_VALUE is also used with none plugin panels.

Command

Control command type. Can be one of the following values
(FILE_CONTROL_COMMANDS enum):

Command
Panel

FCTL_CHECKPANELSEXIST

FCTL_CLOSEPLUGIN

FCTL_GETPANELINFO
FCTL_GETANOTHERPANELINFO

Description

Checks if the file panels exist.

Param must be equal to 0 (unused).

The function returns FALSE if FAR was started with tt
command line arguments (as an external viewer or edit
this mode the panels are not created.

[Attentign!
e l(when FAR is started with the /e or /v comm
arguments, this function processes only one |
- FCTL_CHECKPANELSEXIST.

Closes the current plugin.
Param points to the name of the directory that will be ¢
panel after closing the plugin.

Gets information about a plugin active/passive panel.
Param points to a Panellnfo structure that will receive
information.

FCTL_GETPANELSHORTINFO
FCTL_GETANOTHERPANELSHORTINFO

FCTL_REDRAWPANEL
FCTL_REDRAWANOTHERPANEL

FCTL_SETNUMERICSORT
FCTL_SETANOTHERNUMERICSORT

If no items are selected in panel,
PanelInfo.SelectedItemsNumber is equal to 1 and
PanelInfo.SelectedItems contains data for the item und
In order to verify whether the file is actually selected,
the PPIF_SELECTED flag is set for that item.

While processing the following request

Info.Control(INVALID_HANDLE_VALUE,
FCTL_GETPANELINFO,
&PInfo);

FAR call the GetOpenPluginInfo exported function of |
to which the panel belongs. FAR contains a protection
endless recursion in the case when the plugin, from ins
GetOpenPluginInfo() function, also calls

Info.Control(...,FCTL_GETPANELINFO),tl
secondary call of GetOpenPluginInfo() will not

In some cases (e.g. searching in archives by A1t -F7)
plugin panel is not really created, for that reason you
the return value of the Control function, as to not crast
most unfitting moment by working on an none existing

o Attemwﬂl!e Panelltems and SelectedItems fields of t
Panellnfo structure will have different addre:
each new call of FCTL_GETPANELINFO
FCTL_GETANOTHERPANELINFO.

Similar to
FCTL_GETPANELINFO/FCTL_GETANOTHERPAN
but the Panelltems and the SelectedlItems fields of the]
structure are not filled and are set to NULL. This comm
intended to be used when only the common informatio
the active/passive panel is needed, without any concret
information on elements in that panel.

Redraws the plugin active/passive panel.

Param can be either NULL or the address of a PanelRe
structure, so you can set a new cursor position and the

element for that panel. If Param is set to NULL, the cu
position and the top element will not be changed.

If hPlugin equals INVALID_HANDLE_VALUE, then
panel will be redrawn no matter what command was us
plugin.

The panel will be redrawn only if that panel is visible &
moment.

Sets numeric sort mode for the active/passive panel.
Param points to an integer value: 0 (turn numeric sort «

FCTL_SETPANELDIR
FCTL_SETANOTHERPANELDIR

FCTL_SETSELECTION
FCTL_SETANOTHERSELECTION

FCTL_SETSORTMODE
FCTL_SETANOTHERSORTMODE

FCTL_SETSORTORDER
FCTL_SETANOTHERSORTORDER

FCTL_SETVIEWMODE
FCTL_SETANOTHERVIEWMODE

FCTL_UPDATEPANEL
FCTL_UPDATEANOTHERPANEL

Command line

FCTL_GETCMDLINE

FCTL_GETCMDLINEPOS

(turn numeric sort on).
Setting Param to NULL is equivalent to setting the nur
off.

Sets the current directory of a plugin active/passive par
Param points to the directory name. If the plugin suppc
own panel, it will be closed after execution of this com

Note that this function resets the file selection in a dire
makes it impossible to restore by pressing Ctrl-M, ev
directory passed to this function is the same as the curr
directory.

Sets active/passive panel items selection.

Param points to the PanelInfo structure filled by a prev
FCTL_GETPANELINFO or
FCTL_GETANOTHERPANELINFO call. You must n
other Control functions between FCTL_GETPANELI]
FCTL_SETSELECTION.

To change selection, set or clear PPIF_SELECTED fla
items of the array pointed to by the Panelltems memb
PanelInfo structure. Note that FCTL_GETPANELINF(
FCTL_GETANOTHERPANELINFO return PPIF_SEIL
in this array set to its real state.

You need to call FCTL_REDRAWPANEL to show the

Sets the active/passive panel sort mode.
Param points to an integer containing the new sort mox
"Sort modes").

Sets the active/passive panel sort order.

Param points to an integer value representing the sort
for normal order or 1 for reverse order.

Setting Param to NULL is equivalent to setting the nor
order (0).

Sets active/passive panel view mode.

Param points to an integer containing the new view m
number, from 0 to 9.

Setting Param to NULL is equivalent to setting mode (

Updates plugin active/passive panel contents.
If Param is NULL, the file selection will be cleared, otl
selection is not changed.

Gets the command line contents.
Param points to the buffer to receive data (the buffer sl
be smaller than 1 Kb).

Gets the cursor position in the command line.

FCTL_GETCMDLINESELECTEDTEXT

FCTL_GETCMDLINESELECTION

FCTL_INSERTCMDLINE

FCTL_SETCMDLINE

FCTL_SETCMDLINEPOS

FCTL_SETCMDLINESELECTION

Other
FCTL_SETUSERSCREEN

FCTL_GETUSERSCREEN

Param

Param points to a variable of type int that receives the
position.

Retrieves the selected text in the command line.
Param points to the buffer to receive data (the buffer sl
be smaller than 1 Kb).

Returns the parameters of the text selection in the comu
line.
Param points to a CmdLineSelect structure.

Inserts text into the command line beginning from the «
cursor position.
Param points to a zero terminated string to insert to the
command line.

Sets the command line contents.
Param points to a zero terminated string to copy to the
command line.

Sets the cursor position in the command line.
Param points to a variable of type int that contains the
cursor position.

Selects a text fragment in the command line.
Param points to a CmdLineSelect structure.

Copies the current screen contents to the FAR user scre
(which is displayed when the panels are switched off).
Param must be NULL.

Outputs the FAR user screen buffer (which is displayec
the panels are switched off) to the screen.
Param must be NULL.

Points to control command parameters. Read the description of the Command

parameter for concrete information.

eturn value

If the function succeeds, the return value is TRUE. If the function fails, FALSE

is returned.

emarks

Usually you do not need to update or redraw panel and close plugin directly.
FAR does this itself, when performing standard operations. These functions can
become necessary to implement some non-standard functionality.

e also:
AdvControl, EditorControl

reeDirList

in | service functions

The FreeDirList function releases the memory allocated for files list by
GetDirList and GetPluginDirList functions.

void WINAPI FreeDirList(
const struct PluginPanellItem *Panelltem

),
arameters
Panelltem

Address of an array of PluginPanelltem structures.

eturn value
None.

ietDirList

in | service functions

The GetDirList function returns the list of files in the specified directory
including subdirectories.

int WINAPI GetDirList(
const char *Dir,
struct PluginPanelItem **pPanelItem,
int *pItemsNumber

),

arameters
Dir

Name of the directory to scan. It can be a name only or a full pathname.
pPanelltem

Points to the variable that will receive the address of an array of

PluginPanelltem structures.
When this array is no longer needed, it must be passed to the FreeDirList

function.

pltemsNumber

Points to the variable that will receive the number of PluginPanelltem
PluginPanelltem structures.

eturn value
If the function succeeds, the return value is TRUE. If the function fails or

directory scanning is cancelled by the user, FALSE is returned.

emarks

1. The function returns file names relative to the specified directory. For
example, if Dir is D: \DIR1\DIR2, file names will be in DIR2\file.ext
format.

2. The user can interrupt the directory scanning process by pressing Esc. In
this case the function will return FALSE.

e also:

GetPluginDirList

ietMsg

in | service functions

The GetMsg function returns a message from the language file. It is strongly
recommended to use this function instead of hard-coding text constants directly
in the program, because it allows to localize your plugin and switch the language
of FAR and plugins simultaneously.

const char* WINAPI GetMsqg(
int PluginNumber,

int MsgId

)i

arameters

PluginNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo
function.

Msgld
Index of the message in the message file.

eturn value
The function returns the address of the requested message.

emarks

All *. 1ng files in plugin directory are considered as language files. FAR selects
the necessary * . 1ng file depending on the current language. Before using
GetMsg first time, all messages are loaded into the memory, so they can be
accessed later much faster and you don't need to store the messages in an
additional buffers.

xample
In all the examples, as you can see, the following function is used:
C/C++:

const char *GetMsg(int MsgId)

{
return(Info.GetMsg(Info.ModuleNumber,Msgld));

}

Delphi:

function GetMsg(MsgId: TMessageStrings): PChar;
begin

result:= Info.GetMsg(Info.ModuleNumber, integer(MsgId)
end;

Info is declared as a global variable:
struct PluginStartupInfo Info;

...and initialized in the SetStartuplnfo function:

void WINAPI _export SetStartupInfo(struct PluginStart
{

::Info=*Info;

e also:
Language and help files | LocMsg

ietPluginDirList

in | service functions

The GetPluginDirList function returns list of files in the specified directory
(including subdirectories) in the file system emulated by a plugin.

int WINAPI GetPluginDirList(
int PluginNumber,
HANDLE hPlugin,
const char *Dir,
struct PluginPanelItem **pPanelItem,
int *pItemsNumber

),

arameters

PluginNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo
function.

hPlugin
Current plugin instance handle. If the plugin handle is equal to
INVALID_HANDLE_VALUE, the value of PluginNumber is ignored and the
function works with the plugin that controls the active panel.

Dir
Name of the plugin directory to scan. It must be in the form acceptable by the
SetDirectory function of the plugin.

To keep the current plugin directory unchanged after the GetPluginDirList
call, either Dir has to be a subdirectory of the current plugin directory, or the
SetDirectory function of the plugin must be able to process a directory name
returned by GetOpenPluginInfo. Otherwise the current directory will be
changed and you should be ready to restore it.

pPanelltem
oints to the variable that will receive the address of an array of

PluginPanelltem structures.
When this array is no longer needed, it must be passed to the FreeDirList

function.

pltemsNumber

Points to the variable that will receive the count of PluginPanelltem structures.

eturn value

If the function succeeds, the return value is TRUE. If the function fails or
directory scanning is cancelled by the user, FALSE is returned.

emarks

1. Returned file names are relative to the specified directory. For example, if
Dir is D: \DIR1\DIR?2, file names will be in DIR2\file.ext format.

2. The user can interrupt the directory scanning process by pressing Esc,
which will cause the function to return FALSE.

e also:
GetDirList

lenu

in | service functions

The Menu function shows a menu.

int WINAPI Menu(
int PluginNumber,
int X,
int Y,
int MaxHeight,
DWORD Flags,
const char *Title,
const char *Bottom,
const char *HelpTopic,
const int *BreakKeys,
int *BreakCode,
const struct FarMenuItem *Item,
int ItemsNumber

),

arameters

PluginNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo
function.

XY

Top left menu corner coordinates.
To assign coordinates automatically set them to -1

MaxHeight

Maximum count of visible menu items. If it is less than the items number,
items will be scrolled.
To use maximum possible height set this parameter to 0.

Flags
Can be a combination of the following values (FARMENUFLAGS enum):
Constant Description
FMENU_AUTOHIGHLIGHT If specified, item hot keys will be assigned

automatically, beginning from the first item.

FMENU_CHANGECONSOLETITLE If specified, the the title of the console
window will be set to Title (if Title is not

empty).

FMENU_SHOWAMPERSAND Shows ampersands in menu item texts.
Without this flags ampersands are used to
specify item hot keys.

FMENU_REVERSEAUTOHIGHLIGHT | If specified, item hot keys will be assigned
automatically, beginning from the last item.

FMENU_USEEXT Instead of FarMenultem the FarMenultemEx
structure is used.

FMENU_WRAPMODE If specified, attempts to move the cursor
above the first item or below the last will
move the cursor to the last or the first item,
respectively.

It is recommended to always set this flag,
unless you have specific reasons not to do so.

If the FMENU_USEEXT flag is set then it is necessary to perform a type
cast:

struct FarMenuItemEx FooOEXx[]={

+i
Info.Menu(...,FMENU_USEEXT]|..., (const struct FarMen
Title
Menu title. Set to NULL if menu title is not needed.

Bottom

Menu bottom title. Set to NULL if menu bottom title is not needed.
HelpTopic

The help topic associated with the menu. Set to NULL if help is not needed.
BreakKeys

Address of an array with virtual key codes (VK_*), that will close the menu.
The last array item must be 0. If you do not need to define such keys in
addition to the standard keys (KEnter>, <Esc> and <F10>), set this
parameter to NULL. The high word of an array item can be either O or a
combination of PKF_CONTROL, PKF_ALT and PKF_SHIFT flags to
describe corresponding key combinations.

For example in the MultiArc plugin in the "Archive commands" menu
(Shift-F3 on archive) the F4 keystroke is processed in the following way:

int BreakCode;

int BreakKeys[2]={VK_F4,0};

ExitCode=Info.Menu(Info.ModuleNumber,-1,-1,0, FMENU_
GetMsg(MArcCmdTitle), GetMsg(MSelectF4),"Archd
(struct FarMenuItem *)MenuItems,Count);

if(ExitCode>=0)

{
if(BreakCode == 0) // F4 pressed
{
GetFormatName(MenuItems[Q].Text.Text);
ConfigCommands(Menultems[0@].Text.Text, 2+MenuDat
continue;
}
}
else

return FALSE;

BreakCode

Address of a variable that will receive the index in the BreakKeys array of the
key used to close the menu, or -1 if the menu was closed using one of the
standard keys. This parameter can be NULL.

Item

Address of an array of FarMenultem structures or if the FMENU_USEEXT
flag is specified, address of an array of FarMenultemEx structures. Each
structure describes one menu item.

ItemsNumber
Number of FarMenultem structures.

eturn value

This function returns either -1, if the user cancelled the menu, or the selected
menu item number.

xample
This example is taken from the EditCase plugin:

struct FarMenuItem Menultems[2];
memset (Menultems, 0, sizeof (Menultems));
strcpy(MenuItems[O].Text, GetMsg(MCaseLower));
strcpy(MenuItems[1].Text, GetMsg(MCaseUpper));
Menultems[0Q].Selected=TRUE;
int MenuCode=Info.Menu(Info.ModuleNumber, -1, -
1,0, FMENU_AUTOHIGHLIGHT | FMENU_WRAPMODE,
GetMsg(MCaseConversion), NULL,
"Contents",NULL, NULL,
MenuItems,
sizeof(MenulItems)/sizeof (Menultems[0]));
if (MenuCode<0)
return(INVALID_HANDLE_VALUE);

Info is defined as a global variable:
struct PluginStartupInfo Info;
...and is initialized in the SetStartupInfo function:

void WINAPI _export SetStartupInfo(struct PluginStart
{

: :Info="1Info;

e also:
FarMenultem

estoreScreen

in | service functions

The RestoreScreen function restores a screen area previously saved by
SaveScreen.

void WINAPI RestoreScreen(
HANDLE hScreen,

),

arameters

hScreen

A handle received from SaveScreen. This handle is no longer usable after
calling RestoreScreen.

eturn value
None.

emarks

To improve speed RestoreScreen redraws only the modified screen area. But if
there was screen output produced by non-FAR functions (for example, if an
external program was executed from a plugin), RestoreScreen cannot correctly
calculate this area. In that case you need first to call RestoreScreen with
hScreen set to NULL to inform FAR that the screen was changed and then call
RestoreScreen as usual with SaveScreen handle.

e also:
SaveScreen

aveScreen

in | service functions

The SaveScreen function saves a screen area. To restore it use the RestoreScreen
function.

HANDLE WINAPI SaveScreen(
int X1,
int Y1,
int X2,
int Y2

),

arameters
X1,Y1,X2,Y2
Screen area coordinates. If X2 or Y2 is equal to -1, they are replaced with

screen right or screen bottom coordinate correspondingly. So
SaveScreen(0,0, -1, -1) will save the entire screen.

eturn value

The return value is a handle that can be passed to RestoreScreen. All handles
allocated by SaveScreen must be passed to RestoreScreen to avoid memory
leaks.

e also:
RestoreScreen

howHelp

in | service functions

The ShowHelp function shows the specified topic from a given hlf-file.

BOOL WINAPI ShowHelp(
const char *ModuleName,
const char *HelpTopic,
int Flags

),

arameters

ModuleName

Name of the plugin module. It is passed to the plugin in the SetStartuplnfo
function.

HelpTopic
Help topic. If this parameter is NULL, then the topic "Contents" will be used.
Flags
Can be one of the following values (FarHelpFlags enum):
Constant Description
FHELP_SELFHELP Assume ModuleName is Info.ModuleName and

show the topic from the help file of the calling
plugin. If HelpTopic begins with a coulomb ' : ', the
topic from the main FAR help file will be shown (in
that case ModuleName is ignored).

FHELP_FARHELP ModuleName is ignored and the topic from the main
FAR help file will be shown. In this case you do not

need to start the HelpTopic with a coulomb ' : '.

FHELP_CUSTOMFILE Assume ModuleName specifies full path to a hlf-file
(c:\path\filename).

FHELP_CUSTOMPATH Assume ModuleName specifies full path to a folder
(c:\path) from which a help file will be selected
according to current language settings.

FHELP_USECONTENTS If the specified HelpTopic is not found, will try to
show the "Contents" topic. This flag can be
combined with other flags.

FHELP_NOSHOWERROR Disable file or topic not found error messages for this

function call. This flag can be combined with other
flags.

eturn value

TRUE - parameters were successfully transferred to the Help Manager.
FALSE - one of the following errors occurred:

Flags contains an illegal value.

ModuleName = NULL and FHELP_FARHELP flag is not set.
Specified help file or topic were not found by the Help Manager.
Help file or topic were not found while browsing the help file.

xample

For convience when frequently used the following function can be used in your
plugin:

void ShowHelp(const char *HelpTopic)

{
Info.ShowHelp(Info.ModuleName, HelpTopic,Q);

}

Info is defined as a global variable...
struct PluginStartupInfo Info;

...ans is initialized in the SetStartuplInfo function:

void WINAPI _export SetStartupInfo(const struct Plugi
{

: :Info="1Info;

e also:
Help files

ext

in | service functions

The Text function writes a text string to the screen. FAR uses internal screen
buffering to improve performance so for compatibility reasons plugins must not
write text directly to screen, but should use the Text function instead.

void WINAPI Text(
int X,
int Y,
int Color,
const char *Str

),

arameters
XY

Text coordinates. The origin of the coordinate system (0,0) - is at the top left
cell of the screen.

Color
Text color attributes.
Str

Null-terminated text string. To display changes immediately call Text with Str
set to NULL just after writing the string, for FAR to flush its screen buffer. But
do not overuse it, because frequent buffer flushing decreases overall
performance.

eturn value
None.

ervice functions - Editor

in
Function Description
Editor allows to invoke the FAR internal editor.
EditorControl provides access to low level internal editor API.
e also:

Exported functions, Structures, Archive support, Addons, Win32
structures and function

ditor

in | service functions

The Editor function allows to invoke the FAR internal editor.

int WINAPI Editor(
const char *FileName,
const char *Title,
int X1,
int Y1,
int X2,
int Y2,
DWORD Flags,
int StartLine,
int StartChar

),

arameters

FileName
Name of the file to edit. Unless EF_CREATENEW is set in the Flags
parameter, must specify an existing file.
Title
Null-terminated text string that will be shown in the top line of the editor
window. If this parameter is NULL, the file name will be used.
X1,Y1,X2,Y2

Editor window coordinates. If X2 or Y2 is -1, they will be replaced with the
screen width or height. If X1 or Y1 are less than zero, then their are taken as
Zero.

Flags

Editor flags. Can be a combination of the following values (EDITOR_FLAGS
enum):

Flag Description

EF_NONMODAL Creates a non-modal editor window. If this flag is
present, the user will be able to switch to other
FAR windows.

The plugin will regain control only after the editor

is closed, or after the user switches to a different
window (e.g. by pressing Ctr1+Tab). If you
need to regain control immediately after the editor
has been opened, use the
EF_IMMEDIATERETURN flag.

EF_IMMEDIATERETURN If this flag is set, the Editor function returns
immediately after the editor has been opened. The
newly opened editor becomes the active window.
This flag can be used only with
EF_NONMODAL.

EF_DELETEONCLOSE Instructs FAR to delete the file being edited after
the editor is closed. If the directory with the edited
file contains no other files, it will also be deleted.
If only the file needs to be deleted use the
EF_DELETEONLYFILEONCLOSE flag.

The file will not be deleted:

1. if the user switched to the viewer by
pressing F6, or if the file is open in other
viewer or editor windows.

2. if the user has saved the file.

EF_DELETEONLYFILEONCLOSE | Similar to EF_DELETEONCLOSE, but only the
file will be deleted. The directory will not be
deleted even if it is empty. This flag has a lower
priority than EF_DELETEONCLOSE.

EF_CREATENEW Opens a new (non-existing) file in the editor,
similar to pressing Shift-F4 in FAR.

EF_ENABLE_F6 Enables switching from the editor to the viewer by
pressing F6.

EF_DISABLEHISTORY Disables adding the file name to the view/edit
history (A1t -F11). If this flag is not specified,
the name is added to the history.

StartLine

Number of the line to which the cursor is positioned (0-based).
StartChar

Initial cursor position in the line (1-based).

eturn value

This function can return one of the following values (EDITOR_EXITCODE
enum):

Returned value Description

EEC_OPEN_ERROR File open error, occurs in the following cases:

e FAR could not allocate enough memory while
creating the editor (as an object);

e if FileName is an empty line;

e if FileName is a path to an existing folder;

o if the file to be opend is read-only and the user
refused to continue editing this file in the
corresponding dialog.

EEC_MODIFIED Successful return. File was modified. This value is
also returned if the EF_NONMODAL flag was used.

EEC_NOT_MODIFIED Successful return. File was not modified.
EEC_LOADING_INTERRUPTED | File loading was stopped by user.

emarks

If StartLine and StartChar are both equal to -1 and the option "Save file position'
is enabled, the previously saved file position will be restored.

1

e also:
Viewer

ditorControl

in | service functions

The EditorControl function provides access to the low level API of the internal

editor.

int WINAPI EditorControl(

int Command,
void* Param

),

arameters

Command

Control command type. Can be one of the following
(EDITOR_CONTROL_COMMANDS enum):

Command

ECTL_ADDCOLOR

ECTL_ADDSTACKBOOKMARK

ECTL_CLEARSTACKBOOKMARKS
ECTL_DELETEBLOCK

ECTL_DELETECHAR
ECTL_DELETESTACKBOOKMARK

ECTL_DELETESTRING
ECTL_EDITORTOOEM

ECTL_EXPANDTABS

ECTL_GETBOOKMARKS

Description

Specifies color for a line area. This command can be applied
to specify several color areas. Param points to an EditorColo
line does not exist, this command will return FALSE, otherw

Create navigation position ("stack bookmark") at current edit
positions with index greater then current one will be deleted.
command is processed successfully, this command returns T]

Deletes all navigation positions. Param must be NULL.

Deletes the block currently selected in the editor. Returns TR
deleted successfully or FALSE in case the editor is locked (tt
no block is selected. Param must be NULL.

Deletes the character under cursor. Param must be NULL.

Deletes specified navigation position. Param contains index
deleted (0 and greater) or -1 for deleting current navigation p
positions can be recieved after executing ECTL._GETSTACF
with Param containing NULL.

If command is processed successfully, this command returns

Deletes the current line. Param must be NULL.

Converts text from the editor codepage to the OEM codepag
EditorConvertText structure.

Expands all tabulation characters in a line to spaces. Param |
that contains the number of the line to expand or -1 to proces

Returns information about bookmarks for the current editor. .

EditorBookMarks structure.
This command returns FALSE in case:

1. the file is not yet open;
2. Paramis NULL;

If the command succeeds TRUE is returned.

ECTL_GETSTACKBOOKMARKS

Returns information about navigation positions ("'stack booki
Param points to an EditorBookMarks structure or contains N
count of navigation positions were successfully set (or summ
count in case if Param was NULL).

ECTL_GETCOLOR

Gets the color of a line area. Param points to an EditorColor
string or the specified color area does not exist, this comman
otherwise TRUE.

ECTL_GETINFO

Gets editor information. Param points to an EditorInfo struct

ECTL_GETSTRING

Gets information about a line. Param points to an EditorGets
string will be in the editor codepage.

// get the first line of the edited fil
struct EditorGetString egs;
egs.StringNumber=0;
Info.EditorControl(ECTL_GETSTRING, &egs)

ECTL_INSERTSTRING

Inserts a new line at the current cursor position and moves th
the new line or to the indented position. If Param oints to an
the value 1, indent will be used when executing this comman
Param to NULL or pass 0 in the variable pointed to by Paran
same as if the user presses <Enter> in the editor; for examj
inserted into the new line if it does not contain any characters
position.

// insert an empty string without inder
Info.EditorControl(ECTL_INSERTSTRING, O]

ECTL_INSERTTEXT

Inserts text at the current cursor position. Param points to a r
the OEM codepage. The command correctly processes newli
is processed in the same way as it it had been entered from tt

// insert the string "Text" at the curr
Info.EditorControl(ECTL_INSERTTEXT, "Te»

ECTL_NEXTSTACKBOOKMARK

Go to next navigation position.
Param must be NULL. If command is processed successfully
TRUE, otherwise FALSE.

ECTL_OEMTOEDITOR

Converts text from the OEM codepage to the editor codepag
EditorConvertText structure.

ECTL_PREVSTACKBOOKMARK

Go to previous navigation position.If there were no navigatic

ECTL _ADDSTACKBOOKMARK command, current editor
new navigation position before executing this command.
Param must be NULL. If command is processed successfully
TRUE, otherwise FALSE.

ECTL_PROCESSINPUT

Passes an INPUT RECORD structure to the internal editor fi
to an INPUT RECORD structure.

Note: if your plugin exports the ProcessEditorInput function,
immediately passed to that function. The scheme is simple:

case ECTL_PROCESSINPUT:
if (ProcessEditorInput(Param))
return(TRUE);

So if you use EditorControl (ECTL_PROCESSINPUT
ProcessEditorInput function, you should take care to avoid ir

ECTL_PROCESSKEY

This command allows to send keystrokes to the internal editc
keystrokes are passed in Param.

The internal key codes are used (see farkeys.hpp).

This command always returns TRUE.

// go to the end of the file
Info.EditorControl(ECTL_PROCESSKEY, (voi

ECTL_QUIT

Closes the editor. Any unsaved information will be lost. Parc
command always returns TRUE.

ECTL_READINPUT

Fills the INPUT RECORD structure with data recieved from
Param points to an INPUT_RECORD (this structure is defin
the ReadConsolelnput function).

ECTL_REALTOTAB

Converts real string position to screen position. If string does
characters, source and result positions will be equal. Param |
structure.

ECTL_REDRAW

Redraws the editor window. Param must be NULL.

ECTL_SAVEFILE

Saves the file currently being edited. Param points to anEdit
Param is NULL, the default file name and format (DOS-forn
"\r\n", Unix-format - "\n"). If the file is saved successfully, th
otherwise FALSE.

ECTL_SELECT

Selects or deselects a block. Param points to an EditorSelect

ECTL_SETKEYBAR

Allows to control key bar titles in the editor:
Param = NULL - restores the previous value
Param = -1 - redraws the key bar

Param = pointer to a KeyBarTitles structure.

This command cannot be used in the code that processes the
because when this event is processed, the key bar titles objec
This command returns TRUE on success or FALSE if it wasi
titles (if the key bar titles object does not yet exist).

ECTL_SETPARAM

ECTL_SETPOSITION
ECTL_SETSTRING

ECTL_SETTITLE

ECTL_TABTOREAL

ECTL_TURNOFFMARKINGBLOCK

Param

Changes the settings of the current editor. Param points to ar
structure.

This function returns TRUE if the settings have been success
otherwise.

Sets the cursor position. Param points to an EditorSetPositio

Sets the text of a line. Param points to an EditorSetString str
be in the editor codepage.

Sets the editor window title (top status line). The standard tit
restored after the plugin has finished processing. Param poin
text string that will be used as the title.

// DrawLine\DrawLine.cpp: SetTitle func
Info.EditorControl(ECTL_SETTITLE, (char

Converts screen cursor position to a real string position. If sti
tabulation characters, source and result positions will be eque
EditorConvertPos structure.

Resets the editor flag that is set while the user is marking a b
internal to FAR Manager and is not used by plugins. Howeve
defects may appear if the user starts marking a block, then la
lunched automatically) and the plugin modifies, for example,
Therefore, you should use this command before returning co
plugin modifies the text in the editor, block selection or cursc
Param must be NULL.

Points to control command parameters. Read the description of the Command
parameter for concrete information.

eturn value

If the function succeeds, the return value is TRUE. If the function fails, FALSE

is returned.

emarks

The editor window contents is updated upon any active user operation. Call the
ECTL_REDRAW command to force an update after any changes to the

contents.

e also:
AdvControl, Control

ervice functions - Viewer

in
Function Description
Viewer allows to invoke the internal viewer.
ViewerControl allows to query and control the state of the internal
viewer
e also:

Exported functions, Structures, Archive support, Addons, Win32

structures and function

iewer

in | service functions

The Viewer function allows to invoke the FAR internal viewer.

int WINAPI Viewer (
const char *FileName,
const char *Title,
int X1,
int Y1,
int X2,
int Y2,
DWORD Flags

),

arameters
FileName

Name of the file to view.
Title

Text string that will be shown in the top line of the viewer window. If set to
NULL, the file name will be used as the title.

X1,YI1, X2,Y2

Viewer window coordinates. If X2 or Y2 equals -1, they will be replaced with
screen width or height. If X1 or Y1 is less than zero it is considered as zero.

Flags
Can be a combination of the following values (VIEWER_FLAGS enum):
Flag Desciption
VF_DELETEONCLOSE Instructs FAR to delete the viewed file after

closing the viewer. If the directory containing the
viewed file contains no other files, it will also be
deleted. If only the file needs to be deleted use
VF_DELETEONLYFILEONCLOSE. The file
will not be deleted if the user pressed F6 to switch
between viewing and editing, or if the same file is
open in a different editor or viewer instance.

VF_DELETEONLYFILEONCLOSE | Similar to VF_DELETEONCLOSE, but only the
file will be deleted. This flag has a lower priority

than VF_DELETEONCLOSE.

VF_DISABLEHISTORY Disables adding the file name to the viewer
history (A1t - F11). By default, the file name is
added to the history.

VF_ENABLE_F6 Enables switching from viewer to editor by

pressing F6.

VF_IMMEDIATERETURN Allows the plugin to receive control immediately
after the viewer is opened. The newly opened
viewer becomes the active window. This flag
makes sense only if combined with the
VF_NONMODAL flag.

VF_NONMODAL Creates a non-modal viewer window. If this flag is
present, the user will be able to switch to other
FAR windows.

The plugin will regain control only after the
viewer is closed, or after the user switches to a
different window (by pressing Ctr1-Tab). If
you need to regain control immediately after the
viewer has been opened, use the
VF_IMMEDIATERETURN flag.

eturn value

If the VF_NONMODAL flag is not specified, the function returns TRUE if
successful or FALSE if the file cannot be opened. If the flag is specified, the
function always returns TRUE.

e also:
Editor

iewerControl

in | service functions

The ViewerControl function allows to query and control the state of the internal
viewer.

int WINAPI ViewerControl(
int Command,
void *Param

),

arameters

Command

Control command type. Can be one of the following
(VIEWER_CONTROL_COMMANDS enum):

Command Description

VCTL_GETINFO Gets viewer information. Param points to a
Viewerlnfo structure. This command always returns
TRUE.

VCTL_QUIT Close the viewer. Param must be NULL. This

command always returns TRUE.

VCTL_REDRAW Redraws the viewer window. Param must be NULL.
This command always returns TRUE.

VCTL_SETKEYBAR Allows to control key bar titles in the viewer:
Param = NULL - restores the previous value
Param = -1 - redraws the key bar
Param = pointer to a KeyBarTitles structure.
This command always returns TRUE.

VCTL_SELECT Controls selection. Param points to a ViewerSelect
structure.
If Param = NULL, selection will be reset.
If the command succeeds TRUE is returned.

VCTL_SETMODE Change viewer mode.
Param points to a ViewerSetMode structure. If the
command succeeds TRUE is returned.

VCTL_SETPOSITION Sets position in file. Param points to an
ViewerSetPosition structure. If the command
succeeds TRUE is returned.

Param

Read the description of the Command parameter for concrete information.

eturn Value

Read the description of the Command parameter for concrete information.

emark

In FAR 1.70 build 1579 and newer VCTL_QUIT when send from an information
or a giuck view panel does not close the viewer.

e also:
Service functions, ViewerInfo, ViewerSetPosition, ViewerSelect

ervice functions -

Dialog API

in
Function Description
DefDlgProc allows to call the internal dialog callback function.
Dialog shows a dialog.
DialogEx shows a dialog that allows to assign for it a callback
function.
InputBox a simple dialog box allowing to enter one line of text.
Message shows a message.
SendDIgMessage used to send a message to the dialog callback function.
e also:

Exported functions, Structures, Archive support, Addons, Win32

structures and function

efDIgProc

in | Dialog API | Events and Messages

The DefDIgProc function allows to call the internal dialog callback function.

LONG_PTR WINAPI DefDlgProc(
HANDLE hDlg,

int Msg,
int Paraml,
LONG_PTR Param2
)i
arameters
hDlIg
Dialog handle
Msg

One of the Dialog API messages or events.

Paraml
The 1st parameter.

Param?2
The 2nd parameter.

eturn value
The return value depends on the Msg parameter.

xample
A fragment from the Reversi game dialog callback proc:

LONG_PTR WINAPI ReversiDialogProc(HANDLE hDlg, int Ms
{

return Info.DefDlgProc(hDlg,Msg,Paraml, Param2);
}

e also:

DialogEx
SendDlgMessage

ialog
in | Dialog API
The Dialog function shows a dialog.

int WINAPI Dialog(
int PluginNumber,
int X1,
int Y1,
int X2,
int Y2,
const char *HelpTopic,
struct FarDialogItem *Item,
int ItemsNumber

),

arameters

PluginNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo
function.

X1,Y1,X2,Y2
Dialog coordinates. You can specify them explicitly or use "Width Xx
Height" formula - in this case both X1 and Y1 must be set to -1, while X2
and Y2 define dialog width and height respectively. In the latter case the dialog

will be automatically centered on the screen. X2 and Y2 parameters can't be
less than zero.

HelpTopic
Help topic associated with the dialog. It can be NULL if help is not required.

Item

Address of an array of FarDialogltem structures. Each structure describes one
dialog item.

ItemsNumber
Number of FarDialogltem structures.

eturn value
This function returns either -1, if the user cancelled the dialog, or the index of

the selected dialog item in the Item array.

emarks

FAR transforms Item elements to its own internal structure before creating a
dialog. After dialog processing is over, Item elements array is adjusted according
to changes made in the progress of user work with the dialog.

xample
Example from the configuration dialog of TempPanel plugin:

int Config()
{
struct InitDialogItem InitItems []={
DI_DOUBLEBOX, 3,1,72,8,0,0,0,0, (char *)MConfigTitl
DI_CHECKBOX,5,2,0,2,0,0,0,0, (char *)MConfigAddToL
DI_FIXEDIT,7,3,7,3,1,0,0,0,"",

4 4 4
DI_TEXT,9,3,0,3,0,0,0,0, (char *)MConfigDisksMenuL
DI_TEXT,5,4,0,4,0,0,DIF_BOXCOLOR|DIF_SEPARATOR, 0,
DI_CHECKBOX,5,5,0,5,0,0,0,0, (char *)MConfigCommor
DI_TEXT,5,6,0,6,0,0,DIF_BOXCOLOR|DIF_SEPARATOR, 0,
DI_BUTTON,0,7,0,7,0,0,DIF_CENTERGROUP,1, (char *)M
DI_BUTTON,®,7,0,7,0,0,DIF_CENTERGROUP, O, (char *)M

+s

struct FarDialogItem DialogItems[sizeof(InitItems)/

InitDialogItems(InitItems,DialogItems,
sizeof (InitItems)/sizeof(InitItems

int ExitCode=Info.Dialog(Info.ModuleNumber,
-1,-1,76,10,
"TempCfg",DialogItems,
sizeof(DialogItems)/sizeof(DialogIt
if (ExitCode != 7)
return(FALSE);

e also:
DialogEx, service functions, Message, InitDialogltems

ialogEXx

in | Dialog API | Events and Messages

The DialogEx function shows a dialog with the possibility to assign a callback
function for it.

int WINAPI DialogEx(
int PluginNumber,
int X1,
int Y1,
int X2,
int Y2,
const char *HelpTopic,
struct FarDialogItem *Item,
int ItemsNumber,
DWORD Reserved,
DWORD Flags,
FARWINDOWPROC DlgProc,
LONG_PTR Param

),

arameters

PluginNumber
Plugin module number. It is passed to the plugin in the SetStartupInfo function
X1,Y1,X2,Y2
Dialog coordinates. You can specify them explicitly or use "Width Xx
Height" formula - in this case both X1 and Y1 must be set to -1, while X2
and Y2 define dialog width and height respectively. In the latter case the dialog

will be automatically centered on the screen. X2 and Y2 parameters can't be
less than zero.

HelpTopic
Help topic for the dialog. If help is not needed, set this parameter to NULL.

Item

Address of an array of FarDialogltem structures. Each structure describes one
dialog item.

ItemsNumber

Number of FarDialogltem array elements.
Reserved

Reserved for future use. Must be O.
Flags

Set of flags, specifying additional dialog parameters. It can be a combination
of the following values (FARDIALOGFLAGS enumeration):

Flag Description
FDLG_WARNING Sets "Warning" color scheme for the dialog.
FDLG_SMALLDIALOG Allows to create dialogs with reduced border size.

When drawing separators (DIF_SEPARATOR) for
these dialogs it's assumed there's no space between
dialog border and dialog double-line frame.

FDLG_NODRAWSHADOW Don't draw shadow under the dialog.
FDLG_NODRAWPANEL Don't draw dialog panel.
DlgProc

Pointer to the FARWINDOWPROC dialog callback function.

Param

Data that will be sent to the dialog callback function with the
DN_INITDIALOG event.

eturn value

The function returns either -1 when user cancels the dialog or the selected dialog
item index (index of Item array element, it's emphasized in the example below).

emarks

1. FAR transforms Item elements to its own internal structure before creating a
dialog. After dialog processing is over, Item elements array is adjusted
according to the changes made in the progress of user work with the dialog.

2. Starting from version 1.71 build 2451 "small" dialogs
(FDLG_SMALLDIALOG flag) are drawn with a shadow. Set the
FDLG_NODRAWSHADOW flag to suppress drawing a shadow for these
dialogs.

xample

int ExitCode=Info.DialogEx(Info.ModuleNumber,
-1,-1,76,10,
"TempCfg",DialogItems,
sizeof(DialogItems)/sizeof(DialogIt

0,0,
DlgProc,0);
if (ExitCode !=7)
return(FALSE);

e also:
Dialog, DefDlgProc, SendDlgMessage, Service functions,

Message, InitDialogltems

IgProc

in | Dialog API | Events and Messages

In a plugin there must be a dialog callback function, which is responsible for
processing events and messages sent to the dialog. The function has four
parameters: dialog handle, message and two additional parameters.

Dialog handler function syntax is presented here, as it should appear in a plugin.

LONG_PTR WINAPI DlgProc(
HANDLE hDlg,

int Msg,
int Paraml,
LONG_PTR Param?2
)
arameters
hDlIg
Dialog handle
Msg

One of events or messages.

Paraml

Parameter 1

Param?2
Parameter 2

eturn value
The DIgProc function return value depends on the Msg parameter.
emarks

Sometimes information contained in Param1 and Param2 consists of two parts,
which are placed in two 16-bit words, composing each parameter. There're two
macros defined in Windows to provide access to each part of Param1 and

Param2 - LOWORD and HIWORD

They return high-order and low-order words respectively from long int 32-bit
value.

xample
Dialog handler code fragment for Reversi game:

LONG_PTR WINAPI ReversiDialogProc(HANDLE hDlg, int Ms
{

struct FarDialogItem DialogItem;

struct FarListItem *ListItems;

int 1i;

switch(Msqg)
{
case DN_INITDIALOG:
// Get information about the element
Info.SendDlgMessage(hDlg, DM_GETDLGITEM, 75, (LONC
ListItems=DialogItem.ListItems->Items;

NewGame (hD1lg);
return FALSE;

case DN_HELP:

{
// Show different help topics depending on game

static char *Help[3]={"Contents", "Rule", "Recomn

JavaScript:link7.Click()
JavaScript:link8.Click()

1f(NumPl1==2 && NumPl2 == 2)
1i=0;

else if(NumPli+NumPl2 > 16)
=2

else
i=1;

return (LONG_PTR) (Help[i]);

case DM_CLOSE:
// Check the element with which the user tries
if(Paraml !'= 10 && Paraml > 0)
return FALSE; // one can't close the dialog
break;

}

// Let the Dialog Manager process other events and
return Info.DefDlgProc(hDlg,Msg,Paraml, Param2);

}

e also:
DefDlgProc, DialogEx, SendDlgMessage

1putBox

in | service functions

The InputBox function displays a simple dialog box allowing to enter one line
of text.

int WINAPI InputBox(
const char *Title,
const char *Prompt,
const char *HistoryName,
const char *SrcText,
char *DestText,
int DestLength,
const char *HelpTopic,
DWORD Flags

),

arameters

Title

Iput dialog title. Can be NULL or "".
Prompt

Prompt text (text above the input line). Can be NULL or "".

HistoryName

Name of the "history" record for the input line. Set to NULL if history is not
needed.

SrcText
The initial value of the input line. Can be NULL or "".
DestText

Points to the result string. Can point to the same buffer as SrcText, but you
must reserve enough space.

DestLength
Size of destination buffer.
HelpTopic
Help topic for the inputbox in the format of "<FullPath>Topic", e.g.:

"<D:\\FAR\\Plugins\\Foo\\>FooInfo"

Set to NULL if help is not used.
Flags
Can be a combination of the following values (INPUTBOXFLAGS enum):

Constant Description

FIB_ENABLEEMPTY the function will return true even if the input line is
empty.

FIB_PASSWORD used to input passwords - entered text is represented
by ' *' on the screen.

FIB_EXPANDENV after a successful return, any environment variables
present in the input line will be replaced by their
values in the DestText buffer, e.g. if the user entered
'%TEMP%', then DestText will contain 'C: \TEMP'.

FIB_NOUSELASTHISTORY if SrcText is empty and HistoryName is not NULL,
then do not initialize the input line from the history.

FIB_ BUTTONS displays a separator and the [OK] and [Cancel]
buttons below the input line. The dialog will grow by
2 lines.

FIB_NOAMPERSAND the ampersand character will not be shown in the
prompt string but can instead be used to define a
hotkey.

eturn value

The function returns TRUE in case of successful user input, and FALSE in case
of user interruption.

emarks

FAR Manager uses this function to promt the user when creating a folder:

Make folder

Create the folder
1

xample

e also:
Dialog

lessage

in | service functions

The Message function shows a message.

int WINAPI Message(
int PluginNumber,
DWORD Flags,
const char *HelpTopic,
const char * const *Items,
int ItemsNumber,
int ButtonsNumber

),

arameters

PluginNumber

Number of the plugin module. It is passed to the plugin in the SetStartupInfo
function.

Flags

Can be a combination of the following values (FARMESSAGEFLAGS
enum):

Flag Description

FMSG_WARNING Warning message colors are used (white text on
red background by default).

FMSG_ERRORTYPE If error type returned by GetLastError

is known to FAR or Windows, the error
description will be shown in the first message
line. In that case, the text given by the plugin will
be displayed below the error description.

FMSG_KEEPBACKGROUND Do not redraw the message background.

FMSG_DOWN Display the message two lines lower than usual.

JavaScript:link27.Click()

FMSG_LEFTALIGN

FMSG_ALLINONE

FMSG_MB_OK
FMSG_MB_OKCANCEL
FMSG_MB_ABORTRETRYIGNORE

FMSG_MB_YESNO
FMSG_MB_YESNOCANCEL
FMSG_MB_RETRYCANCEL

HelpTopic

Left align the message lines instead of centering
them.

In this case the Items parameter is not an array of
string pointers. Instead it points to a single
string in which the lines of the message are
separated by the newline character '\n"'.

Minimal number of lines is - 2 - a title and one
message line.

If this flag is specified the ItemsNumber
parameter is ignored and the number of lines
shown is calculated automatically (taking into
account the button flags -FMSG_MB_*).

To suppress title output when this flag is
specified, start the line with a '\n"' character.

Additional button: <Ok>
Additional buttons: <Ok> and <Cancel>

Additional buttons: <Abort>, <Retry> and
<Ignore>

Additional buttons: <Yes> and <No>
Additional buttons: <Yes>, <No> and <Cancel>

Additional buttons: <Retry> and <Cancel>

The help topic associated with the message.Set to NULL if help is not used.

Items

Address of an array of pointers to null-terminated text strings. The first string
is the message title, the last ButtonsNumber strings are buttons, and all other
strings belong to the message body.

To draw a single border line start the string with a character with code 1

(\x001).

To draw a double border line start the string with a character with code 2

(\x002).

See also the description of the flag FMSG_ALLINONE

ItemsNumber

Number of strings in the array passed in the Items parameter. Minimal values -

2 lines.

ButtonsNumber

Number of strings which are shown as buttons. If one of the FMSG_MB_*
flags is set, this value is ignored.

eturn value

This function returns either -1, if the user cancelled the message (or the sysrem
could not allocate enough memory for internal buffers), or the number of the
selected button (for the first button 0 is returned, for the second 1 is returned,
and so on).

emarks

. In FAR Manager versions up to (and including) 1.70 beta 4 the maximum

number of items in a message (including the buttons) was limited to 13.

2. If ButtonsNumber is zero and none of the FMSG_MB_* flags is set the
plugin should restore the screen either by using RestoreScreen or in any
other way when the message output is no longer necessary

3. If ButtonsNumber is not equal to zero, the screen will be restored by FAR.

4. If Items is NULL or the total number of items is less than 2, the message is
not shown.

5. When FMSG_MB_* button flags are specified the ButtonsNumber
parameter is ignored.

6. It is possible to specify hotkeys for buttons.

7. When using the FMSG_ALLINONE flag you need to do an explicit
typecast to achieve error free compilation:

Info.Message(Info.ModuleNumber, Title
FMSG_ALLINONE | FMSG_MB_OKCANCEL, o
"HelpTopic", Tterd
(const char * const *)"Title\nItemi\nItem2\nItem3", I e
0,0);

or

const char *Msg="Title\nIteml\nItem2\nItem3\nOk\nCancel";

Info.Message(Info.ModuleNumber,
FMSG_ALLINONE,
"HelpTopic",
(const char * const *)Msg,
0,2);

xample

The following function displays a file deletion confirmation dialog:

HpaneHHe
EH HOTHTE MOMECTHTE E KoOpzHHY
bin.zip

BENSAETEN OTHEHHTE

BOOL IsDeleted(char *filename)

{
const char *Msg[5];
Msg[0]=GetMsg(MTitle); // message title
Msg[1]=GetMsg(MIsDeleted); // message body
Msg[2]=filename;
Msg[3]=GetMsg(MDelete); // last ButtonsNumber
Msg[4]=GetMsg(MCancel);
return Info.Message(Info.ModuleNumber,
9,
"DeleteFile",
Msg,
sizeof(Msg)/sizeof(Msg[0]),
2) == 0;
}

Info is defined as a global variable:

struct PluginStartupInfo Info;

...and is initialized in the SetStartupInfo function:

void WINAPI _export SetStartupInfo(struct PluginStart
{

::Info=*Info;

e also:
Dialog

endDIgMessage

in | Dialog API Messages

The SendDIgMessage function is used to send a message to the dialog callback
function.

LONG_PTR WINAPI SendDlgMessage(
HANDLE hDlg,

int Msg,
int Paraml,
LONG_PTR Param2
)i
rguments
hDlIg
Dialog handle
Msg

One of the Dialog API messages.
Paraml
The 1st parameter.

Param?2
The 2nd parameter.

eturn value
Return value depends on Msg value.

xample
A fragment from the Reversi game dialog callback proc:

LONG_PTR WINAPI ReversiDialogProc(HANDLE hDlg, int Ms
{

case DN_INITDIALOG:
//get element info
Info.SendDlgMessage(hDlg, DM_GETDLGITEM, 75, (LONC
ListItems=DialogItem.ListItems->Items;

NewGame (hD1lg);
return FALSE;

e also:
DialogEx, DefDlgProc

ddEndSlash

in | FarStandardFunctions

The FSF.AddEndSlash function is used to add a trailing backslash or slash to a
path. The symbol that will be added depends on those used in the path.

int WINAPI AddEndSlash(
char *Path

),

arameters

Path

A string containing the path to which you want to add a trailing slash or
backslash.

Note that Path must have enough space for an additional character.

eturn value

On success return value is TRUE, otherwise return value is FALSE.

emarks

1. The string must be large enough to contain an additional character ("\' or '/").

2. This function works with both types of slashes - normal and backslashes.

3. If a string already has a trailing slash it will be converted to the slash of
such type which is more common in the Path string.

4. No slash will be added at the end of the string if the string already contains
a trailing slash.

xample

toi

in | FarStandardFunctions

The FSF.atoi function converts a string to a 32-bit integer.

int WINAPI atoi(
const char *Str

),

arameters

Str
Points to a string to convert.

eturn value

If the function succeeds, return value is the converted value of the input string
Str, otherwise it returns 0.

emarks

The Str string parameter must be in the following form:
[ws][sn][ddd] where

ws - space or tab characters (ignored)

sn - sign - '+' or '-'

ddd - one or more decimal digits - from '0' to '9’
The function stops reading the input string at the first character that it cannot
recognize as part of a number. In case of overflow the return value is undefined.

xample

You can define and initialize a function pointer to use it later:

FARSTDATOI FarAtoi;
FarAtoi=Info.FSF->atoi;

I=FarAtoi(Str);
...or call the function directly:
I=Info.FSF->atoi(Str);

e also:
ESFE.atoi64 | ESE.itoa | ESE.itoa64

toi64

in | FarStandardFunctions

The FSF.atoi function converts a string to a 64-bit integer (__int64).

__int64 WINAPI atoi64(
const char *Str

),

arameters

Str
Points to a string to convert.

eturn value

If the function succeeds, return value is the converted value of the input string,
otherwise it returns 0i64.

emarks

The Str string parameter must be in the following form:
[ws][sn][ddd] where

ws - space or tab characters (ignored)

sn - sign - '+' or '-'

ddd - one or more decimal digits - from '0' to '9’
The function stops reading the input string at the first character that it cannot
recognize as part of a number. In case of overflow the return value is undefined.

xample
You can define and initialize a function pointer to use it later:

FARSTDATOI64 FarAtoi64;
FarAtoi64=Info.FSF->at0i64;

I_64=FarAtoi64(Str);
...or call the function directly:
I_64=Info.FSF->ato0i64(Str);

e also:
ESE.atoi | ESE.itoa | ESE.itoa64

search

in | FarStandardFunctions

The FSF.bsearch function allows to perform a binary search of a sorted array.

void* WINAPI bsearch(
const void *key,
const void *base,
size_t nelem,
size_t width,
int (__cdecl *fcmp)(const void *, const void *)

),

arameters
key
Points to a value that you want to search for.
base
Points to an element from which you want the search to be started.
nelem
The number of elements in the array you want to search.
width
The size of each element in bytes.
femp
User-defined comparison function that must be declared with __cdecl - C-
style calling convention. This function must compare two accepted elements
and return an integer value:
*elem1 < *elem2 - fcmp returns value <0

*elem1 == *elem2 - fcmp returns value ==

*elem1 > *elem2 - fcmp returns value > 0

eturn value

bsearch returns the address of the first occurrence of key value in the array base
or NULL if no occurrence found.

emarks

See the C/C++ run-time library reference for more information.

xample

e also:
FSF.qgsort

onvertNameToReal

in | FarStandardFunctions

The FSF.ConvertNameToReal function converts a relative name of a file object
to its full pathname and expands symbolic links (Windows 2000 reparse points).

int WINAPI ConvertNameToReal(
const char *Src,
char *Dest,
int DestSize

),

arameters

Src
Source string - a full or relative name of a file or a directory.

Dest
Destination string - the expanded pathname will be stored here. Can be NULL.

DestSize
Length of the destination string. If Dest=NULL, DestSize is ignored.

eturn value

The actual size needed to store the expanded pathname in Dest.

e For mounted drives that do not have a drive letter assigned, the function
will store into Dest a string similar to this one: "\\?
\Volume{273872e0-5e49-11d5-b614-
0080ad70bb9b}\Foo.bar"

o If, for example, the directory "D:\Foo\Bar" is a symbolic link to an existing
directory "C:\work\doc", calling this function for the file
"D:\Foo\Bar\1092\readme. txt" will return
"C:\work\Doc\1092\readme. txt".

emarks

1. The function correctly determines the real pathname only under Windows
2000 or later. Under earlier operating systems, it is not possible to
determine the real name of a symbolic link if one is encountered in the path.

2. Parameters Src and Dest can point to the same string.

xample

opyToClipboard

in | FarStandardFunctions

The FSF.CopyToClipboard function copies a text string to the Windows
clipboard.

int WINAPI CopyToClipboard(
const char *Data

)
arameters

Data
Pointer to the string that you want to place into the clipboard.

eturn value
On success the return value is TRUE, otherwise the return value is FALSE.

emarks
See FAQ:"There are dupes in the Clipboard..."

xample

eleteBuffer

in | FarStandardFunctions

The FSF.DeleteBuffer function is used to free an allocated buffer returned by
the PasteFromClipboard function.

void WINAPI DeleteBuffer(
void *Buffer

)
arameters

Buffer
Pointer to the buffer that needs to be freed.

eturn value
None.

emarks

This function must be used to free FAR memory blocks since plugin's memory
manager can be different from the one used in FAR.

xample

XpandEnvironmentStr

in | FarStandardFunctions

The FSF.ExpandEnvironmentStr function is used to expand environment
variables in a string to their values.

DWORD WINAPI ExpandEnvironmentStr(
const char *Src,
char *Dest,
size_t Size

),

arameters

Src

Pointer to a null-terminated string containing references to environment
variables of the form: %VariableName%. For each such reference, the
%VariableName% portion is replaced with the current value of that
environment variable.

The replacement rules are the same as those used by the command interpreter.
Case is ignored when looking up the environment-variable name. If the name
is not found, the %Var iableName% portion is left unchanged.

Dest

Pointer to the buffer that will receive the result of the expansion. May be the
same as Src.

Size
Size of the destination buffer (Dest), including the trailing "\0'.

eturn value

The function returns the number of characters stored into the buffer. If the
environment variable expansion fails, up to (Size-1) characters are copied from
Src to Dest.

emarks

1. This function is just a "wrapper" for the ExpandEnvironmentStrings

JavaScript:link22.Click()

Windows API function, so you can
see Windows API documentation for the details.

. Unlike ExpandEnvironmentStrings
FSF.ExpandEnvironmentStr always fills Dest buffer.
. Src and Dest must be in the OEM code page.

JavaScript:link23.Click()

arinputRecordToKey

in | FarStandardFunctions

The FSF.FarInputRecordToKey function is used to convert a key code from an
INPUT_RECORD structure to an internal FAR key code.

int WINAPI FarInputRecordToKey (
INPUT_RECORD *Rec

),

arameters

Rec
Pointer to an INPUT_RECORD structure you want to convert.

eturn value
Return value is an internal FAR key code.

emarks

xample

arKeyToName

in | FarStandardFunctions

The FSF.FarKeyToName is used to convert an internal FAR key code to a
string.

BOOL WINAPI FarKeyToName (
int Key,
char *KeyText,
int Size

),

arameters
Key
Internal FAR key code to convert to a string.
Keylext
String that will receive the result of conversion.
Size
The size of converted string, not including a null character, that will be copied
to KeyText, or O to use the whole length of converted string.
eturn value
If conversion succeeds TRUE is returned, otherwise if the passed Key is not
known to FAR, FALSE is returned.
emarks
If you use 0 in Size, then KeyText must be at least 32 bytes long.

arNameToKey

in | FarStandardFunctions

The FSF.FarNameToKey is used to convert a literal key name to an internal
FAR key code.

int WINAPI FarNameToKey(
const char *Name

),

arameters

Name

Points to a string containing a literal key name that you want to convert to an
internal FAR key code.

eturn value

If conversion succeeds an internal FAR key code is returned, otherwise if the
passed Name is not known to FAR, -1 is returned.

emarks

1. If the literal key name contains Ctrl or A1t part and the "letter", this
"letter" will be uppercased. For example,

FarNameToKey ("CtrlAltz") will return KEY_CTRLALTZ.

2. If the literal key name contains Ctr1l or A1t and the "letter from the
national alphabet" - this "letter" will be converted to it's keyboard
equivalent and uppercased. For example, FarNameToKey ("Ctrly")
will return KEY_CTRLE.

3. Shift-"letter" combination will be converted to the "LETTER" key
(Shift part will be removed and the "letter" will be uppercased).

arRecursiveSearch

in | FarStandardFunctions

The FSF.FarRecursiveSearch function is used to find a file in a directory tree
with a name matching the given mask.

void WINAPI FarRecursiveSearch(
const char *InitDir,
const char *Mask,
FRSUSERFUNC UserFunc,
DWORD Flags,
void *Param

),

arameters
InitDir

Name of the directory where you want to start the search.
("c:\far\plugins" for example).

Mask

File mask to search for. Starting with FAR 1.70 beta 4, all standard features of
FAR masks (multiple masks, character ranges, exclude masks and so on) are
supported (see File masks).

UserFunc

Pointer to a user-defined callback function of FRSUSERFUNC type that is
called for every found file. This function have to return TRUE to continue the
search or FALSE to stop it.

Flags
Can be a combination of the following flags (FRSMODE enumeration):
Flag Description
FRS_RETUPDIR When the search is stopped, the FullName parameter

of the UserFunc function will contain the directory
name where the file is found, instead of the name of
the file.

FRS_RECUR Recurse the directory tree while searching for the
specified file.

FRS_SCANSYMLINK The search will follow symbolic links just as if they

were directories.

If one of the scanned symbolic links is a "recursive"
one (for example, symbolic link points to one of it's
root directories) the search will continue until the
maximum allowed length of the full path string will
be reached.

Param

Application-defined value to be passed to the callback function specified in
the UserFunc parameter.

eturn value
None.

emarks

1. If you want to use the data passed in the parameters of the UserFunc
function after the search is complete, you must copy it to an internal
variable.

2. In FAR versions up to and including 1.70 beta 3 the "*" Mask is to be used
if you want to find all files.

3. In FAR versions up to and including 1.70 beta 3, when doing recursive
search, the file mask given in the Mask parameter is also used to determine
the directories searched. So, if you want to find a file recursively, in most
cases you should pass "*" in the Mask parameter and use the callback
function to stop the search when the needed file is found.

4. If the FRS_SCANSYMLINK flag is not set, symbolic links will not be
parsed, in no dependence of FAR configuration.

etFileOwner

in | FarStandardFunctions

The FSF.GetFileOwner function is used to determine the owner of the given
file.

int WINAPI GetFileOwner(
const char *Computer,
const char *Name,
char *Owner

),

arameters

Computer

Name of the computer containing the file for which you want to determine the
owner. If this value is NULL, then the owner of the file for the current system
is determined.

Name
The name of the file for which you want to determine the owner.

Owner

Pointer to a buffer that receives the file owner. This buffer must be large
enough to hold the returned string (minimum buffer size is - NM)

eturn value

If the function succeeds the return value is TRUE, otherwise the return value is
FALSE.

emarks

xample

ietNumberOfLinks

in | FarStandardFunctions

The FSF.GetNumberOfLinks function returns the number of hard links to the
specified file.

int WINAPI GetNumberOfLinks(
const char *Name

),

arameters

Name
Name of the file for which you want to obtain the number of links.

eturn value

If the function succeeds, the return value is the number of links to the specified
file, otherwise the return value is 0. On file systems other than NTFS the number
of links to a file is always 1.

e also:
MkLink

ietPathRoot

in | FarStandardFunctions

The FSF.GetPathRoot function is used to get the root directory from a given
path.

void WINAPI GetPathRoot (
const char *Path,
char *Root

),

arameters

Path
The path from which you want to get the root directory.

Root
Buffer that receives the root directory.

eturn value
None.

emarks
Root must be large enough to hold the resulting string:

e [.ocal drives - driver letter, colon, slash - C:\

e Reparse point (on NTFS 5 filesystem - Windows 2000) - something like
\\?\Volume{be877ec2-afd6-11d4-b5e3-806d6172696f}\ or
\??2\D:\

e UNC-path - host and share - \\host\share\

xample

ietReparsePointinfo

in | FarStandardFunctions

The FSF.GetReparsePointInfo function allows to determine the target (path to
the target drive and directory) of a symbolic link (reparse point).

int WINAPI GetReparsePointInfo(
const char *Src,
char *Dest,
int DestSize

),

arameters

Src

Source string. Must contain a full pathname to a symbolic link terminated with
a backslash ('\").

Dest
Destination string. May be NULL.

DestSize
Length of the destination string (Dest). If Dest=NULL, DestSize is ignored.

eturn value

The actual size of the string stored in Dest, or the required buffer size if Dest is
NULL.

The function returns 0 in case of an error:

¢ the function is not supported (the current operating system is not Windows
2000 or later);

e if the path is invalid (in this case, the system error code
ERROR_PATH_NOT_FOUND is set).

e symbolic link is on a network drive and in most cases real directory name
where symbolic link points to is useless.

emarks

1. Src and Dest can point to the same string.

2. The function works only under Windows 2000 or later.

Return value is practically useless for symbolic links on network drives.

4. Unlike ConvertNameToReal, this function can only be used for symbolic
links.

5. You can obtain a bit of information about symbolic links here.

W

xample

oa

in | FarStandardFunctions

The FSF.itoa function converts a 32-bit integer value into a string.

char * WINAPI itoa(
int Value,
char *Str,
int Radix);

arameters

Value
Integer value to convert.

Str

Pointer to a buffer that will receive the resulting string. The size of the Str
string must be large enougth to hold the converted string (max value = 32
symbols + "\0").

Radix
Base of Value. Must be in then range of 2 - 36.

eturn value

The return value is a pointer to the resulting string (Str).

emarks

If Radix equals 10 and Value is negative, the first character of the result string
will be the minus sign '-".

xample
You can define and initialize a function pointer to use it later:

FARSTDITOA FarItoa;
FarItoa=Info.FSF->itoa;

FarItoa(Value,Str,10);
...or call the function directly:
Info.FSF->itoa(Value, Str,10);

e also:
ESFE.atoi | ESE.at0i64 | ESE.itoa64

0a64

in | FarStandardFunctions

The FSF.itoa64 function converts a 64-bit integer value into a string.

char * WINAPI itoa64(
__1int64 Value,
char *Str,
int Radix);

arameters

Value
64-bit integer value to convert.

Str

Pointer to a buffer that will receive the resulting string. The size of the Str
string must be large enough to hold the converted string (max value = 64
symbols + "\0").

Radix
Base of Value. Must be in then range 2 - 36.

eturn value

The return value is a pointer to the resulting string (Str). There is no error return.

emarks

If Radix equals 10 and Value is negative, the first character of the resulting string
will be the minus sign '-".

xample
You can define and initialize a function pointer to use it later:

FARSTDITOAG64 FarItoa64;
FarItoa64=Info.FSF->itoa64;

FarItoa64(Value64,Str,10);
...or call the function directly:
Info.FSF->itoa64(Value64,Str,10);

e also:
ESFE.atoi | ESE.at0i64 | ESE.itoa

IsAlpha

in | FarStandardFunctions

The FSF.LIsAlpha function tests whether the given character is a letter. This
function works in OEM code page.

int WINAPI LIsAlpha(
unsigned Ch
)

arameters

Ch
The character you want to test.

eturn value
If the given character is a letter returns TRUE, otherwise returns FALSE.

emarks

xample

IsAlphanum

in | FarStandardFunctions

The FSF.LIsAlphanum function tests whether the given character is a letter or a
number. This function works in OEM code page.

int WINAPI LIsAlphanum(
unsigned Ch
)

arameters

Ch
The character you want to test.

eturn value

If the given character is a letter or a number returns TRUE, otherwise returns
FALSE.

emarks

xample

IsLower

in | FarStandardFunctions

The FSF.LIsLower function tests whether the given character is in lower case.
This function works in OEM code page.

int WINAPI LIsLower (
unsigned Ch
)

arameters

Ch
The character you want to test.

eturn value
If the given character is in lower case returns TRUE, otherwise returns FALSE.

emarks

xample

IsUpper

in | FarStandardFunctions

The FSF.LIsUpper function tests whether the given character is in upper case.
This function works in OEM code page.

int WINAPI LIsUpper(
unsigned Ch
)

arameters

Ch
The character you want to test.

eturn value
If the given character is in upper case returns TRUE, otherwise returns FALSE.

emarks

xample

Lower

in | FarStandardFunctions

The FSF.LLower function converts a character to lower case. This function
works in OEM code page.

unsigned WINAPI LLower (
unsigned UpperChar

),

arameters

UpperChar
The character you want to convert.

eturn value
This function returns the converted character.

emarks

xample

LowerBuf

in | FarStandardFunctions

The FSF.LLowerBuf function converts an array of characters, including null
ones, to lower case. This function works in OEM code page.

void WINAPI LLowerBuf(
char *Buf,
int Length

)i

arameters
Buf

An array of characters you want to convert.
Length

Size of the array in bytes.

eturn value
None.

emarks

xample

Stricmp

in | FarStandardFunctions

The FSF.LStricmp function compares two strings without case sensitivity. This
function works in OEM code page.

int WINAPI LStricmp(
const char *Stri,
const char *Str2

),

arameters

Strl, Str2
The strings you want to compare.

eturn value

This function returns:
-1 - if s1 < s2
1 - if s1 > s2
@ - if s1 == s2

emarks

xample

Striwr

in | FarStandardFunctions

The FSF.LStrlwr function converts a null-terminated string to lower case. This
function works in OEM code page.

void WINAPI LStrlwr(
char *s1

),

arameters

sl
The string you want to convert.

eturn value
None.

emarks

xample

Strnicmp

in | FarStandardFunctions

The FSF.LStrnicmp function compares portions of two strings without case
sensitivity. This function works in OEM code page.

int WINAPI LStrnicmp(
const char *Stri,
const char *Str2,
int Num

),

arameters

Strl, Str2
The strings you want to compare.

Num
Number of characters to compare.

eturn value

This function returns:
-1 - if s1 < s2
1 - if s1 > s2
@ - if s1 == s2

emarks

xample

Strupr

in | FarStandardFunctions

The FSF.LStrupr function converts a null-terminated string to upper case. This
function works in OEM code page.

void WINAPI LStrupr(
char *Str
)i

arameters

Str
The string you want to convert.

eturn value
None.

emarks

xample

Trim

in | FarStandardFunctions

The FSF.LTrim function removes all leading whitespaces from a string.

char* WINAPI LTrim(
char *Str

),

arameters

Str

The string from which you want to remove leading whitespace. The result will
be stored in the same string.

eturn value

Pointer to the resulting string.

e also:
ESE.RTrim | FSE.Trim

Upper

in | FarStandardFunctions

The FSE.LUpper function converts a character to upper case. This function
works in OEM code page.

unsigned WINAPI LUpper(
unsigned LowerChar

),

arameters

LowerChar
The character you want to convert.

eturn value
This function returns the converted character.

emarks

xample

UpperBuf

in | FarStandardFunctions

The FSF.LUpperBuf function converts an array of characters, including null
ones, to upper case. This function works in OEM code page.

void WINAPI LUpperBuf(
char *Buf,
int Length

)i

arameters
Buf

An array of characters you want to convert.
Length

Size of the array in bytes.

eturn value
None.

emarks

xample

IkTemp

in | FarStandardFunctions

The FSF.MkTemp function is used to create a temporary file name with the path
based on a specified template.

char* WINAPI MkTemp(
char *Dest,
const char *Prefix

),

arameters

Dest

Pointer to buffer to receive the temporary file name. It must be large enough to
hold the resulting string (the path to the temporary directory + 12 characters
for the name of the temporary file).

Prefix

Points to a null-terminated prefix string. At most four leading characters from
that string will be used as the filename prefix. FAR will pad the prefix with
zeroes if its length is less than 4 bytes.

If Prefix is NULL or points to an empty string, the standard prefix "FTMP"
will be used.

eturn value

Pointer to Dest containing the temporary file name, or NULL if function has
failed. A possible reason for the failure is that the temporary directory contains
too many files and should be cleaned.

emarks

1. The temporary file name is obtained by concatenating the temporary
directory path (returned by the GetTempPath

JavaScript:link24.Click()

Windows API function), the prefix
passed to the function and several random hexadecimal digits. The name
has the following format:

PrefXXXP.PTT

where
Pref - Pref is the 4-character prefix;
XXX - three random hexadecimal digits;
PP - two hexagemical digits from process ID (returned by the

GetCurrentProcessid Windows API
function);
TT - two hexagemical digits from thread ID (returned by the

GetCurrentThreadld Windows API
function).

2. Unlike in FAR 1.70 beta 3, this function does not create the file on the disk;
it only generates the name.

3. In FAR 1.70 beta 3, this function used only the first three characters of the
prefix.

xample
char TempName[NM];

JavaScript:link25.Click()
JavaScript:link26.Click()

FSF
FSF
FSF
FSF
FSF

.MkTemp (TempName, NULL) ; ->
.MkTemp (TempName, ""); ->
.MkTemp (TempName, "MY") ; ->
.MkTemp (TempName, "BaR"); ->
.MkTemp(TempName, "TstPlugin"); ->

"FTMPOOOD.
"FTMPOOOD.
"MYQO000D.
"BAROQOOD.
"TSTPOOOD.

P50"
P50"
P50"
P50"
P50"

IKLink

in | FarStandardFunctions

The FSF.MkLink function supports creating hard and symbolic links, directory
junctions and mounting local drives to the file system. The function works only
under Windows NT 4 or higher.

int WINAPI MkLink(

const char *Src,
const char *Dest,
DWORD Flags

)i

arameters
Src

Name of the file object to which the link is created.
Dest

Name of the created link.

Flags
Operation mode. One of the following flags (MKLINKOP enum):

Operation Description
FLINK_HARDLINK Create a hard link.
FLINK_JUNCTION Create a directory junction.
FLINK_VOLMOUNT Mount a local drive to the file system.
FLINK_SYMLINKFILE Create a file symbolic link.
FLINK_SYMLINKDIR Create a directory symbolic link.

You can combine operation mode with one of the following flags:

Flag Description
FLINK_SHOWERRMSG Show error messages.

FLINK_DONOTUPDATEPANEL | Do not update the panel after the link has been
created.

eturn value

1 - the link was created successfully.

0 - error creating link.

Possible error resons:

e For hard links:

o Src and Dest are on different partitions;
o the partition is not NTFS;

o the partition is not local;

o Src does not exist or is not a file;

Dest already exists;

(¢]

e For directory junctions:

o Src or Dest is not on the local partition;

o the partition is not NTFS 5.0;

o Src does not exist or is not a directory;

o Dest exists, but is not an empty directory;

e For volume mounts:

o Src or Dest is not on the local partition;

o the partition for Dest is not NTFS 5.0;

o Src does not exist or is not a local drive;
o Dest exists, but is not an empty directory;

emarks

1.

2.

3.

The links are created according to the following rules:
o hard links are created only for files within a single NTFS partition
(NT4/Win2K/XP);
o Directory junctions are created only for directories within local NTFS
partitions (Win2K/NTFS 5.0);
o mounting local drives to the file system is possible only on NTFS
partitions (Win2K/NTFS 5.0).
If the value of Src is, for example, "C:", a volume mount will be created
instead of a junction.
If the destination directory for a volume mount operation is terminated with
a backslash, a subdirectory "disk_N" will be created in Dest, where N is the
letter of the drive being mounted.
On Windows 2000 you cannot create a junction which points to a CD-ROM
folder, but you can mount this CD-ROM disk as an NTFS folder (see
Mount Points) and then create the necessary junction.

xample

e also:
GetNumberOfLinks

asteFromClipboard

in | FarStandardFunctions

The FSF.PasteFromClipboard function is used to get data from the Windows
clipboard.

char* WINAPI PasteFromClipboard(void);

arameters
None.

eturn value
Pointer to string, or NULL if the function has failed.

emarks

The buffer returned from this function must be freed through a call to the
DeleteBuffer function.

xample

ointToName

in | FarStandardFunctions

The FSF.PointToName function is used to get a file name from a given file
path.

char *WINAPI PointToName(
const char *Path

),

arameters

Path
The file path from which you want to get the file name.

eturn value
Pointer to the file name in the given path.

emarks

xample

rocessName

in | FarStandardFunctions | CmpName

The FSF.ProcessName function allows to perform various actions on a file
name: compare with a mask, with a list of masks or to generate new file name
using the mask.

int WINAPI ProcessName(
const char *Parami,
char *Param2,

DWORD Flags

)i

arameters

Paraml
Depends on the Flags value.

Param2
Depends on the Flags value.

Flags

Specifies a command that can be one of the following values
(PROCESSNAME_FLAGS enum):

Action Description

PN_CMPNAME Compares a file name with the specified mask. This
flag works like the CmpName function - Param1
corresponds to Pattern, Param?2 corresponds to
String. In case of success TRUE is returned.

PN_CMPNAMELIST Compares a file name with a list of masks delimited
by commas. This flag works like PN_CMPNAME,
but Param1 contains the list of masks. Note that this
function doesn't support exclude masks that were
first implemented in FAR 1.70 beta 4.

PN_SKIPPATH This flag is a modifier for the PN_CMPNAME and
PN_CMPNAMELIST flags. It specifies that the path
to the file name must be ignored when comparing.

PN_GENERATENAME Generates a file name based on the name contained
in Param1 and a mask contained in Param?2. The
result is returned in Param?2. In case of success
TRUE is returned, otherwise FALSE. If there is a

necessity to process only a part of Param1, there is a
possibility to specify a size of this part (up to 255) by
combining it with PN_GENERATENAME, for
example: Param1 contains "dir1\\file1" but the user
wants to change only "dir1", then flags must contain
PN_GENERATENAME4.

eturn value

The return value depends on the Flags parameter.

sort

in | FarStandardFunctions

The FSF.gsort function allows to sort an array of any type of data using the
QuickSort algorithm.

void WINAPI gsort(
void *Base,
size_t NElem,
size_t Width,
int (__cdecl *fcmp)(const void *, const void *)

),

arameters

Base

Start of target array.
NElem

Array size in elements.

Width
The size of each element in bytes.

femp
User-defined comparison function that must be declared with __cdecl - C-
style calling convention. This function takes two arguments - elem1 and
elem2. These arguments are the pointers to the array elements. fcmp function
must compare these elements and return an integer value:
*elem1 < *elem2 - fcmp returns value <0
*elem1 == *elem2 - fcmp returns value ==

*elem1 > *elem2 - fcmp returns value > 0

eturn value
None.

emarks

1. See the C/C++ run-time library reference for more information.
2. If you need to pass user-defined data to the compare function, you should
use the gsortex function instead.

3. The sort implemented by the gsort and gsortex functions is not stable. In
other words, the order for the elements that are equal according to the
compare function is not defined. The order can change when the array is
sorted repeatedly.

xample

e also:
FSF.bsearch, FSF.gsortex

sortex

in | FarStandardFunctions

The FSF.gsortex function allows to sort an array of any type of data using the

QuickSort algorithm. Unlike the gsort function, it allows to pass user-defined
data to the compare function.

void WINAPI gsortex(
void *Base,
size_t NElem,
size_t Width,

int (__cdecl *fcmp)(const void *, const void *, void
void *User

),

arameters

Base
Start of target array.

NElem
Array size in elements.

Width
The size of each element in bytes.

femp
User-defined comparison function that must be declared with __cdecl - C-
style calling convention. This function takes three arguments - elem1, elem2
(the pointers to the array of elements) and user (user-defined data passed in
the User argument to the gsortex function). fcmp function must compare
eleml and elem?2 elements and return an integer value:
*elem1 < *elem2 - fcmp returns value < 0

*elem1 == *elem2 - fcmp returns value ==

*elem1 > *elem2 - fcmp returns value > 0
User
User-defined data passed as the third parameter to the comparison function.

eturn value
None.

emarks

The sort implemented by the gsort and gsortex functions is not stable. In other
words, the order for the elements that are equal according to the compare
function is not defined. The order can change when the array is sorted
repeatedly.

e also:
FSF.bsearch, FSF.gsort

luoteSpaceOnly

in | FarStandardFunctions

The FSF.QuoteSpaceOnly function encloses an input string in double quotes if
it contains at least one space inside.

char* WINAPI QuoteSpaceOnly(
char *Str

),

arameters

Str
String that you want to quote. The result will be placed in the same string.

eturn value
This function returns a pointer to the resulting string.

emarks

1. Note that Str must be large enough to hold the resulting string.
2. This function does nothing if the string is already enclosed in quotes.

Trim

in | FarStandardFunctions

The FSF.RTrim function removes all trailing whitespace from a string.

char* WINAPI RTrim(
char *Str

),

arameters

Str
String from which you want to remove the trailing whitespace.

eturn value

On return Str contains a string with trailing spaces removed.

e also:
FSFE.LTrim, FSE.Trim

nprintf

in | FarStandardFunctions

The FSFE.snprintf function allows to write formatted output to a string.

int WINAPI snprintf(
char *Buffer,
size_t Sizebuf,
const char *Format,

T

arameters

Buffer
Buffer that receives the formatted string.

Sizebuf
The maximum allowed size of the receiving buffer.

Format
Format string.

Series of arguments, in accordance with the format string.

eturn value

If the function succeeds the return value is the number of bytes put to Buffer,
otherwise it returns -1.

emarks

See a C/C++ run-time library reference for more information.

Delphi:

You can use format() function.
Please read Object Pascal (Delphi) language reference for more information on that function.

e also:
FSE.sprintf

printf

in | FarStandardFunctions

The FSF.sprintf function allows to write formatted output to a string.

int WINAPI sprintf(
char *Buffer,
const char *Format,

T

arameters

Buffer
Buffer that receives the formatted string.

Format

Format string.

Series of arguments, in accordance with the format string.

eturn value

If the function succeeds the return value is the number of bytes put to Buffer,
otherwise it returns -1.

emarks

See a C/C++ run-time library reference for more information.

Delphi:

You can use format() function.
Please read Object Pascal (Delphi) language reference for more information on that function.

e also:
FSE.snprintf

scanf

in | FarStandardFunctions

The FSF.sscanf function allows to read formatted data from a string.

int WINAPI sscanf(
const char *Buffer,
const char *Format,
[address, ...]

),

arameters
Buffer

Buffer that will be scanned.
Format

Format string

address
Series of arguments that receive data in accordance with the formatted string.

eturn value

If the function succeeds the return value is the number of fields successfully
converted and assigned. -1 is returned if the number of format specifiers is
greater than the number of fields in the scanned string. On error return value is 0.
emarks

See a C/C++ run-time library reference for more information.

rim

in | FarStandardFunctions

The FSF.Trim function removes all leading and trailing whitespace from a
string.

char* WINAPI Trim(
char *Str

),

arameters

Str
The string from which you want to remove the leading and trailing

whitespace.

eturn value

On return Str contains the string with all leading and trailing whitespace
removed.

e also:
FSFE.LTrim, FSE.RTrim

runcPathStr

in | FarStandardFunctions

The FSF.TruncPathStr function truncates a given path to specified length and,
if needed, inserts into it an ellipsis to indicate the place of truncation.

char* WINAPI TruncPathStr(
char *Str,
int MaxLength

),

arameters

Str
Path that you want to truncate. The result will be placed into the same buffer.

MaxLength
Specifies the length to truncate the path to.

eturn value
On return Str contains a pointer to the truncated path.

e also:
FSFE. TruncStr

runcStr

in | FarStandardFunctions

The FSF.TruncStr function truncates a given string to the specified length and,
if needed, inserts into its beginning an ellipsis instead of the truncated part.

char* WINAPI TruncStr(
char *Str,
int MaxLength

)
arameters

Str
String that you want to truncate. The result will be placed in the same buffer.

MaxLength
Specifies the length to truncate the string to.

eturn value
On return Str contains a pointer to truncated string.

emarks

xample

e also:
ESE.TruncPathStr

'nquote

in | FarStandardFunctions

The FSF.Unquote function removes all double quotes from a null-terminated
string.

void WINAPI Unquote(
char *Str

),

arameters

Str

The string from which you want quotes to be removed. The result will be
placed into the same buffer.

eturn value
None.

emarks

In versions of FAR starting with 1.70 beta 1 and up to 1.70 beta 3, this function
deleted only leading and trailing quotation marks.

Lat

in | FarStandardFunctions

The FSF.XLat function is used to transliterate a string portion from one
character set (for example Russian) to another character set (for example Latin).

char* WINAPI XLat(
char *Line,
int StartPos,
int EndPos,
const struct CharTableSet *TableSet,
DOWRD Flags

),

arameters
Line

Pointer to a string a portion of which you want to transliterate.
StartPos

Starting position of the portion you want to transliterate.

EndPos
End position of the portion you want to transliterate.

TableSet
If it is necessary to convert a string to OEM code page before transliteration
and then back, this field can contain a pointer to a CharTableSet structure.
This field can also accept a NULL value.

Flags
Can be a combination of the following flags (XLATMODE enum):

Flag Description
XLAT_SWITCHKEYBLAYOUT | Switches the keyboard layout after the transliteration.

[Attentign!
eMM%Mis function doesn't support switching
the keyboard layout under Windows
95/98/Me.

XLAT_SWITCHKEYBBEEP Sounds a beep after keyboard layout switching
(works in conjunction with

XLAT_SWITCHKEYBLAYOUT).

eturn value
This function returns a pointer to the transliterated string.

ieneral purpose structures

in | structures

Structure

Description

ActlEjectMedia

Eject media

ActlKeyMacro

Macro-oriented operations

CharTableSet Character table

CmdLineSelect Command-line text selection/deselection
FarMenultem Menu item

FarSetColors FAR Manager color scheme manipulations
FarStandardFunctions Useful functions from Far.exe

KeySequence

Description of a key code sequence

OpenPluginInfo

Information about the current plugin instance

PluginInfo

Information about a plugin module

PluginStartupInfo

Various pieces of important plugin information

Windowlnfo

Information about the FAR Manager window

e also:
Exported functions, Service functions, Dialog API, Archive
support, Addons, Delphi structures, Win32 structures

ctlEjectMedia

in | structures

The ActlEjectMedia structure is used in the AdvControl function to eject the
medium from a removable drive (CD-ROM/USB/SUBST).

struct ActlEjectMedia {
DWORD Letter;
DWORD Flags;

i
lements
Letter
Drive letter of the removable drive.
Flags
Combination of the following flags (FAREJECTMEDIAFLAGS enum):
Flag Description
EJECT_NO_MESSAGE suppress error message display
EJECT_LOAD_MEDIA attempt to "load/close" device (works only for CD-
ROM drives, doesn't work under Windows
95/98/Me)
e also:

Structures | TActlEjectMedia

ctiIKeyMacro

in | structures

The ActlKeyMacro structure is used in the AdvControl function for operations
with macro-commands.

struct ActlKeyMacro {
int Command;
union{
struct {
char *SequenceText;
DWORD Flags;
} PlainText;
DWORD Reserved[3];
} Param;

+s

lements

Command
One of the following commands (FARMACROCOMMAND enum):

Command Description

MCMD_LOADALL Read all macros from the registry into FAR memory.
Previous values are erased.

MCMD_POSTMACROSTRING Pass a macro in text form to FAR (in the same format
as macros are stored in the registry).
The AdvControl function returns TRUE if the macro
is analyzed and placed into the queue (the macro will
start running when FAR gets control). FALSE is
returned if the macro contains any error.

MCMD_SAVEALL Forces FAR to immediately save all macros from
memory to the registry.
MCMD_GETSTATE Get macro execution status.
Returns one of the following values (enum
FARMACROSTATE):
Value Description
MACROSTATE_NOMACRO no macro is
being
executed
MACROSTATE_EXECUTING amacro is

being

executed
without
sending key
strokes to
plugins

MACROSTATE_EXECUTING_COMMON | amacro is
being
executed;
key strokes
are sent to
plugins

MACROSTATE_RECORDING a macro is
being
recorded
without
sending key
strokes to
plugins

MACROSTATE_RECORDING_COMMON | a macro is
being
recorded;
key strokes
are sent to
plugins

Param is ignored. The value is returned by
AdvControl.

Param.PlainText.SequenceText

Pointer to a zero-terminated string containing a macro sequence in text form.
OEM-encoding should be used to store macros. This member is used in the
MCMD_POSTMACROSTRING command.

Param.PlainText.Flags

Combination of the following macro execution flags
(FARKEYSEQUENCEFLAGS enum):

Flag Description
KSFLAGS_DISABLEOUTPUT Disable screen output during macro
playback.

KSFLAGS_NOSENDKEYSTOPLUGINS | Don't send keystrokes to editor plugins
(plugins, that export ProcessEditorInput
function).

KSFLAGS_REG_MULTI_SZ The Param.PlainText.SequenceText
parameter is represented in the
REG_MULTI_SZ format.
REG_MULTI_SZ in the registry:

line 1\x00
line 2\x00

line N\x00

\Xx00

This member is used in the MCMD_POSTMACROSTRING command.

Reserved
Reserved for future use.

emarks

1. The MCMD_LOADALL and MCMD_SAVEALL commands won't
execute during macro recording or playback.

2. The KSFLAGS_REG_MULTI_SZ flag can be discarded, if
Param.PlainText.SequenceText contains "\n' instead of 0x00.

xample
MCMD_POSTMACROSTRING usage in FARCmds plugin:

command .Command=MCMD_POSTMACROSTRING;
command.Param.PlainText.SequenceText=(char *)malloc(s
if(command.Param.PlainText.SequenceText)

{
command.Param.PlainText.Flags=KSFLAGS_DISABLEOUTPUT

strcpy(command.Param.PlainText.SequenceText, pCmd);
Info.AdvControl(Info.ModuleNumber, ACTL_KEYMACRO, &cc
free(command.Param.PlainText.SequenceText);

}
MCMD_LOADALL usage in FARCmds plugin:

command .Command=MCMD_LOADALL;
Info.AdvControl(Info.ModuleNumber, ACTL_KEYMACRO, &comn

MCMD_SAVEALL usage in FARCmds plugin:

command .Command=MCMD_SAVEALL;
Info.AdvControl(Info.ModuleNumber, ACTL_KEYMACRO, &comn

e also:
Structures | KeySequence | TActlKeyMacro

‘harTableSet

in | structures

The CharTableSet structure contains a set of arrays describing a FAR character
table. This structure is used by the CharTable function.

struct CharTableSet

{
unsigned char DecodeTable[256];

unsigned char EncodeTable[256];
unsigned char UpperTable[256];

unsigned char LowerTable[256];

char TableName[128];

+s

lements
DecodeTable

Table to decode the given codepage to the DOS (OEM) codepage.
Encodelable

Table to encode from DOS (OEM) codepage to the given codepage.
UpperTable

Lowercase to uppercase conversion table.
LowerTable

Uppercase to lowercase conversion table.
TableName

Name of the character table.

e also:
Structures | TCharTableSet

ARINT64

in | structures

The FARINTG64 structure is used to hold a 64 bit integer value.

typedef union
{
__int64 i64;
struct
{
DWORD LowPart;
LONG HighPart;
} Part;
} FARINT64;

e also:

'mdLineSelect

in | structures

The CmdLineSelect structure is used in the Control function for text
selection/deselection on the FAR command line, or getting selection information
thereof.

struct CmdLineSelect

{
int SelStart;

int SelEnd;
Iy

lements
SelStart

Selection start position.
SelEnd

Selection end position.

emarks
To clear the selection, set SelStart and SelEnd to -1.

e also:

Structures | TCmdLineSelect |

ECTL GETCMDLINESELECTION |
FCTL SETCMDLINESELECTION.

arMenultem

in | structures

The FarMenultem structure describes a single menu item. An array of these
structures is passed to the Menu function to show a menu.

struct FarMenultem

{
char Text[128];

int Selected;
int Checked;
int Separator;

+s

lements
Text

Item text.
Selected

Item selection flag. There must be only one item for which Selected is equal
to 1.

Checked

If nonzero, a selection mark is displayed before the item text. If Checked is 1,
the standard mark is displayed, otherwise the value of Checked is used as the
mark character.

Separator

If nonzero, the menu item is displayed as a separator line. The other fields are
ignored in this case.

emarks

As the FarMenultem.Text field is large, direct initialization of an array of
FarMenultem structures can significantly increase plugin size. To prevent this,
the InitMenultem non-standard structure can be used.

e also:
structures | InitMenultem | TFarMenultem | FarMenultemEx

arMenultemEx

in | structures | Menu

The FarMenultemEXx structure describes a single menu item. An array of
structures of this type is passed to the Menu function. In order to use the
FarMenultemEx structure the FMENU_ USEEXT flag should be set when the
Menu function is called.

struct FarMenuItemEx

{
DWORD Flags;
union {
char Text[128];
const char *TextPtr;
} Text;
DWORD AccelKey;
DWORD Reserved;
DWORD_PTR UserData;
}i
lements
Flags
Combination of the following values (the FARMENUFLAGS enumeration):
Flag Description
MIF_SELECTED Denotes a selected menu item. Only one item can be
selected.
MIF_CHECKED Denotes a checked menu item. Check sign will be

shown near the item.

MIF_SEPARATOR The menu item is shown as delimiter. Unlike in the
FarMenultem structure, the delimiter can contain
text. The text is center-aligned and is not selectable.

MIF_DISABLE Denotes a disabled menu item.

MIF_GRAYED If this flag is set, the menu item is shown, but cannot
be selected.

MIF_HIDDEN If this flag is set, the menu item is not shown.
MIF_USETEXTPTR The menu item uses the Text. TextPtr field.

Text.Text
The text of the menu item.

Text. TextPtr

A pointer to the menu item text. Used in conjunction with the
MIF_USETEXTPTR flag, if the Text.Text array has insufficient size or a
string from a language file is used, for example:

struct FarMenultemEx Item;
Item.Flags=MIF_USETEXTPTR;
Item.Text.TextPtr=Info.GetMsg(Info.ModuleNumber, MFo

AccelKey

The FAR Manager key code which will be used to activate the menu item.
Example: in the "Commands" menu pressing Ctr1-0 is used to the select the
"Panels On/Off" menu item. As opposed to the BreakKeys parameter of the
Menu function, the AccelKey field is analogous to the hotkey.

Reserved
Reserved for future use, should be set to 0.

UserData
User data associated with the menu item. FAR Manager does not use this field.

emarks

1. In the low order word of the Flags a field character code can be specified
which will be displayed as the check mark. In this case, FAR will
automatically set the MIF_CHECKED flag for this menu item.

2. If the low order word of the Flags field is 0 and the MIF_CHECKED flag
is set, or if the low order word of the Flags field is 1, then the default check
mark will be displayed: the character with code OFBh (V).

3. If the MIF_SEPARATOR flag is used without text, the Text. Text or
Text. TextPtr fields should be initialized to 0, for example:

struct FarMenultemEx Item;
Item.Flags=MIF_SEPARATOR;
Item.Text.Text[0]=0;

or:

struct FarMenultemEx Item;

Item.Flags=MIF_SEPARATOR|MIF_USETEXTPTR;
Item.Text.TextPtr=NULL;

e also:
structures | FarMenultem | TFarMenultemFEx

arSetColors

in | structures

The FarSetColors structure is used in the AdvControl function to change the
color palette of FAR Manager.

struct FarSetColors {
DWORD Flags;
int StartIndex;
int ColorItem;
LPBYTE Colors;

15
lements

Flags

Can contain a combination of the following values (the FARCOLORFLAGS
enumeration):

Flag Description
FCLR_REDRAW Redraw the screen after the color scheme has been
changed.
StartIindex

Start index of the color scheme range that should be changed.
Colorltem

Number of the colors to be changed.
Colors

Points to the byte array containing the new color attributes.

emarks

e also:
structures | ACTL. SETARRAYCOLOR | TFarSetColors

1foPanelLine

in | structures

The InfoPanelLine structure describes a single line n the information panel. An
array of InfoPanelLine structures is passed to FAR by the GetOpenPluginInfo
function.

struct InfoPanellLine

{
char Text[80];

char Data[80];
int Separator;

+s

lements

Text

Parameter header - left-aligned text displayed using the regular text color
(COL_PANELTEXT).

Data

Parameter data - right-aligned text displayed using the selected text color
(COL_PANELINFOTEXT)

Separator

If non-zero, a separator is displayed. Text is used as the separator header, Data
is ignored.

e also:
structures | TInfoPanelL.ine

eyBarTitles

in | structures

The KeyBarTitles structure is used to redefine the function key labels in the key
bar. An array of these structures can be passed to FAR in the GetOpenPluginInfo
function.

struct KeyBarTitles

{
char *Titles[12];
char *CtrlTitles[12];
char *AltTitles[12];
char *ShiftTitles[12];

// FAR Manager >= 1.70
char *CtrlShiftTitles[12];
char *AltShiftTitles[12];
char *CtrlAltTitles[12];

+s

lements

Titles, CtrlTitles, AltTitles, ShiftTitles

Contain addresses of new key bar labels. CtrliTitles, AltTitles and ShiftTitles are
used when <Ctrl>, <Alt> or <Shift> is pressed. If it is desired to leave some
standard FAR labels unaltered, set the corresponding addresses to NULL.

CtriShiftTitles, AltShiftTitles, CtrlAltTitles

Contain addresses of new key bar titles. CtriShiftTitles, AltShiftTitles and
CtriAltTitles are used when <CtrlShift>, <AltShift> or <CtrlAlt> is pressed.
Use NULL as above. Available in FAR versions after 1.70

e also:
ECTL SETKEYBAR | structures | TKeyBarTitles

eySequence

in | structures

The KeySequence structure is used in the AdvControl function to pass a
sequence of key codes to FAR.

struct KeySequence {
DWORD Flags;
int Count;
DWORD *Sequence;

+s

lements

Flags

May be a combinaiton of the following flags (the
FARKEYSEQUENCEFLAGS enumeration):

Flag Description

KSFLAGS_DISABLEOUTPUT Do not display the results of processing each
key on the screen.

KSFLAGS_NOSENDKEYSTOPLUGINS | Do not pass keys to editor plugins (plugins,
that export the ProcessEditorInput function).

Count
Count of key codes in the Sequence array.

Sequence
Points to an array of FAR key codes.

emarks

e also:
structures | ActlKeyMacro | TKeySequence

penPlugininfo

in | structures

The OpenPluginInfo structure describes a plugin instance to FAR.

struct OpenPluginInfo

{

} .

int StructSize;

DWORD Flags;

const char *HostFile;

const char *CurDir;

const char *Format;

const char *PanelTitle;

const struct InfoPanellLine *InfolLines;
int InfoLinesNumber;

const char * const *DescrFiles;

int DescrFilesNumber;

const struct PanelMode *PanelModesArray;
int PanelModesNumber;

int StartPanelMode;

int StartSortMode;

int StartSortOrder;

const struct KeyBarTitles *KeyBar;
const char *ShortcutData;

long Reserverd;

I/

lements

StructSize

This field should contain size of the OpenPluginInfo structure:
C: Opi.StructSize = sizeof (struct OpenPluginInfo);

Pascal: Opi.StructSize := SizeOf(Info);

Flags

A combination of the following values (the OPENPLUGININFO_FLAGS
enumeration):
Flag Description

OPIF_USEFILTER Use filter in the plugin panel.

OPIF_USESORTGROUPS Use sort groups in the plugin panel.

OPIF_USEHIGHLIGHTING Use file highlighting in the plugin panel.

OPIF_ADDDOTS Add ". ." item automatically if it is absent.

OPIF_RAWSELECTION Folders may be selected regardless of FAR
settings.

OPIF_REALNAMES Turns on the standard FAR file processing

mechanism if requested operation is not
supported by the plugin. If this flag is set, the
items on the plugin panel should be real file
names.

OPIF_SHOWNAMESONLY Show file names without paths by default.

OPIF_SHOWRIGHTALIGNNAMES | Show file names right-aligned by default in all
panel display modes.

OPIF_SHOWPRESERVECASE Show file names using original case regardless of
FAR settings.
OPIF_FINDFOLDERS Apply "Find file" command for folders. The

OPIF_FINDFOLDERS flag has no effect since
FAR Manager 1.70 beta 4.

OPIF_COMPAREFATTIME Convert timestamps to FAT format for the
Compare folders operation. Set this flag if the
plugin file system doesn't provide the time
accuracy necessary for standard comparison

operations.
OPIF_EXTERNALGET These flags can be used with
OPIF_EXTERNALPUT OPIF_REALNAMES only. Forces usage of
OPIF_EXTERNALDELETE corresponding internal FAR functions, even if
OPIF_EXTERNALMKDIR plugin exports such function.

OPIF_USEATTRHIGHLIGHTING FAR Manager 1.70 build #963 and below: use
attribute-based file highlighting. All file
highlighting templates, except * and * . * will be
ignored.

FAR Manager 1.70 build #964 and above: use
attributes only for file highlighting. File names
will be ignored. Color is chosen from file color
groups, which have templates excluded from
analysis (i.e. option "[] Match file
mask(s)" in file highlighting setup dialog is
off).

HostFile

File name on emulated file system. If plugin doesn't emulate a file system
based on files, set this field to NULL.

CurDir
Current directory of plugin. If plugin returns empty string here, FAR will close

mwon

plugin automatically if ENTER is pressed on ".." item.
Format

Plugin's format name. This is shown in the file copy dialog.
PanelTitle

Plugin panel header.
InfoLines

Pointer to an array of InfoPanelLine structures. Each structure describes one
line in the information panel. If no plugin-dependent information needs to be
shown in the information panel, set this field to NULL.

InfoLinesNumber
Number of structures in InfoPanelLine.

DescrFiles

Pointer to an array of pointers to strings with description file names. FAR tries
to read these files (using the GetFiles function) when descriptions are shown
and refresh them after file processing, if the PPIF_PROCESSDESCR flag in
the PluginPanelltem structure was set. Depending on the plugin type,
description processing can take significant time. If you don't need this
functionality, set the field to NULL.

DescrFilesNumber
Number of description file names.
PanelModesArray

Pointer to an array of PanelMode structures. Panel display mode settings can
be redefined using this field. The first structure describes display mode
number 0, the second - number 1, etc. If new panel display modes are not
required, set the field to NULL.

PanelModesNumber

Number of PanelMode structures.

StartPanelMode

The panel display mode to set on panel creation. Must be in the form '0 '+
<view mode number>. For example, '1' (0x31) will set Brief view mode.
If you don't want to change panel display mode at plugin startup, set the field

to 0.

StartSortMode

The sort mode to set on panel creation. One of the following values can be
specified: SM_UNSORTED, SM_NAME, SM_EXT, SM_MTIME,
SM_CTIME, SM_ATIME, SM_SIZE, SM_DESCR, SM_OWNER,
SM_COMPRESSEDSIZE, SM_NUMLINKS. If you don't want to change sort
mode at plugin startup, set the field to SM_DEFAULT or O.

StartSortOrder

If StartSortMode is specified, this field must be used to set sort direction: O for
ascending, 1 - for descedning.

KeyBar

Pointer to the KeyBarTitles structure. Function key labels are redefined using
this field. Set to NULL if not required.

ShortcutData

Pointer to a null-terminated string, which describes the current state of the
plugin. The length of string should be less than or equal to
MAXSIZE_SHORTCUTDATA. This string is passed to the OpenPlugin
function, when the plugin is activated by the link to folder command. For
example, an FTP client can place the server host name, login and password
here. The current directory is not required as FAR will restore this itself.

If no additional information is required for activation of links to a folder, set
this field to NULL.

Reserverd
Reserved for future use, set to 0.

emarks

1. All data, passed through this structure should be valid after return from the
GetOpenPluginlnfo function. This means, for example, that pointers to the
stack are not allowed, use static or global variables instead.

2. When this structure is passed to a plugin's GetOpenPluginInfo function, it
can be assumed to be cleared to zeros.

e also:
structures | TOpenPluginlnfo

anellnfo

in | structures

The PanelInfo structure contains information about a FAR panel. Use the
Control function to populate this structure.

struct PanelInfo

{
int PanelType;
int Plugin;
RECT PanelRect;
struct PluginPanelltem *Panelltems;
int ItemsNumber;
struct PluginPanelltem *SelectedItems;
int SelectedItemsNumber;
int CurrentItem;
int TopPanelItem;
int Visible;
int Focus;
int ViewMode;
char ColumnTypes[80];
char ColumnWidths[80];
char CurDir[NM];
int ShortNames;
int SortMode;
DWORD Flags;
DWORD Reserved;

}i
lements
PanelType
May be (the PANELINFOTYPE enumeration):

Type Description
PTYPE_FILEPANEL Regular file panel
PTYPE_TREEPANEL Tree panel
PTYPE_QVIEWPANEL Quick view panel

PTYPE_INFOPANEL Information panel

Plugin

TRUE if panel is supported by a plugin.
PanelRect

Panel geometry, the RECT structure.
Panelltems

Pointer to an array of all panel items (see PluginPanelltem). Plugins shouldn't
change items (except those marked with PPIFE_SELECTED) or free memory
allocated for this array. Data is valid until return from the plugin's exported
function, which retrieved it via a call to the
Control(FCTL_GET[ANOTHER]PANELINFO, ...) function, or until the next
call to the Control function.

ItemsNumber
Number of items in the Panelltems array.

SelectedItems

Pointer to the array of selected panel items. (see PluginPanelltem). Plugin
shouldn't change elements (except those marked with PPIF_SELECTED) or
free memory allocated for this array. Data is valid until return from the
plugin's exported function, which retrieved it via a call to the
Control(FCTL_GET[ANOTHER]PANELINFO, ...) function, or until the next
call to the Control function.

SelectedItemsNumber

Number of items in the SelectedItems array. When there is no selection,
SelectedItemsNumber is equal to 1. When there is no selection and current

m"mon

element is ".." then SelectedItemsNumber is equal to 0.
Currentltem

Index of the current item in the Panelltems array. Ensure that ItemsNumber >
0 before using CurrentItem.

TopPanelltem

Panel item which is at the first visible position in the panel.
Visible

If non-zero, panel is visible.
Focus

If non-zero, panel is active.

ViewMode
Number of panel view mode.
ColumnTypes

Null-terminated string, which describes column types. Column types are
encoded with one or several letters, separated by commas, for example:
n n

N,SC,D, T".

ColumnWidths

Null-terminated string, which describes columns width.

CurDir
Current directory for panel. If Type = PTYPE_TREEPANEL, CurDir
contains currently selected directory in panel.

ShortNames
Non-zero, if short file names mode is on.

SortMode

Panel sort mode. Can be SM_DEFAULT, SM_UNSORTED, SM_NAME,
SM_EXT, SM_MTIME, SM_CTIME, SM_ATIME, SM_SIZE, SM_DESCR,
SM_OWNER, SM_COMPRESSEDSIZE, SM_NUMLINKS.

Flags

Additional flags. Can be a combination of the following values (the
PANELINFOFLAGS enumeration):

Flag Description
PFLAGS_SHOWHIDDEN Hidden and system files are displayed.
PFLAGS_HIGHLIGHT File highlighting is used.

PFLAGS_REVERSESORTORDER | Descending sort is used.

PFLAGS_USESORTGROUPS Sort groups are used.
PFLAGS_SELECTEDFIRST Show selected files first.
PFLAGS_REALNAMES Plugin panel items are shown with real file names
(see also OPIF REALNAMES).
PFLAGS_NUMERICSORT Numeric sort is used.
PFLAGS_PANELLEFT Left panel.
Reserved

Reserved for future use.

emarks

Additional information about panel can be retrieved using the AdvControl
function (the ACTL_GETPANELSETTINGS command)

e also:
structures | TPanellnfo

anelMode

in | structures

The PanelMode structure describes one panel view mode. An array of these
structures should be passed to the GetOpenPlugininfo function.

struct PanelMode

{

char *ColumnTypes;

char *ColumnwWidths;

char **ColumnTitles;

int FullScreen;

int DetailedStatus;

int AlignExtensions;

int CaseConversion;

char *StatusColumnTypes;
char *StatusColumnwWidths;
DWORD Reserved[2];

+s

lements

ColumnTypes

Text string which describes column types. Column types are encoded by one
or more letters separated by commas: "N, SC, D, T". To use standard Far
panel view modes, set this field to NULL.

ColumnWidths

Text string which gives the columns width.

ColumnTitles

Pointer to an array of strings which specifies the column labels. To use
standard column names, set this value to NULL.

FullScreen
If TRUE - resize panel to fill the entire window (instead of half).

DetailedStatus

If TRUE, the status line will display name, size, date and time of the file, if
StatusColumnTypes=NULL and StatusColumnWidths=NULL. Otherwise, the

status line will only display the file name.
AlignExtensions

TRUE - align file extensions.
CaseConversion

FALSE - to preserve file names.
StatusColumnTypes

As ColumnTypes, but applies to the status line. To use the standard status line,
set StatusColumnTypes to NULL.

StatusColumnWidths
As ColumnWidths, but applies to the status line.
Reserved
Reserved for future use. Set to 0.

e also:
structures | TPanelMode

anelRedrawlinfo

in | structures

The PanelRedrawlInfo structure can be used to determine the new cursor
position after a panel redraw caused by the Control function.

struct PanelRedrawInfo

{

int CurrentItem;
int TopPanelItem;

+s

lements

Currentltem

Zero-based index of the current panel item.
TopPanelltem

Zero-based index of the first visible panel item.

e also:
structures | TPanelRedrawlnfo

lugininfo

in | structures

The PluginInfo structure describes a FAR Manager plugin.

struct PluginInfo
{
int StructSize;
DWORD Flags;
const char * const *DiskMenuStrings;
int *DiskMenuNumbers;
int DiskMenuStringsNumber;
const char * const *PluginMenuStrings;
int PluginMenuStringsNumber;
const char * const *PluginConfigStrings;
int PluginConfigStringsNumber;
const char *CommandPrefix;
DWORD Reserved;

15
lements

StructSize
This field should contain the size of the PluginInfo structure.

Flags
A combination of the following values (the PLUGIN_FLAGS enumeration).
Flag Description
PF_PRELOAD Disables plugin parameters caching and forces FAR

to always load the plugin at startup. Must be
specified if it is necessary to change items in
"Disks", "Plugins" or "Plugins configuration" menus
dynamically. This flag decreases efficiency of
memory usage.

PF_DISABLEPANELS Do not show the plugin in the "Plugin commands"
menu called from panels.

PF_EDITOR Show the plugin in the "Plugin commands" menu
called from the FAR editor.

PF_VIEWER Show the plugin in the "Plugin commands" menu
called from the FAR viewer.

PF_DIALOG Show the plugin in the "Plugin commands" menu
called from the FAR dialog.

PF_FULLCMDLINE Forces FAR to pass the full command line (with the
prefix CommandPrefix) to the plugin. Use this flag
when a plugin can handle multiple command line
prefixes.

DiskMenuStrings
If the plugin adds items to the Disks menu, this field is set to the address of an
array with pointers to menu items, otherwise set it to NULL.
DiskMenuNumbers

Preferred hotkey numbers for the items added to the Disks menu. To have FAR
autoassign them, either set DiskMenuNumbers to NULL or set preferred
numbers to 0.

If specified number is already in use by another plugin, FAR reassigns it itself.

DiskMenuStringsNumber
Number of items to be added to the Disks menu.

PluginMenuStrings
Similar to DiskMenuStrings, but items are added to the "Plugin commands™
menu.
PluginMenuStringsNumber
Number of items to be added to the "Plugin commands" menu.
PluginConfigStrings
Similar to DiskMenuStrings, but items are added to the "Plugins
configuration" menu.
PluginConfigStringsNumber
Numer of items to be added to the "Plugins configuration" menu.

CommandPrefix

This parameter can contain a string of command line prefixes that will be used
to intercept FAR commands. For example, if the string passed in this field is
ftp and the user enters anything beginning with ftp: in the command line,
OpenPlugin with OPEN_COMMANDLINE will be called.

To define more than one prefix, the plugin must separate the prefixes with a
colon. For example, if the plugin needs to process the edit:, goto: and
view: prefixes, the string passed in this field should be to:

CommandPrefix="edit:view:goto";

If the plugin does not process FAR commands, set this parameter to NULL.

Reserved
Reserved for future use, should be set to NULL.

emarks

1. All data passed in this structure must be valid after returning from
GetPluginlnfo, therfore pointers to the stack are illegal, use static or global
variables instead.

2. The structure passed to the GetPluginInfo function, is preinitialized to
Zeros.

e also:
structures | TPluginInfo

luginPanelltem

in | structures

The PluginPanelIltem structure describes a single item in a file system emulated
by a plugin. It is used both to return information about the plugin file system and
to pass a list of files to process to the plugin.

A ign!
& Alten 1e size of the PluginPanelltem structure should be 366 bytes.

struct PluginPanellItem
{
#ifndef _FAR_USE_WIN32_FIND_DATA
struct FAR_FIND_DATA FindData;
#else
WIN32_FIND_DATA FindData;
#endif
DWORD PackSizeHigh;
DWORD PackSize;
DWORD Flags;
DWORD NumberOfLinks;
char *Description;
char *Owner;
char **CustomColumnData;
int CustomColumnNumber;
DWORD_PTR UserData;
DWORD CRC32;
DWORD Reserved[2];

+s

lements

FindData

The FindData field contains many file parameters. See the description of the
WIN32_FIND_ DATA structure for detailed information.

PackSizeHigh

Contains the high-order 4 bytes of the file's packed size (in bytes). Currently
unused.

PackSize

Contains the low-order 4 bytes of the file's packed size (in bytes).
Flags

A combination of the following values (the PLUGINPANELITEMFLAGS
enumeration):

Flag Description

PPIF_PROCESSDESCR Use FAR's internal description processing. This flag
can be set for processed files in the DeleteFiles,
GetFiles and PutFiles functions. If set, FAR will
update the description file contents using file names
returned from the GetOpenPluginInfo function.

PPIF_SELECTED In Control functions FCTL_GETPANELINFO,
FCTL_GETANOTHERPANELINFO,
FCTL_SETSELECTION and
FCTL_SETANOTHERSELECTION this flag allows
to check and set item selection.

In PutFiles, GetFiles and ProcessHostFile functions,
if an operation has failed, but some of the files were
successfully processed, the plugin can remove
selection only from the processed files. To perform
this, the plugin should clear the PPIF_SELECTED
flag in processed items in the PluginPanelltem list
passed to the function.

PPIF_USERDATA If this flag is set, FAR considers the UserData field a
pointer to a user data structure. Cf. the description of
the UserData field.

The low order word of the Flags parameter can be
used by a plugin for its own flags.

NumberOfLinks
Number of hard links.

Description
Points to a file description. Plugins can use this field to pass file descriptions
to FAR. If not required, set theis field to NULL. If a plugin uses standard FAR

description processing and has passed description file names to FAR in the
GetOpenPluginlnfo function, this field also must be NULL.

Owner

Points to a file owner name. Plugins can use this field to pass file owner
names to FAR. If not used, set this field to NULL.

CustomColumnData

Points to an array of string addresses for plugin defined column types. The
first string contains data for the CO column type, the second - for C1 and so
on. Up to 10 additional column types from CO to C9 can be defined. If not
used, set this field to NULL.

CustomColumnNumber
Number of data strings for additional column types.

UserData

This field can be used by the plugin to store either a 32-bit value or a pointer
to a data structure. In the latter case, the first field of this structure must be a
32-bit value containig the structure size and the plugin must set
PPIF_USERDATA in the Flags field. This allows FAR to copy the structure
correctly to FAR internal buffers and later pass it to the plugin in
PluginPanelltem lists. In the FreeFindData function the plugin must free the
memory occupied by this additional structure.

CRC32
A 32-bit CRC (checksum) value. FAR does not use this field.

Reserved

Reserved for future use, should be set to 0.

emarks

1. All the data allocated by the plugin for Description, Owner and
CustomColumnData members must be released by the plugin. FAR copies
these data to its own structures, so it can be released at any time after
passing these to FAR in the GetFindData function.

2. If the plugin uses the UserData field to store information about a file, the
plugin writer should check the validity of that field. This is related to the
following issue: When FAR calls the GetFiles function from the list of
found files, only the FindData member of the PluginPanelltem structure is
filled correctly. All other fields are equal to NULL.

e also:
structures | _FAR USE WIN32 FIND DATA |
FAR FIND DATA | TPluginPanelltem

luginStartupinfo

in | structures

The PluginStartupInfo structure is used in the SetStartupInfo function to pass

various important information to the plugin.

struct PluginStartupInfo

{

int StructSize;

char ModuleName[NM];
int ModuleNumber;
const char *RootKey;
FARAPIMENU
FARAPIDIALOG
FARAPIMESSAGE
FARAPIGETMSG
FARAPICONTROL
FARAPISAVESCREEN
FARAPIRESTORESCREEN
FARAPIGETDIRLIST

FARAPIGETPLUGINDIRLIST

FARAPIFREEDIRLIST

// FAR >= 1.50
FARAPIVIEWER
FARAPIEDITOR
FARAPICMPNAME

// FAR >= 1.52
FARAPICHARTABLE
FARAPITEXT

// FAR >= 1.60
FARAPIEDITORCONTROL

// FAR >= 1.70
FARSTANDARDFUNCTIONS

Menu;

Dialog;
Message;
GetMsg;
Control;
SaveScreen;
RestoreScreen;
GetDirlList;
GetPluginDirlList;
FreeDirlList;

Viewer;
Editor;
CmpName;

CharTable;
Text;

EditorControl;

*FSF;

FARAPISHOWHELP ShowHelp;

FARAPIADVCONTROL AdvControl;
FARAPIINPUTBOX InputBox;
FARAPIDIALOGEX DialogEx;
FARAPISENDDLGMESSAGE SendDlgMessage;
FARAPIDEFDLGPROC DefDlgProc;
DWORD_PTR Reserved;
FARAPIVIEWERCONTROL ViewerControl;

Iy

lements

StructSize

Structure size. If new fields are added, this field will allow detection of the
version of the structure used.

ModuleName

Full name with path of the plugin module.
ModuleNumber

Number of the plugin module. Passed as parameter in some functions.
RootKey

Registry root key, where plugins can save their parameters. Valid both for
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE. Usually it is
"Software\Far\Plugins", but you must not specify this string directly,
because it can be changed or can become optional in future. For example, if
FAR is started with '/u userl1' command line parameter, RootKey will
contain "Software\Far\Users\user1\Plugins".

Do not save parameters directly in the RootKey, create your own subkey here.
Menu
Address of the Menu function.
Dialog
Address of the Dialog function.
Message
Address of the Message function.
GetMsg

Address of the GetMsg function.

Control
Address of the Control function.

SaveScreen

Address of the SaveScreen function.
RestoreScreen

Address of the RestoreScreen function.
GetDirlList

Address of the GetDirList function.
GetPluginDirList

Address of the GetPluginDirList function.

FreeDirList
Address of the FreeDirList function.

Viewer

Address of the Viewer function.
Editor

Address of the Editor function.

CmpName

Address of the CmpName function.
CharTable

Address of the CharTable function.
Text

Address of the Text function.
EditorControl

Address of the EditorControl function.
FSF

Pointer to the FarStandardFunctions structure, which contains addresses of
useful functions from far.exe.

ShowHelp
Address of the ShowHelp.

AdvControl

Address of the AdvControl.
InputBox

Address of the InputBox.
DialogEx

Address of the DialogEx.
SendDIgMessage

Address of the SendDIgMessage.
DefDIlgProc

Address of the DefDlgProc.
DefDIlgProc

Address of the ViewerControl.

emarks

FAR Manager versions:

e below 1.50 (with plugins support) - do not contain fields after FreeDirList;
e below 1.52 - do not contain fields after CmpName;

e below 1.60 - do not contain fields after Text;

e below 1.65 - do not contain fields after EditorControl

So, if you intend to use Viewer or Editor functions or any other function after
these, you should first check the StructSize field, to determine if the required
function is present in the running FAR version.

e also:
structures | TPluginStartuplnfo

/indowinfo

in | structures

The WindowInfo structure contains information about one FAR Manager
window. A plugin can retrieve this information using the
ACTL_GETWINDOWINFO command.

struct WindowInfo{
int Pos;
int Type;
int Modified;
int Current;
char TypeName[64];
char Name[NM];

+s

lements

Pos

Zero-based number of the window to retrieve information for. Pos = -1 will
return information for the current window.

Type

Window type. Can be one of the following (the WINDOWINFO_TYPE
enumeration):

Type Description
WTYPE_PANELS File panels.
WTYPE_VIEWER Internal viewer window.
WTYPE_EDITOR Internal editor window.
WTYPE_DIALOG Dialog.
WTYPE_VMENU Menu.
WTYPE_HELP Help window.
Modified

Modification flag. Can be set only if Type = WTYPE_EDITOR.

Current
Nonzero if the window is active.

TypeName

The name of the window type (Panels,View,Edit,Help,VMenu), depends on
the current language setting of Far.

Name

Window title. For WTYPE_VIEWER and WTYPE_EDITOR windows this
is a file name. For panels, the name of the currently selected file object. For
the help window - full path to the opened HLF file. For menu and dialogs -
header.

xample
void GetFarWindowInfo()

{

wWindowInfo WInfo;
int CountWindow;
int I;

FILE *Fp;

if((Fp=fopen("window.log",6 "a+t")) == NULL)
return ;

// request window count
CountWindow=(int)Info.AdvControl(Info.ModuleNumber,
fprintf(Fp, "WindowCount=%i\n",6 CountWindow);

for (I=0; I < CountWindow; I++)

{
WInfo.Pos=I;

// request window information
Info.AdvControl(Info.ModuleNumber, ACTL_GETWINDOWI

// output it

fprintf(Fp, "Window[%1], Type=%i (%s), File=[%s] C
I,WInfo.Type,WInfo.TypeName,WInfo.Name
WInfo.Current,WInfo.Modified);

}
fclose(Fp);

// set window number 1 (i.e. second)
Info.AdvControl(Info.ModuleNumber, ACTL_SETCURRENTWI

}

e also:
structures | AdvControl | TWindowlInfo

ditor plugin structures

in | structures

Structure Description

EditorBookMarks Information about bookmarks in the currently edited
file

EditorColor Information about color regions

EditorConvertPos Conversion between real and screen positions of the
cursor

EditorConvertText Text conversion between the OEM and the internal Far
character set

EditorGetString Editor line retrieval

EditorInfo Current Far editor state

EditorSaveFile Editor file saving

EditorSelect Text selection/deselection in the editor

EditorSetParameter Cditor parameter control

EditorSetPosition Position control in the Far editor

EditorSetString Change or insert a string in the Far editor

e also:

Exported functions, Service functions, Dialog API, Archive

support, Addons, Delphi structures, Win32 structures

ditorBookMarks

in | structures

The EditorBookMarks structure is used in the EditorControl function to
retrieve information about bookmarks in the current editor
(ECTL_GETBOOKMARKS command).

struct EditorBookMarks

{
long *Line;
long *Cursor;
long *ScreenLine;
long *LeftPos;
DWORD Reserved[4];

+s

lements
Line

Pointer to an array of line numbers for each bookmark.
Cursor

Pointer to an array of cursor positions for each bookmark.

ScreenLine

Points to an array of line numbers specifying the first line visible on the screen
for each bookmark.

LeftPos

Points to an array of positions specifying the leftmost character visible on the
screen for each bookmark.

Reserved
Reserved for future use.

emarks

1. Before retrieving information about bookmarks you should determine the
length of the arrays Line, Cursor, ScreenLine and LeftPos and allocate
the required amount of memory for them. The bookmark count is stored in
the BookMarkCount member of the EditorInfo structure.

2. If a plugin does not need the information stored in one of the arrays, it
should set the respective member of the structure to NULL.

e also:
Structures | TEditorBookMarks

ditorColor

in | structures

The EditorColor structure is used in the EditorControl function to get or set
information about color regions in FAR editor.

struct EditorColor
{
int StringNumber;
int ColorItem;
int StartPos;
int EndPos;
int Color;

+s

lements

StringNumber
Line number to process or -1 for current string.

Colorltem

Ordinal number of the color region whose information is to be retrieved. A
line consists of a set of segments (regions) all of which can have a different
color. Set Colorltem to 0 to retrieve information about the first segment, 1 for
the second, and so on.

This field isn't used with the ECTL._ ADDCOLOR command. The new color is
applied to the whole region between positions StartPos and EndPos, regardless
of color regions which existed there before.

StartPos, EndPos

Line region bounds.
Input parameters for the ECTL._ ADDCOLOR command and output
parameters for the ECTL._ GETCOLOR command.

Color

Character color.

Input parameter for the ECTL._ ADDCOLOR command and output parameter
for the ECTL_GETCOLOR command.

For the ECTL._ ADDCOILOR command, if Color is set to 0, EndPos is
ignored and the command will remove all existing color regions starting at

position StartPos. In the latter case, if StartPos is -1, all color regions for the
line will be removed.

Starting with build 1957 FAR highlights the tabulation character to its full
length. If it is needed to highlight the tab character as a character of width 1
then in addition to specifying the color for the Color member set the
ECF_TABI1 flag (EDITORCOLORFLAGS enum):

Flag Description

ECF_TAB1 If a tab character is to be found inside a color region,
highlight it as a character of width 1.

emarks

Partial deletion of color regions is not very useful, as FAR does not renormalize
the segments as new ones are added, this is the programmer's responsibility.
Normally, it is necessary to clear all regions in line, and recreate them as
normalized --- non-overlapping --- segments (otherwise the regions will
accumulate causing increased memory usage).

Using the Color parameter, the background color can be set also. Furthermore,
regardless of line length, you can set a color region starting from the first visible
position and ending at the rightmost; this will change the editor background
color. Unfortunately this method won't work for files with a line count less than
the editor screen height.

e also:
structures | TEditorColor

ditorConvertPos

in | structures

The EditorConvertPos structure is used in the EditorControl function to convert
a position in the line to a screen position (and vice versa). This is useful for lines
which contain tab characters.

struct EditorConvertPos

{

int StringNumber;
int SrcPos;
int DestPos;

+s

lements
StringNumber

Line number or -1 for current line.
SrcPos

Source position.

DestPos
Converted position.

e also:
structures | TEditorConvertPos

ditorConvertText

in | structures

The EditorConvertText structure is used in the EditorControl function for text
conversion from OEM-encoding to the current FAR editor's codepage (and vice
versa).

struct EditorConvertText

{

char *Text;
int TextLength;

+s

lements

Text

Points to text for conversion.
TextLength

Length of text for conversion.

e also:
structures | TEditorConvertText

ditorGetString

in | structures

The EditorGetString structure is used in the EditorControl function to retrieve a
text line from the FAR editor.

struct EditorGetString

{
int StringNumber;
const char *StringText;
const char *StringEOL;
int StringlLength;
int SelStart;
int SelEnd;

+s

lements

StringNumber

Zero-based index of the line to retrieve. Can be set to -1 to retrieve the current
line (see this article regarding the -1 Value).

StringText

Pointer to line data. Cannot be modified. Note, that line data is not a zero-
terminated string and can contain ASCII NULL-s.

StringEOL

End-of-line sequence. Can be the empty string, \r\n or \n
StringLength

Size of data pointed to by StringText.
SelStart

Start position of selection in the line. If line doesn't contain selection this field
has a value of -1.

SelEnd

End position of selection in the line. If selection includes the StringEOL
sequence this field has a value of -1.

e also:

structures | TEditorGetString

ditorinfo

in | structures

The EditorInfo structure is used in the EditorControl function to get information
about the current FAR editor state.

struct EditorInfo

{
int EditorID;
const char *FileName;
int wWindowSizeX;
int WindowSizeY;
int TotallLines;
int CurlLine;
int CurPos;
int CurTabPos;
int TopScreenlLine;
int LeftPos;
int Overtype;
int BlockType;
int BlockStartLine;
int AnsiMode;
int TableNum;
DWORD Options;
int TabSize;
int BookMarkCount;
DWORD CurState;
DWORD Reserved[6];

+s

lements

EditorID

Identifier of the editor instance. Each editor instance has a unique identifier
during the lifetime of a FAR session.

FileName
Full path and name of the edited file .
WindowSizeX, WindowSizeY

Width and height of the editor window.
TotalLines

Total number of lines in the edited text.
CurLine

Number of the current line.
CurPos

Cursor position in the current line.
CurTabPos

Cursor screen position in the current line. If the line does not contain tab
characters, CurTabPos is equal to CurPos.

TopScreenLine

Number of the line at the top of the screen.
LeftPos

Position of the left border of the editor window in the edited text.
Overtype

Overtype mode state. 0 - insert mode, 1 - overtype mode.
BlockType

Type of the selected block. One of the following values (the
EDITOR_BLOCK_TYPES enum):

Block type Description
BTYPE_NONE no selection,
BTYPE_STREAM stream block
BTYPE_COLUMN column (rectangular) block.

BlockStartLine
Number of the first line in the selected block.
AnsiMode

ANSI text mode state. This field is nonzero only when no character table is
used and the text is in the ANSI codepage.

TableNum

Number of FAR character table currently used in the editor. -1 if no table is
used and the text is in OEM format (in this case see AnsiMode). If this field is

not -1, you can pass it to the CharTable function to get the table.
Options

Describes the state of editor options. Can be a combination of the following
flags (the EDITOR_OPTIONS enumeration):

Flag Description

EOPT_EXPANDTABS The "Expand all tabs to spaces" option is selected.
While editing a file convert all entered and existing
Tab characters to the corresponding number of
spaces.

This parameter can be changed using the

ECTL SETPARAM command

(ESPT _EXPANDTABS).

EOPT_EXPANDONLYNEWTABS | The "Expand newly entered tabs to spaces" option
is selected. While editing a file convert all newly
entered Tab characters to the corresponding number
of spaces. Existing Tab characters won't be
converted.

This parameter can be changed using the

ECTL SETPARAM (ESPT EXPANDTABS).

EOPT_PERSISTENTBLOCKS "Persistent blocks" option is on.

EOPT_DELREMOVESBLOCKS "Del removes blocks" option is on.

EOPT_AUTOINDENT "Auto indent" option is on. This parameter can be
changed using the ECTL. SETPARAM command.

EOPT_AUTODETECTTABLE "Autodetect character table" option is on.

EOPT_CURSORBEYONDEOL "Cursor beyond end of line" option is on. This

parameter can be changed using the
ECTL, _SETPARAM command.

EOPT_SAVEFILEPOSITION "Save file position" option is on. This parameter
can be changed using the ECTL SETPARAM
command.

TabSize

Tab size. This parameter can be changed using the ECTL._SETPARAM
command.

BookMarkCount

Number of editor bookmarks. To retrieve information about bookmarks, use
the ECTL._ GETBOOKMARKS command.

CurState

Current state of the text in the editor. Can contain one or more of the following
flags (the EDITOR_CURRENTSTATE enumeration):

Flag Description

ECSTATE_ MODIFIED modified

ECSTATE_SAVED saved

ECSTATE_LOCKED locked (Ctrl-L)
Reserved

Reserved for future use.

emarks

To determine current character set in the editor exactly, the following table can
be used:

EditorInfo.TableNum Editor
DOS -1
WIN -1
Other Table number

For "Other", the CharTable function should be used to retrieve the character
table name.

e also:
structures | TEditorInfo

ditorSelect

in | structures

The EditorSelect is used in the EditorControl function to select or deselect text
in the FAR editor.

struct EditorSelect

L
int
int
int
int
int

+s

BlockType;
BlockStartLine;
BlockStartPos;
BlockWidth;
BlockHeight;

lements

BlockType
One of the following values (the EDITOR_BLOCK_TYPES enumeration):

Block type Description

BTYPE_NONE deselect block

BTYPE_STREAM select stream block

BTYPE_COLUMN select column (rectangular) block

If BlockType is equal to BTYPE_INONE, other fields of the structure are
ignored.

BlockStartLine

First line of the selection. The field can be -1 - current line will be the start of
the block.

BlockStartPos

Start position of the selection. If BlockStartPos = -1, text is deselected.
BlockWidth

Block width. Can be negative.
BlockHeight

Block height, should be >= 1

emarks

1. EditorControl function returns FALSE, if:
o size of transferred variable is less than EditorSelect structure;
o BlockHeight is less than 1;
o BlockStartLine is greater than number of lines in editor.

xample
Stream block from (X1,Y1) to (X2,Y2) can be selected in this way:
es.BlockType=BTYPE_STREAM;

es.BlockStartLine=min(Y2,Y1);
es.BlockStartPos=(Y1 < Y2?X1:X2);

// small correction if positions are equal
if (X1 == X2)
es.BlockStartPos+=(Y1 < Y2?1:-1);

es.BlockHeight=max(Y1,Y2)-min(Y1,Y2)+1;

if(Yl < Y2)
es.BlockWidth=X2-X1+1;
else

es.BlockWidth=X1-X2+1;

if(X1 == X2)

{
if(Yl < Y2)
es.BlockStartPos--;
else
es.BlockStartPos++;
}

Info.EditorControl (ECTL_SELECT, (void*)&es);

e also:
structures | TEditorSelect

ditorSetParameter

in | structures

The EditorSetParameter structure is used in the EditorControl function to
change the settings of the current FAR editor.

struct EditorSetParameter
L.
int Type;
union {
int iParam;
char *cParam;
DWORD Reservedil;
} Param;
DWORD Flags;
DWORD Reserved2;

+s

lements

Type
Which setting to change. Can have one of the following values (the
EDITOR_SETPARAMETER_TYPES enum):

Option Description

ESPT_AUTOINDENT Sets the "Auto indent" mode according to
iParam=TRUE or FALSE.

ESPT_CHARCODEBASE Display format of the current character code in the
editor status line. iParam can have one of the
following values:

e 0 - octal (3 characters with leading zeros)
® 1 - decimal (3 characters with leading spaces)
e 2 - hexadecimal (2 digits + the character 'h")

ESPT_CHARTABLE Sets the current character table in the editor. The
value of iParam can be:

1- OEM
2 - ANSI
3 - character table with the index 0

e N - character table with the index (N-3)

In case of an error, FALSE is returned by
EditorControl and the character table is not changed.

ESPT_CURSORBEYONDEOL Sets the "Cursor beyond end of line" mode according
to iParam=TRUE or FALSE.

ESPT_EXPANDTABS Controls the behaviour of tabs to spaces convertion.
iParam can be one of the following flags
(EXPAND_TABS enum):

Flag Description

EXPAND_NOTABS

EXPAND_ALLTABS

EXPAND_NEWTABS

i Attention! o) o
This operation is not reversible; that is, if a

file contained tabs instead of spaces, the
sequences of spaces in the file will not be
converted to tabs when the "Expand tabs
to spaces" mode is disabled.

ESPT_LOCKMODE Prohibit or allow user to modify the text in the editor
(similar to Ctr1-L) according to iParam=TRUE or
FALSE.

ESPT_SAVEFILEPOSITION Sets the "Save file position" option according to
iParam=TRUE or FALSE.

ESPT_SETWORDDIV Changes the word delimiter set (using the cParam

field) for the current editor instance.

If cParam is NULL or the empty string, the default
delimiter set - "~1%A&* ()+ | {}:"<>? " -=\
[1;',./"-isused. The word delimiter set cannot
contain more than 255 characters.

ESPT_GETWORDDIV Retrieves the word delimiter set (using the cParam
field) for the current editor instance.

cParam should point to a buffer of at least 256
characters.

ESPT_TABSIZE Changes the tabsize. iParam is the new value -
between 1 and 512. If iParam is out of range, tabsize
is set to 8.

iParam
Contains a numeric setting; see the description of the individual settings.

cParam

Contains a pointer to a null-terminated text string; see the description of
individual settings.

Reserved1

Not used; reserved for future use.
Flags

Contains additional flags or data; see the description of individual settings.
Reserved?

Not used; reserved for future use. Must be set to 0.

emarks

If a plugin changes the values of the "Tabsize" and "Expand tabs to spaces"
parameters at the same time, it is recommended to set the tabsize first and then
set the "Expand tabs to spaces" mode.

e also:
structures | TEditorSetParameter

ditorSetPosition

in | structures

The EditorSetPosition structure is used in the EditorControl function to set the
cursor position and state in the FAR editor.

struct EditorSetPosition

{

int CurlLine;

int CurPos;

int CurTabPos;

int TopScreenlLine;
int LeftPos;

int Overtype;

+s

lements

CurLine
New value of the current line index, or -1 to retain the current value.

CurPos
New value of the cursor position in the line, or -1 to retain the current value.

CurTabPos

New value of the cursor position on the screen, or -1 to keep the current value.
If the current line doesn't contain tab characters, CurTabPos has the same
meaning, as CurPos. Both CurPos and CurTabPos should not be specified,
either one or the other must be set to -1.

TopScreenLine
New value of the first visible line index, or -1 to keep the current value.
LeftPos

New value of the leftmost visible position of the text on the screen, or -1 to
keep the current value.

Overtype
Set to O for insert mode, 1 for overtype mode, -1 to keep the current mode.

e also:

structures | TEditorSetPosition

ditorSetString

in | structures

The EditorSetString structure is used in the EditorControl function to change
the value of a text line in the internal FAR editor.

struct EditorSetString
{

int StringNumber;

char *StringText;

char *StringEOL;

int StringlLength;
3

lements

StringNumber
Number of the text line to change, -1 indicates the current line.

StringText
Pointer to the line text.

StringEOL
End-of-line sequence. Can be an empty string, \r\n or \n. You can place this
sequence either in StringEOL or directly in StringText. This field can also be
set to NULL to use the default sequence.

StringLength
Length of data pointed to by StringText.

e also:
structures | TEditorSetString

ialog API structures

in | structures

Structure Description

FarDialogEvent Information about dialog event

FarDialogltem Dialog item

FarDialogltemData Passing data to a dialog item

FarList The DI_LISTBOX list

FarListColors Describes color schemes for DI COMBOBOX and
DI_LISTBOX controls

FarListDelete Parameters for deletion from a DI_ COMBOBOX or
DI_LISTBOX

FarListFind Search in a DI_COMBOBOX or DI_LISTBOX

FarListGetltem Retrieval of one element from a DI COMBOBOX or
DI_LISTBOX

FarListInfo Retrieval of information about a DI_ COMBOBOX or
DI_LISTBOX

FarlListlnsert Item insertion into a DI_ COMBOBOX or
DI_LISTBOX

FarListltem List item

FarListPos Positioning in the list

FarListltemData Association of a list item with data

FarListTitles Set or get list labels

FarListUpdate List item update data

OpenDlgPluginData Information about dialog and activated plugin item.

e also:

Exported functions, Service functions, Dialog API, Archive

support, Addons, Delphi structures, Win32 structures

arDialogEvent
in | Dialog API

FarDialogEvent structure describes an event, sent to the ProcessDialogEvent
function.

struct FarDialogEvent

{
HANDLE hD1g;

int Msg;

int Parami;
LONG_PTR Param2,
LONG_PTR Result;

+s

lements

hDlIg
Dialog handle
Msg

One of the messages or events

Paraml
Param 1

Param?2
Param 2

Result
Dialog handler return code.

emarks

e also:
Structures, ProcessDialogEvent, Dialog API

arDialogltem

in | Dialog API | Dialog items

The FarDialogltem structure describes one dialog item. An array of those
structures is passed to the Dialog or DialogEx functions to show a dialog.

struct FarDialogItem

{
int Type;
int X1;
int Y1;
int X2;
int Y2;
int Focus;
union
{
DWORD_PTR Reserved;
int Selected;
const char *History;
const char *Mask;
struct FarList *ListItems;
int ListPos;
CHAR_INFO *VBuf;
}
#ifdef _FAR_NO_NAMELESS_UNIONS
Param

#endif

14
DWORD Flags;
int DefaultButton;
union
{
char Data[512];
struct
{
DWORD PtrFlags;
int PtrLength;
char *PtrData;
char PtrTail[1];

} Ptr;

}
#ifdef _FAR_NO_NAMELESS_UNIONS

Data
#endif
’

+s

embers

Type
Dialog item type. Can be one of the following values, described in the "Dialog
items" topic.

X1,Y1,X2,Y2
Dialog item coordinates, calculated relative to the top left dialog corner
(coordinates start from 0,0). For more information about coordinates see the
description of a specific dialog item.

Focus
Keyboard focus flag. You must specify one item with Focus equal to TRUE.

Param.Reserved
Size of this members always equals the size of the Param union, which allows
to use this member for platform independent initialization.

Param.Selected

Applicable for DI_CHECKBOX and DI_RADIOBUTTON controls. Allows
to set their initial state and get their state after closing the dialog.

Param.History

Contains the address of a null-terminated text string that will be used as the
internal history name when an edit control has the DIF_HISTORY flag. If
several edit controls have the same history name, they will share the same
history list.

Param.Mask
Contains the address of a null-terminated string that serves as a mask for a
DI _FIXEDIT control.

Param.Listltems
Pointer to a FarList structure that describes the list of items for a

DI COMBOBOX or DI _LISTBOX control.

Param.ListPos
Current list position in a DI_LISTBOX or DI COMBOBOX control.

Param.VBuf

Pointer to an array of CHAR_INFO structures describing a virtual buffer for
the DI_USERCONTROL control.

Flags

Combination of values described in the "Dialog item flags" topic.

DefaultButton

Define current item as the "default control”. If while pressing <Enter> the
focus is not set on a button, the Dialog function (or DialogEx) will return the
number of the item with DefaultButton set to 1. The DefaultButton flag can be
set not only for a button, but for any other dialog item.

Data.Data

Buffer to exchange data with the dialog (without DIF_VAREDIT flag). See
dialog items descriptions for details.

Data.Ptr.PtrFlags
Additional flags (not used in Dialog API 1.0). Ptr.PtrFlags must be 0.

Data.Ptr.PtrLength
Length of the data pointed to by PtrData.

Data.Ptr.PtrData
Points to the user buffer for the edit data.

Data.Ptr.Ptrlail
"Tail" - provides access to the remaining part of the Data member.

emarks

1. All information about the FarDialogItem structure is described with named

unions taken into account. See details in the
FAR NO_NAMELESS_UNIONS macro description.

2. Because the Data.Data member size is large, direct initialization of a
FarDialogltem structures array can be very memory consuming. To avoid
it, you can, for example, initialize a temporary structure type array with
*Data instead of Data[512] and then convert it to a FarDialogItem array

using a simple function.

3. The example function to do the abovementioned conversion can be found in
the sources of example plugins supplied with FAR Manager (the
InitDialogltems function and the InitDialogltem structure).

4. The Ptr.* members are used only for DI_EDIT controls with the
DIF_VAREDIT flag.

e also:
Structures, FAR NO NAMELESS UNIONS, InitDialogltem,
TFarDialogltem, Dialog item flags

arDialogltemData
in | Dialog API

The FarDialogltemData structure describes data, being sent (received) to the
dialog item by a DM_SETTEXT message (DM_GETTEXT) as Param?2
parameter.

struct FarDialogItemData

¢ int PtrLength;
char *PtrData;
i
embers
PtrLength
Data size in PtrData without ending NULL character.
PtrData

Pointer to the data being sent.

emarks

e also:
DM GETTEXT, DM SETTEXT, TFarDialogltemData,
Structures

arList
in | Dialog API

The FarList structure contains a pointer to an array of FarListltem structures for
DI _LISTBOX or DI_ COMBOBOX controls.

struct FarlList

{
DWORD ItemsNumber;

struct FarListItem *Items;

+s

embers

ItemsNumber
The number of list items.

Items
Pointer to an array of FarListltem structures containing a list of combobox,
dropdown list or list box items.

emarks

e also:
TFarList, FarListltem, Structures

arListColors
in | Dialog API

The FarListColors structure describes the color scheme for DI LISTBOX and
DI COMBOBOX controls.

struct FarListColors

{
DWORD Flags;

DWORD Reserved;

int ColorCount;
LPBYTE Colors;

Iy

embers

Flags
Falgs. Must be 0.

Reserved

Reserved for future use. Must be O.
ColorCount

Amount of items in the Colors array.
Colors

Byte array of the color attributes (background_color+text_color). By default
the folowing attributes are set:

for DI_LISTBOX

Index | Constant Description
0 COL_DIALOGLISTBOX background
1 COL_DIALOGLISTBOX border

COL_DIALOGLISTTITLE titles - top and bottom

COL_DIALOGLISTTEXT normal item

COL_DIALOGLISTBOX separator

2
3
4 COL_DIALOGLISTHIGHLIGHT hotkey
5
6

COL_DIALOGLISTSELECTEDTEXT selected item

7 COL_DIALOGLISTSELECTEDHIGHLIGHT selected hotkey

8 COL_DIALOGLISTSCROLLBAR scrollbar

9 COL_DIALOGLISTDISABLED disabled item

10 COL_DIALOGLISTARROWS long string indicators

11 COL_DIALOGLISTARROWSSELECTED selected long string indicators
12 COL_DIALOGLISTARROWSDISABLED disabled long string indicators
13 COL_DIALOGLISTGRAY grayed out item

14 COL_DIALOGLISTSELECTEDGRAYTEXT selected grayed out item

for DI COMBOBOX

Index | Constant Description

0 COL_DIALOGCOMBOBOX background

1 COL_DIALOGCOMBOBOX border

2 COL_DIALOGCOMBOTITLE titles - top and bottom

3 COL_DIALOGCOMBOTEXT normal item

4 COL_DIALOGCOMBOHIGHLIGHT hotkey

5 COL_DIALOGCOMBOBOX separator

6 COL_DIALOGCOMBOSELECTEDTEXT selected item

7 COL_DIALOGCOMBOSELECTEDHIGHLIGHT | selected hotkey

8 COL_DIALOGCOMBOSCROLLBAR scrollbar

9 COL_DIALOGCOMBODISABLEDTEXT disabled item

10 COL_DIALOGCOMBOARROWS long string indicators

11 COL_DIALOGCOMBOARROWSSELECTED selected long string
indicators

12 COL_DIALOGCOMBOARROWSDISABLED disabled long string
indicators

13 COL_DIALOGCOMBOGRAY grayed out item

14 COL_DIALOGCOMBOSELECTEDGRAYTEXT selected grayed out item

emarks
e also:

DN CTLCOLORDLGLIST, TFarListColors, Structures

arListDelete
in | Dialog API

The FarListDelete structure specifies settings for deletion of items from a
DI _LISTBOX or DI_COMBOBOX list.

struct FarListDelete

{

int StartIndex;
int Count;

15
embers

StartIndex
Index of the first item to be deleted.

Count
Number of items to be deleted.

emarks
If the value of Count is less or equal to 0, all items will be deleted.

e also:
DM LISTDELETE, TFarListDelete, Structures

arListFind
in | Dialog API

The FarListFind structure specifies settings for item search in a DI_LISTBOX
or DI COMBOBOX list.

struct FarListFind

{

int StartIndex;
const char *Pattern;
DWORD Flags;

DWORD Reserved;

+s

embers
StartIndex
Index of the item from which the search is started.
Pattern
Pattern to find in the format used by the CmpName function
Flags
Search options. Combination of zero or more of the following values
(FARLISTFINDFLAGS enum):

Flag Description

LIFIND_EXACTMATCH The Pattern field is not a pattern (mask) but a literal
string. It must be an exact match of the listbox string
(that is, not only the beginning should match).

Reserved
Reserved

emarks

e also:
DM LISTFINDSTRING, TFarListFind, Structures

arListGetltem
in | Dialog API

The FarListGetItem structure describes one item of a FarListltem structure for
DI _LISTBOX and DI_COMBOBOX dialog items.

struct FarListGetItem

{

int ItemIndex;
struct FarListItem Item;

+s

embers

ItemIndex
Index of the list item.
Item
List item represented by a FarListltem structure.

emarks

e also:
TFarListGetltem, FarListitem, DM LISTGETITEM, Structures

arListinfo
in | Dialog API

The FarListInfo structure is used to retrieve information about a DI LISTBOX
or DI COMBOBOX control.

struct FarListInfo

{
DWORD Flags;

int ItemsNumber;
int SelectPos;

int TopPos;

int MaxHeight;

int MaxLength;
DWORD Reserved[6];

+s

embers

Flags
A combination of zero or more of the following flags (FARLISTINFOFLAGS
enum):

Flag Description

LINFO_SHOWNOBOX A DI LISTBOX control is drawn without a frame
when the DIF LISTNOBOX flag is set.

LINFO_AUTOHIGHLIGHT Hotkeys will be assigned automatically, starting with
the first item.

LINFO_REVERSEHIGHLIGHT | Hotkeys will be assigned automatically, starting with
the last item.

LINFO_WRAPMODE Trying to move the cursor above the first item or
below the last item will move the cursor to the
bottom or the top of the list, respectively.

LINFO_SHOWAMPERSAND Show ampersands (&). If this flag is not set,
ampersands are used to define hot keys for list items.

ItemsNumber
Number of items in the list.
SelectPos

Index of the selected item in the list.

TopPos
Index of the topmost visible item in the list.

MaxHeight
Maximum height of the list.

MaxLength
Maximum length of a list item line.

Reserved
Reserved for future use.

emarks

e also:
DM LISTINFO, TFarListInfo, Structures

arListinsert
in | Dialog API

The FarListInsert structure specifies the settings for insertion of an item into a
DI _LISTBOX or DI COMBOBOX list.

struct FarListInsert

{

int Index;
struct FarListItem Item;

+s

embers

Index

Position at which the item is to be inserted. If the position is greater than the
count of items in the list, the item is appended to the end of the list. If the
position is negative, the item is inserted at the beginning of the list.

Item
Pointer to a FarListltem structure describing the item to insert.

emarks

e also:
FarListltem, DM LISTINSERT, TFarListInsert, Structures

arListltem
in | Dialog API

The FarListItem structure describes one item in a DI LISTBOX or
DI COMBOBOX list.

struct FarListItem
{
DWORD Flags;
char Text[128];
DWORD Reserved[3];

i
embers
Flags
Can be a combination of the following values (LISTITEMFLAGS enum):
Flag Description
LIF_SELECTED Item selection flag. It must be set only for one item.
LIF_CHECKED If this flag is set, a selection mark is displayed before
the item's text. (character with code 0xFB, for
example).
LIF_SEPARATOR If this flag is set, the menu item is displayed as a

separator. If Text is not empty, it is drawn over the
separator line.

LIF_DISABLE If this flag is set, the list item becomes disabled.

LIF_GRAYED If this flag is set, the list item is shown, but cannot be
selected.

LIF_HIDDEN If this flag is set, the list item is not shown.

LIF_DELETEUSERDATA This flag is set in the Item parameter of the

DM LISTUPDATE message, if it is needed to delete
related data when list item is being updated.

Text
Item text.

Reserved
Reserved. Must be 0.

emarks

e also:
FarList, DM LISTGETITEM, FarListInsert, FarListUpdate,
TFarListltem, Structures

arListPos
in | Dialog API

The FarListPos structure contains information about the cursor position in a
DI _LISTBOX or DI_COMBOBOX list.

struct FarListPos

{

int SelectPos;
int TopPos;

+s

embers

SelectPos
Index of the current item.

TopPos
Index of the first visible item, or -1 if the first visible item should be
determined automatically according to SelectPos.

emarks

e also:
DM LISTGETCURPOS, DM LISTSETCURPOS, TFarListPos,
Structures

arListltemData
in | Dialog API

The FarListItemData structure describes the data that will be associated with
an item in a DI LISTBOX or DI COMBOBOX list.

struct FarListItemData

{
int Index;
int DataSize;
void *Data;
DWORD Reserved;

Iy

embers

Index

Index of the list item to which the data is associated.
DataSize
Size of Data or 0 if a null-terminated string is being associated with the item.

Data
Pointer to the data.

Reserved
Reserved.

emarks

Dialog manager allocates memory for the data associated with the list item using
the following rules:

DataSize Data

0 Pointer to a null-terminated string. Memory area of
strlen(Data)+1 bytes is alocated. The data is
then copied to the allocated space.

<= sizeof (DWORD) Character array of 4 or less elements or any pointer
(HWND window handle, for example). No memory is
allocated. Data is placed in the local area of the list
itemn.

> sizeof (DWORD) Arbitrary data. Memory area of DataSize bytes is

allocated. The data is then copied to the allocated
space.

e also:
FarList, DM LISTGETDATA, DM LISTSETDATA,
TFarListltemData, Structures

arListTitles

in | structures | Dialog API

The FarListTitles structure specifies the titles (top and bottom) of a
DI _LISTBOX list.

struct FarListTitles

{
int TitlelLen;
char *Title;
int BottomLen;
char *Bottom;
Iy
embers
TitleLen
Length of the top title string.
Title

Top title string. May be NULL; in this case, the title is not shown.

BottomLen
Length of the bottom title string.

Bottom
Bottom title string. May be NULL; in this case, the title is not shown.

emarks

TitleLen and BottomLen members are required only while getting list titles (see
DM_LISTGETTITLES)

e also:
TFarListTitles, DM_LISTGETTITLES, DM _LISTSETTITLES

arListUpdate

in | Dialog API

The FarListUpdate structure specifies the settings for updating an item in a
DI_LISTBOX or DI_ COMBOBOX list: the index of the item to update and the
updated item's data.

struct FarListUpdate
{

int Index;
struct FarListItem Item;

+s

embers
Index
Index of the item to update.
Items
A FarListltem structure being updated.

emarks

User data associated with a list item is not deleted. Use
LIF DELETEUSERDATA for autodeletion of user data.

e also:
DM LISTUPDATE, TFarListUpdate, FarListItem, Structures

)penDIgPluginData

in | structures

Pointer to an OpenDIgPluginData structure is passed to an OpenPlugin
function, when plugin is called from dialog.

struct OpenDlgPluginData
{

int ItemNumber;
HANDLE hDlg;

+s

lements

ItemNumber

Position of the activated plugin item in the exported items list in plugins
menu.

hDlIg
Dialog handle.

emarks

e also:
OpenPlugin, structures

tructure - Viewer

in | structures

iewer specific structures

Structure Description
FARINT64 used to hold a 64 bit integer value.
ViewerlInfo current viewer state
ViewerMode information about the current view mode
ViewerSelect block selection in the internal viewer
ViewerSetMode set the working mode of the current viewer instance
ViewerSetPosition position setting in the viewer

e also:

Exported functions, Service functions, Delphi structures, Win32

structures

iewerinfo

in | structures

The ViewerlInfo structure is used to get information about the current state of the
internal viewer.

struct ViewerInfo

{

int StructSize;

int ViewerlID;

const char *FileName;
FARINT64 FileSize;
FARINT64 FilePos;

int WindowSizeX;

int WindowSizeY;
DWORD Options;

int TabSize;

struct ViewerMode CurMode;
int LeftPos;

DWORD Reserved3;

+s

lements
StructSize

Size of the ViewerInfo structure. You must set this field.
ViewerlD

Identifier of the viewer instance. Each viewer instance has a unique identifier
that cannot be repeated during a FAR session.

FileName
Full path and name of the file beeing viewed.

FileSize

File size. Veriable of FARINT64 type.
FilePos

Current file position (absolute offset in bytes). Variable of FARINT64 type.
WindowSizeX, WindowSizeY

Width and height of the viewer window.

Options
Describes viewer options state. Can be a combination of the following flags
(VIEWER_OPTIONS enum):

Flag Description
VOPT_SAVEFILEPOSITION "Save file position"
VOPT_AUTODETECTTABLE "Autodetect character table"
TabSize
Tabulation size.
CurMode
A variable of ViewerMode type - additional information about the view mode.
LeftPos

Position of the left border of the viewer window in the viewed text.

Reserved3
Reserved for future use.

e also:
Structures, ViewerControl, ViewerMode

iewerMode

in | structures

The ViewerMode structure is used to receive additional information about the
state of the current viewer instance.

struct ViewerMode

{

int UseDecodeTable;
int TableNum;

int AnsiMode;

int Unicode;

int Wrap;

int WordWrap;

int Hex;

DWORD Reserved[4];

+s

lements

UseDecodelable
If 1, then a decoding table is used.
TableNum
The number of the user character table. Use only if UseDecodeTable is 1.
AnsiMode
If 1, then the current charset is ANSI.
Unicode
If 1, then the current charset is Unicode.
Wrap
Text wrapping is on - 1, off - 0.
TypeWrap
Text wrapping mode: 1 - word wrap is on, O - line wrap.
Hex
If 1, then the viewer is in hex-mode.

Reserved

Reserved for future use.

e also:
Structures, ViewerControl, ViewerInfo

iewerSelect

in | structures

The ViewerSelect structure is used to select a block in the internal viewer.

struct ViewerSelect

{
FARINT64 BlockStartPos;

int BlockLen;

+s

lements

BlockStartPos

Selection start - in characters, not in bytes. This means that if the viewer is in
Unicode mode, BlockStartPos will equal - position in file / 2.

BlockLen
Selection length in characters.

e also:
Structures, ViewerControl, FARINT64

iewerSetMode

in | structures

The ViewerSetMode structure is used to set the view mode of the current viewer
instance.

struct ViewerSetMode
L.
int Type;
union {
int iParam;
char *cParam;
} Param;
DWORD Flags;
DWORD Reserved;

+s

lements

Type
Mode type. Can be one of the following values
(VIEWER_SETMODE_TYPES enum):

Mode Description

VSMT_HEX Text/Hex mode: iParam=1 - turn Hex mode on,
iParam=0 - text mode.

VSMT_WRAP Line wrap: iParam=1 - line wrap is on, iParam=0 -
off)

VSMT_WORDWRAP Word wrap: iParam=1 - word wrap is on, iParam=0
- off.

iParam

Integer value, see details above.

cParam
Pointer to a null terminated string, see details above.

Flags
Additional flags (VIEWER_SETMODEFLAGS_TYPES enum):

Mode Description

VSMFL_REDRAW Redraw the screen. Otherwise use the
VCTL REDRAW command to redraw the screen
after changing the mode.

Reserved
Reserved for future use. Should be 0.

emarks

e also:
structures | TViewerSetMode

iewerSetPosition

in | structures

The ViewerSetPosition structure is used to change the current position in the
current viewer instance.

struct ViewerSetPosition

{
DWORD Flags;

FARINT64 StartPos,;
int LeftPos;

+s

lements

Flags
Flags, defining the position change process. Can be a confination of the
following flags (VIEWER_SETPOS_FLAGS enum):

Flag Description

VSP_NOREDRAW Do not redraw the screen.

VSP_PERCENT The offset is given in percents not bytes.

VSP_RELATIVE The offset is relative not absolute.

VSP_NORETNEWPOS Do not return the real position (see StartPos).
StartPos

New file positions (in bytes or percents - depends on the VSP_PERCENT
flag, can be negative if the VSP_RELATIVE flag is specified). Generaly it is
not possible to set the exact position in the viewer, so the new position may
not coninside with the one in StartPos. The new real position is then stored in
StartPos (if the VSP_NORETNEWPOS is not specified). Use this property if
needed.

LeftPos
Position of the left border of the viewer window in the viewed text.

e also:
Structures, ViewerControl, FARINT64

ActlEjectMedia

in | structures | ActlEjectMedia

The ActlEjectMedia stucture for Delphi:

TActlEjectMedia
Letter: DWORD,
Flags: DWORD;

end;

PActlEjectMedia

packed record

ATActlEjectMedia;

ActlKeyMacro

in | structures | ActiIKeyMacro

The ActlKeyMacro stucture for Delphi:

TActlKeyMacro = packed record

Command: Integer;

Reserved: packed array[0..2] of DWORD;
end;
PActlKeyMacro = ATActlKeyMacro;

Arcinfo

chive support | structures | ArcInfo

The ArcInfo stucture for Delphi:

TArcInfo = packed record
SFXSize: Integer;
Volume: Integer;
Comment: Integer,
Recovery: Integer,
Lock: Integer;

Flags: Integer;
end;

PArcInfo = ATArcInfo;

Arclteminfo

chive support | structures | TArcltemInfo

The ArcItemInfo stucture for Delphi:

TArcItemInfo = packed record
HostOS: packed array[0..31] of char;
Description: packed array[0..255] of char;
Solid: integer;
Comment: integer;
Encrypted: integer;
DictSize: integer;
UnpVer: integer;
end;
PArcItemInfo = ATArcItemInfo;

CharTableSet

in | structures | CharTableSet

The CharTableSet stucture for Delphi:

TCharTableSet = packed record
DecodeTable: packed array[0..255] of BYTE;
EncodeTable: packed array[0..255] of BYTE;
UpperTable: packed array[0..255] of BYTE;
LowerTable: packed array[0..255] of BYTE;
TableName: packed array[0..127] of char;

end;

PCharTableSet = ATCharTableSet;

CmdLineSelect

in | structures | CmdLineSelect

The CmdLineSelect stucture for Delphi:

TCmdLineSelect = packed record
SelStart: integer;
SelEnd: integer;

end;

PEditorSelect = ATCmdLineSelect;

EditorBookMarks

in | structures EditorBookMarks

The EditorBookMarks stucture for Delphi:

TEditorBookMarks = packed record

Line: AInteger;

Cursor: Alnteger,

ScreenLine: AlInteger;

LeftPos: AInteger;

Reserved: packed array[0..3] of DWORD;
end;
PEditorBookMarks = ATEditorBookMarks;

EditorColor

in | structures

The EditorColor stucture for Delphi:

TEditorColor = packed record
StringNumber: integer;
ColorItem: integer;
StartPos: integer;

EndPos: integer;
Color: integer;
end;
PEditorColor = ATEditorColor;

EditorConvertPos

in | structures | EditorConvertPos

The EditorConvertPos stucture for Delphi:

TEditorConvertPos = packed record
StringNumber: integer;
SrcPos: integer;
DestPos: integer;

end;

PEditorConvertPos = ATEditorConvertPos;

EditorConvertText

in | structures | EditorConvertText

The EditorConvertText stucture for Delphi:

TEditorConvertText = packed record
Text: PChar;
TextLength: integer;
end;
PEditorConvertText = ATEditorConvertText;

EditorGetString

in | structures | EditorGetString

The EditorGetString stucture for Delphi:

TEditorGetString = packed record
StringNumber: integer;
StringText: PChar;
StringEOL: PChar;
StringLength: integer;
SelStart: integer;
SelEnd: integer;
end;
PEditorGetString = ATEditorGetString;

Editorinfo

in | structures | EditorInfo

The EditorInfo stucture for Delphi:

TEditorInfo = packed record
EditorID: integer;
FileName: PChar;
wWindowSizeX: integer;
wWindowSizeY: integer;
TotallLines: integer;
CurLine: integer;

CurPos: integer;
CurTabPos: integer;
TopScreenLine: integer;
LeftPos: integer;
Overtype: integer;
BlockType: integer;
BlockStartLine: integer;
AnsiMode: integer;
TableNum: integer;
Options: DWORD;
TabSize: integer;
BookMarkCount: integer;
Reserved: packed array[0..6] of DWORD;
end;
PEditorInfo = ATEditorInfo;

EditorSelect

in | structures | EditorSelect

The EditorSelect stucture for Delphi:

TEditorSelect = packed record
BlockType: integer;
BlockStartLine: integer;
BlockStartPos: integer;
BlockWidth: integer;
BlockHeight: integer;

end;

PEditorSelect = ATEditorSelect;

EditorSetParameter

in | structures | EditorSetParameter

The EditorSetParameter stucture for Delphi:

TEditorSetParameter = packed record
ParamType: integer;
case integer of
O: (iParam: integer);
1: (cParam: PChar);
2: (Reservedl: DWORD);
Flags: DWORD;
Reserved2: DWORD;
end;
PEditorSetParameter = ATEditorSetParameter;

EditorSetPosition

in | structures | EditorSetPosition

The EditorSetPosition stucture for Delphi:

TEditorSetPosition = packed record
CurLine: integer;
CurPos: integer;
CurTabPos: integer;
TopScreenLine: integer;
LeftPos: integer;
Overtype: integer;
end;
PEditorSetPosition = ATEditorSetPosition;

EditorSetString

in | structures | EditorSetString

The EditorSetString stucture for Delphi:

TEditorSetString = packed record
StringNumber: integer;
StringText: PChar;
StringEOL: PChar;
StringLength: integer;
end;
PEditorSetString = ATEditorSetString;

FarSetColors

in | structures | FarSetColors

The FarSetColors stucture for Delphi:

TFarSetColors = packed record
Flags: DWORD;
StartIndex: integer;
ColorCount: integer;
Colors: PChar;

end;

PFarSetColors = ATFarSetColors;

FarDialogltem

in | structures

The FarDialogItem stucture for Delphi:

TFarPtr = packed record
PtrFlags: DWORD;
PtrLength: integer;
PtrData: PChar;
PtrTail: array[0..0] of char;
end;

TFarDialogItem = packed record
ItemType: integer;
X1: integer;
Y1l: integer;
X2: integer;
Y2: integer;
Focus: integer;
case integer of
(History: PChar);
(Mask: PChar);
(ListItems: PFarListItemArr);
(VBuf: PCharInfo);
(Selected: integer;
Flags: DWORD;
DefaultButton: integer;
case integer of
O: (Data: packed array[0..511] of char);
1: (Ptr: TFarPtr)

A WDNEO

)
end;
PFarDialogItem = ATFarDialogItem;

FarDialogltemData

in | structures | FarDialogltemData

The FarDialogItemData stucture for Delphi:

TFarDialogItemData = packed record
DataLength: Integer;
DataPtr: PChar;

end;

PFarDialogItemData = ATFarDialogItemData;

FarList

in | structures | FarList

The FarList stucture for Delphi:

TFarList = packed record
ItemsNumber: integer;
Items: PFarListItemArr;

end;

PFarList = ATFarList;

FarListColors

in | structures | FarListColors

The FarListColors stucture for Delphi:

TFarListColors = packed record
Flags: DWORD;
Reserved: integer;
ColorCount: integer;
Colors: PChar;
end;
PFarListColors = ATFarListColors;

FarListDelete

in | structures | FarListDelete

The FarListDelete stucture for Delphi:

TFarListDelete = packed record
StartIndex: integer;
Count: integer;

end;

PFarListDelete = ATFarListDelete;

FarListGetltem

in | structures | FarListGetltem

The FarListGetItem stucture for Delphi:

TFarListGetItem = packed record
ItemIndex: integer;
Item: FarListItem;

end;

PFarListGetItem = ATFarListGetItem;

FarListltem

in | structures FarListltem

The FarListItem stucture for Delphi:

TFarListItem = packed record
Flags: DWORD;
Text: packed array[0..127] of char;
Reserved: array[0..2] of DWORD;
end;
PFarListItem = ATFarListItem;

FarListPos

in | structures FarListPos

The FarListPos stucture for Delphi:

TFarListPos = packed record
SelectPos: Integer;
TopPos: Integer;

end;

PFarListPos = ATFarListPos;

FarListltemData

in | structures FarListltemData

The FarListItemData stucture for Delphi:

TFarListItemData = packed record
Index: integer;
DataSize: integer;
Data: PChar;
Reserved: DWORD;
end;
PFarListItemData = ATFarListItemData;

FarListTitles

in | structures | FarListTitles

The FarListTitles stucture for Delphi:

TFarListTitles = packed record
TitlelLen: Integer;
Title: PChar;
BottomLen: Integer,
Bottom: PChar;
end;
PFarListTitles = ATFarListTitles;

FarMenultem

in | structures

The FarMenultem stucture for Delphi:

TFarMenuItem = packed record
Text: packed array[0..127] of char;
Selected: integer;
Checked: integer;
Separator: integer;
end;
PFarMenultem = ATFarMenultem;

FarMenultemEXx

in | structures FarMenultemEx

The FarMenultemEXx stucture for Delphi:

TFarMenuItemEx = packed record
Flags: DWORD;
Text: packed array[0..127] of char;
UserData: DWORD,

end;

PFarMenultemEx = ATFarMenultemEXx;

FarListFind

in | structures | FarListFind

The FarListFind stucture for Delphi:

TFarListFind = packed record
StartIndex: integer;
Pattern: PChar;

Flags: DWORD;
Reserved: DWORD;
end;
PFarListFind = ATFarListFind;

FarListinfo

in | structures | FarListInfo

The FarListInfo stucture for Delphi:

TFarListInfo = packed record
Flags: DWORD;
ItemsNumber: integer;
SelectPos: integer;
TopPos: integer;
MaxHeight: integer;
MaxLength: integer;
Reserved: array[0..5] of DWORD;
end;
PFarListInfo = ATFarListInfo;

FarListinsert

in | structures | FarListInsert

The FarListInsert stucture for Delphi:

TFarListInsert = packed record
Index: integer;
Item: TFarListItem;

end;

PFarListInsert = ATFarListInsert;

InfoPanelLine

in | structures | InfoPanelLine

The InfoPanelLine stucture for Delphi:

TInfoPanellLine = packed record
Text: packed array[0..79] of char;
Data: packed array[0..79] of char;
Separator: integer;

end;

PInfoPanelLine = ATInfoPanellLine;

KeyBarTitles

in | structures | KeyBarTitles

The KeyBarTitles stucture for Delphi:

TKeyBarTitles = packed record
Titles: packed array[0..11] of PChar;
CtrlTitles: packed array[0..11] of PChar;
AltTitles: packed array[0..11] of PChar;
ShiftTitles: packed array[0..11] of PChar;

CtrlshiftTitles: packed array[0..11] of PChar;
AltShiftTitles: packed array[0..11] of PChar;
CtrlAltTitles: packed array[0..11] of PChar;
end;
PKeyBarTitles = ATKeyBarTitles;

KeySequence

in | structures | KeySequence

The KeySequence stucture for Delphi:

TKeySequence = packed record
Flags: DWORD;
Reserved: DWORD;
Count: Integer,;
Sequence: ADWORD;
end;
PKeySequence = ATKeySeqguence;

OpenPlugininfo

in | structures

The OpenPluginInfo stucture for Delphi:

TOpenPluginInfo = packed record
StructSize: integer;
Flags: DWORD;
HostFile: PChar;
CurDir: PChar;
Format: PChar;
PanelTitle: PChar;
InfoLines: PInfoPanellLineArr;
InfoLinesNumber: integer;
DescrFiles: PPCharArray;
DescrFilesNumber: integer;
PanelModesArray: PPanelModeArr;
PanelModesNumber: integer;
StartPanelMode: integer;
StartSortMode: integer;
(*
SM_DEFAULT,
SM_UNSORTED,
SM_NAME,
SM_EXT,
SM_MTIME,
SM_CTIME,
SM_ATIME,
SM_SIZE,
SM_DESCR,
SM_OWNER,
SM_COMPRESSEDSIZE,
SM_NUMLINKS
*)
StartSortOrder: Integer;
KeyBar: PKeyBarTitles;
ShortcutData: PChar;
Reserved: DWORD;
end;

POpenPluginInfo = ATOpenPluginInfo;

Panelinfo

in | structures

The PanelIlnfo stucture for Delphi:

TPanelInfo = packed record
PanelType: integer;
(*
PTYPE_FILEPANEL,
PTYPE_TREEPANEL,
PTYPE_QVIEWPANEL,
PTYPE_INFOPANEL
*
)
Plugin: integer;
PanelRect: TRect;
PanelItems: PPluginPanellItemArr;
ItemsNumber: integer;
SelectedItems: PPluginPanelItemArr;
SelectedItemsNumber: integer;
CurrentItem: integer;
TopPanelItem: integer;
Visible: integer;
Focus: integer;
ViewMode: inetegr;
ColumnTypes: packed array[0..79] of char;
Columnwidths: packed array[0..79] of char;
CurDir: packed array[0O..Pred(NM)] of char;
ShortNames: integer;
SortMode: integer;
(*
SM_DEFAULT,
SM_UNSORTED,
SM_NAME,
SM_EXT,
SM_MTIME,
SM_CTIME,
SM_ATIME,
SM_SIZE,
SM_DESCR,

SM_OWNER,
SM_COMPRESSEDSIZE,
SM_NUMLINKS
*)
Reserved: packed array[0..1] of DWORD;
end;
PPanelInfo = ATPanellnfo;

PanelMode

in | structures

The PanelMode stucture for Delphi:

TPanelMode = packed record
ColumnTypes: PChar;
ColumnwWidths: PChar;
ColumnTitles: PPCharArray;
FullScreen: integer;
DetailedStatus: integer;
AlignExtensions: integer;
CaseConversion: integer;
StatusColumnTypes: PChar;
StartusColumnwidths: PChar;
Reserved: array[0..1] of DWORD;

end;

PPanelMode = ATPanelMode;

PanelRedrawinfo

in | structures

The PanelRedrawlInfo stucture for Delphi:

TPanelRedrawInfo = packed record
CurrentItem: integer;
TopPanelItem: integer;

end;

PPanelRedrawInfo = ATPanelRedrawInfo;

Plugininfo

in | structures

The PluginlInfo stucture for Delphi:

TPluginInfo = packed record
StructSize: Integer;
Flags: DWORD;
DiskMenuStrings: PPCharArray;
DiskMenuNumbers: PIntegerArray;
DiskMenuStringsNumber: integer;
PluginMenuStrings: PPCharArray;
PluginMenuStringsNumber: integer;
PluginConfigStrings: PPCharArray;
PluginConfigStringsNumber: integer;
CommandPrefix: PChar;

end;

PPluginInfo = ATPluginInfo;

PluginPanelltem
in | structures | PluginPanelltem

The PluginPanelltem stucture for Delphi:

TPluginPanellItem = packed record
FindData: TWin32FindDataEX;
PackSizeHigh: DWORD;

PackSize: DWORD;

Flags: DWORD;

NumberOfLinks: DWORD;

Description: PChar;

Owner: PChar;

CustomColumnData: PPCharArray;

CustomColumnNumber: integer;

UserData: DWORD,

Reserved: array[0..2] of DWORD;
end;

PPluginPanelItem = ATPluginPanellItem;

PluginStartupinfo

in | structures | PluginStartupInfo
The PluginStartupInfo stucture for Delphi:

TPluginStartupInfo = packed record
StructSize: Integer;
ModuleName: array[0O..Pred(NM)] of char;
ModuleNumber: integer;
RootKey: PChar;
Menu: TFarApiMenu;
Dialog: TFarApiDialog;
Message: TFarApiMessage;
GetMsg: TFarApiGetMsg;
Control: TFarApiControl;
SaveScreen: TFarApiSaveScreen;
RestoreScreen: TFarApiRestoreScreen;
GetDirList: TFarApiGetDirlList;
GetPluginDirList: TFarApiGetPluginDirlList;
FreeDirList: TFarApiFreeDirlList;
Viewer: TFarApiViewer;
Editor: TFarApiEditor;
CmpName: TFarApiCmpName;
CharTable: TFarApiCharTable;
Text: TFarApiText;
EditorControl: TFarApiEditorControl;
FSF: PFarStandardFunctions;
ShowHelp: TFarApiShowHelp;
AdvControl: TFarApiAdvControl;
InputBox: TFarApiInputBox;
DialogEx: TFarApiDialogEXx;
SendDlgMessage: TFarApiSendDlgMessage;
DefDlgProc: TFarApiDefDlgProc;
Reservedl: DWORD;
Reserved2: DWORD;

end;

PPluginStartupInfo = ATPluginStartupInfo;

Where:

TFarApiMenu = function(
PluginNumber: integer;
X, Y: integer;
MaxHeight: integer;
Flags: DWORD;

Title: PChar;

Bottom: PChar;

HelpTopic: PChar;

BreakKeys: PIntArr;

BreakCode: PIntArr;

Items: PFarMenultemArr,

ItemsNumber: integer): integer; stdcall;

TFarApibDialog = function(
PluginNumber: integer;
X1, Y1: integer;
X2, Y2: integer;
HelpTopic: PChar;
Items: PFarDialogItemArr;
ItemsNumber: integer): integer; stdcall;

TFarApiMessage = function(
PluginNumber: integer;
Flags: DWORD;
HelpTopic: PChar;
Items: PPCharArr;
ItemsNumber: integer;
ButtonsNumber: integer): integer; stdcall;

TFarApiGetMsg = function(
PluginNumber: integer;
MsgId: integer): PChar; stdcall;

TFarApiControl = function(
hPlugin: THandle;
Command: integer;
Param: pointer): integer; stdcall;

TFarApiSaveScreen = function(
X1, Y1: integer;
X2, Y2: integer): THandle; stdcall;

TFarApiRestoreScreen = procedure(
hScreen: THandle); stdcall;

TFarApiGetDirList = function(
Dir: PChar;
var Panelltems: PPluginPanelItemArr;
var ItemsNumber: integer): integer; stdcall;

TFarApiGetPluginDirList = function(
PluginNumber: integer;
hPlugin: THandle;
Dir: PChar;
var Panelltems: PPluginPanelItemArr;
var ItemsNumber: integer): integer; stdcall;

TFarApiFreeDirList = procedure(
PanelItems: PPluginPanellItemArr); stdcall;

TFarApiViewer = function(
FileName: PChar;
Title: PChar;
X1, Y1: integer;
X2, Y2: integer;
Flags: DWORD): integer; stdcall;

TFarApikEditor = function(
FileName: PChar;
Title: PChar;
X1, Y1: integer;
X2, Y2: integer;
Flags: DWORD;
StartLine: integer;
StartChar: integer): integer; stdcall;

TFarApiCmpName = function(

Pattern: PChar;
FileName: PChar;
SkipPath: integer): integer; stdcall;

TFarApiCharTable = function(
Command: integer;
Buffer: PChar;
BufferSize: integer): integer; stdcall;

TFarApiText = procedure(
X, Y: integer;
Color: integer;
Str: PChar); stdcall;

TFarApiEditorControl = function(
Command: integer;
Param: pointer): integer; stdcall;

TFarApiAdvControl = function(
ModuleNumber: integer;
Command: integer;
Param: pointer): integer; stdcall;

TFarApiDialogEx = function(
PluginNumber: integer;
X1, Y1: integer;

X2, Y2: integer;

HelpTopic: PChar;

Items: PFarDialogItemArr;
ItemsNumber: integer;

Reserved: DWORD;

Flags: DWORD;

DlgProc: TFarApiwWndProc;

Param: integer): integer; stdcall;

TFarApiSendDlgMessage = function(
hD1lg: THandle;
Msg: integer;
Paraml: integer;

Param2: integer): integer; stdcall;

TFarApiDefDlgProc = function(
hD1lg: THandle;
Msg: integer;
Paraml: integer;
Param2: integer): integer; stdcall;

TFarApiInputBox = function(
Title: PChar;
SubTitle: PChar;
HistoryName: PChar;
SrcText: PChar;
DstText: PChar;
DstLength: integer;
HelpTopic: PChar;
Flags: DWORD): integer; stdcall;

TFarApiShowHelp = function(
ModuleName: PChar;
HelpTopic: PChar;
Flags: DWORD): BOOL; stdcall;

Win32FindDataEXx

in | structures

The WIN32_FIND_DATA stucture for Delphi:

TWin32FindDataEx = packed record

dwFileAttributes: DWORD;

ftCreationTime: TFileTime;

ftLastAccessTime: TFileTime;

ftLastWriteTime: TFileTime;

nFileSizeHigh: DWORD;

nFileSizelLow: DWORD;

dwReservedO®: DWORD;

dwReservedl: DWORD;

cFileName: packed array[0..MAX_PATH - 1] of AnsiChar

cAlternateFileName: packed array[0..13] of AnsiChar;
end;

e also:
WIN32 FIND DATA

Windowlinfo

in | structures | WindowlInfo

The WindowInfo stucture for Delphi:

TwindowInfo = packed record
Pos: Integer,
Type: Integer;
Modified: Integer;
Current: Integer,
TypeName: array[0..63] of char;
Name: array[0..Pred(NM)] of char;
end;
PWindowInfo = ATWindowInfo;

Farint64

in | structures

FARINT64 structure for Delphi:

TFarInt64Part = packed record
LowPart : DWORD,
HighPart : DWORD;

end;

TFarInt64 = packed record
case Integer of

{$IFDEF USE_DELPHI4}
O : (164 : Int64);
{$ENDIF}
1 : (Part : TFarInt64Part);
end;

Viewerinfo

in | structures

ViewerlInfo structure for Delphi:

TViewerInfo = packed record

StructSize : Integer;
ViewerID : Integer;
FileName : PChar;
FileSize : TFarInté64;
FilePos : TFarInt64;
WindowSizeX : Integer;
WindowSizeY : Integer;
Options : DWORD;
TabSize : Integer;
CurMode : TViewerMode;
LeftPos : Integer;
Reserved3 : DWORD;

end;

PViewerInfo = ATViewerInfo;

ViewerMode

in | structures

ViewerMode structure for Delphi:

TViewerMode = packed record
UseDecodeTable : Integer;
TableNum : Integer;

AnsiMode : Integer;

Unicode : Integer;

Wrap : Integer;

Wordwrap : Integer;

Hex : Integer;

Reserved : array [0..3] of DWORD;
end;

PViewerMode = ATViewerMode;

ViewerSelect

in | structures

ViewerSelect structure for Delphi:

TViewerSelect = packed record
BlockStartPos : TFarInt64;
BlockLen : Integer;

end;

PViewerSelect = ATViewerSelect;

ViewerSetMode

in | structures

ViewerSetMode structure for Delphi:

TViewerSetMode = packed record
ParamType : Integer;

Param : record case Integer of
O : (iParam : Integer);
1 : (cParam : PChar);

end;

Flags : DWORD;
Reserved : DWORD;
end;

PViewerSetMode = ATViewerSetMode;

ViewerSetPosition

in | structures

ViewerSetPosition structure for Delphi:

TViewerSetPosition = packed record
Flags : DWORD;
StartPos : TFarInt64;
LeftPos : Integer;

end;

PViewerSetPosition = ATViewerSetPosition;

olor indexes
in | types and definitions

This table lists the FAR Manager color scheme indexes, located in the registry at
HKCU\Software\Far\Colors\CurrentPalette (see
farcolor.hpp, PaletteColors enum).

The hexadecimal color values of the default color scheme are provided in the

"Color" column.

Constant

Color " Description

COL_DIALOGBOXTITLE

Text || 0x70 || Dialog. Title

COL_DIALOGHIGHLIGHTBOXTITLE

| 0x7E || Dialog.Highlighted title

COL_DIALOGBOX

Text " 0x70 " Dialog.Border

COL_DIALOGTEXT

Text " 0x70 " Dialog.Normal text

COL_DIALOGHIGHLIGHTTEXT

| 0x7E || Dialog Highlighted text

COL_DIALOGDISABLED

Text " 0x78 " Dialog.Disabled text

COL_DIALOGSELECTEDBUTTON

| 0x30 " Dialog.Button.Selected text

COL_DIALOGHIGHLIGHTSELECTEDBUTTON

15l 0x3E || Dialog.Button.Selected

highlighted text

COL_DIALOGHIGHLIGHTBUTTON

I 0x7E " Dialog.Button.Highlighted text

COL_DIALOGBUTTON

Text " 0x70 " Dialog.Button.Normal text

COL_DIALOGEDITUNCHANGED

I 0x38 " Dialog.Input.Unchanged text

COL_DIALOGEDITSELECTED

Text IOXOF " Dialog.Input.Selected text

COL_DIALOGEDITDISABLED

I 0x38 " Dialog.Input.Disabled test

COL_DIALOGEDIT

I 0x30 " Dialog.Input.Normal text

COL_DIALOGLISTTITLE

Text

| 0x70 || Dialog Listbox.Title

COL_DIALOGLISTSELECTEDTEXT | Text I 0x0F " Dialog.Listbox.Selected text

COL_DIALOGLISTSELECTEDHIGHLIGHT 2@l OxOE || Dialog.Listbox.Selected
highlighted text

COL_DIALOGLISTHIGHLIGHT " 0x7E I Dialog.Listbox.Highlighted text

COL_DIALOGLISTBOX

COL_DIALOGLISTDISABLED

Text || 0x78 || Dialog.Listbox.Disabled text

COL_DIALOGLISTSCROLLBAR

Text || 0x70 || Dialog.Listbox.Scrollbar

COL_DIALOGLISTTEXT

Text || 0x70 || Dialog.Listbox.Normal text

Text || 0x70 I' Dialog.Listbox.Border

COL_DIALOGCOMBOTITLE

|| 0x3F " Dialog.Combobox.Title

COL_DIALOGCOMBOSELECTEDTEXT

0xOF || Dialog.Combobox.Selected text

COL_DIALOGCOMBOSELECTEDHIGHLIGHT

0xOE || Dialog.Combobox.Selected

[hightighted text

o
%

o
b

w
o]

COL_DIALOGCOMBOHIGHLIGHT Dialog.Combobox.Highlighted

text

COL_DIALOGCOMBOBOX

&

alll Ox3F " Dialog.Combobox.Border

COL_DIALOGCOMBODISABLED

0
0x38 " Dialog.Combobox.Disabled text
0

COL_DIALOGCOMBOSCROLLBAR x3F " Dialog.Combobox.Scrollbar

S
=

COL_DIALOGCOMBOTEXT

—t

94| Ox3F " Dialog.Combobox.Normal text

COL_MENUDISABLEDTEXT 0x38 " Menu.Disabled item

COL_MENUTITLE 0x3F " Menu.Title

(C]

COL_MENUSELECTEDHIGHLIGHT 0x0E " Menu.Selected highlighted text

COL_MENUSELECTEDTEXT 0x0F " Menu.Selected text

D

COL_MENUHIGHLIGHT 0x3E || Menu.Highlighted text

D

COL_MENUBOX 0x3F " Menu.Border

COL_MENUSCROLLBAR 0x3F " Menu.Scrollbar

=
=

COL_MENUTEXT 0x3F " Menu.Normal text

=
=

AR

COL_HMENUSELECTEDTEXT 0x0F " Horizontal menu.Selected text

Horizontal menu.Selected
highlighted text

COL_HMENUSELECTEDHIGHLIGHT 0x0E

COL_HMENUHIGHLIGHT 0x3E " Horizontal menu.Highlighted text

D
-

COL_HMENUTEXT i 0x30 " Horizontal menu.Normal text
COL_KEYBARTEXT | 0x30 || Key bar.Key names
COL_KEYBARNUM =Y 0x07 || Key barKey numbers
COL_KEYBARBACKGROUND [IE=RY| 0x07 || Key barBackground
COL_WARNDIALOGBOXTITLE | 19l Ox4F " Warning message.Title
COL_WARNDIALOGHIGHLIGHTTEXT 0x4E || Warning message.Highlighted

text

SENENE 21 %2

COL_WARNDIALOGLISTTITLE

=
<4
<t

0x4F " Warning message.Listbox.Title

COL_WARNDIALOGLISTSELECTEDTEXT Text || 0x70 || Warning

message.Listbox.Selected text

COL_WARNDIALOGLISTSELECTEDHIGHLIGHT 0x7E || Warning
message.Listbox.Selected

highlighted text

COL_WARNDIALOGLISTHIGHLIGHT Warning

message.Listbox.Highlighted text

COL_WARNDIALOGLISTBOX

COL_WARNDIALOGLISTDISABLED 0x48 || Warning

message.Listbox.Disabled text

Warning

COL_WARNDIALOGLISTSCROLLBAR 0x4F |

|-| “rnessage.Listbox.Scrollbar

COL_WARNDIALOGLISTTEXT 1ol O0x4F || Warning message.Listbox.Normal

text

COL_WARNDIALOGHIGHLIGHTBOXTITLE 0x4E || Warning message.Highlighted

title

COL_WARNDIALOGBOX Rl 0x4F || Warning message Border

COL_WARNDIALOGDISABLED

-I 0x48 " Warning message.Disabled text

COL_WARNDIALOGSELECTEDBUTTON Text [| 0x70 || Warning message.Button.Selected
text

COL_WARNDIALOGHIGHLIGHTSELECTEDBUTTON 0x7E || Warning message.Button.Selected
highlighted text

COL_WARNDIALOGHIGHLIGHTBUTTON 0x4E || Warning

message.Button.Highlighted text

COL_WARNDIALOGBUTTON 0x4F || Warning message.Button.Normal

text

COL_WARNDIALOGEDITUNCHANGED

0x38 || Warning
message.Input.Unchanged text

COL_WARNDIALOGEDITSELECTED

0xOF || Warning message.Input.Selected

text

COL_WARNDIALOGEDITDISABLED Warning message.Input.Disabled

text

COL_WARNDIALOGEDIT Warning message.Input.Normal

text

COL_WARNDIALOGCOMBOTITLE Warning

message.Combobox.Title

COL_WARNDIALOGCOMBOSELECTEDTEXT Warning

message.Combobox.Selected text

COL_WARNDIALOGCOMBOSELECTEDHIGHLIGHT

Warning
message.Combobox.Selected
highlighted text

COL_WARNDIALOGCOMBOHIGHLIGHT 0x3E || Warning

COL_WARNDIALOGCOMBOBOX 0x3F || Warning

message.Combobox.Border

COL_WARNDIALOGCOMBODISABLED 0x38 || Warning

message.Combobox.Disabled text

message.Combobox.Highlighted

text
COL_WARNDIALOGCOMBOSCROLLBAR g5l Ox3F || Warning
message.Combobox.Scrollbar

COL_WARNDIALOGCOMBOTEXT

15l Ox3F || Warning
message.Combobox.Normal text

COL_WARNDIALOGTEXT 0x4F || Warning message.Normal text

l[coL_VIEWERSELECTEDTEXT

x30 " Viewer.Selected text

[coL_viEwerarrows

x1E " Viewer.Screen scrolling arrows

[coL_viewersTaTUS

>
—

l[coL_VIEWERSCROLLBAR

5
>
—

x1B " Viewer.Scrollbar

[coL_viewerTExT

0
0
0x30 " Viewer.Status line
0
0

Sl 0x1B " Viewer.Normal text

l[coL_PANELHIGHLIGHTTEXT

H

| 0x17 " Panel.(not used)

l[coL_PANELCOLUMNTITLE

Sl Ox1E " Panel.Column title

l[coL_PANELSELECTEDTEXT

1Sl Ox1E " Panel.Selected text

l[coL_PANELSELECTEDTITLE

0x30 " Panel.Selected title

l[coL_PANELSELECTEDCURSOR

Text ([O:€1 " Panel.Selected cursor

[coL_PaNELINFOTEXT

Text

0x1E " Panel.Highlighted info

[coL_panELBOX

Text |[0:alis] " Panel.Border

[coL_PaNELDRAGTEXT

ﬂ

'@l 0x3E " Panel.Dragging text

"COL PANELTOTALINFO

Text

0x1B " Panel.Total info

"COL PANELSCREENSNUMBER

0x0B

5
>
—

Panel.Number of background
screens

"COL PANELSELECTEDINFO

5
%

0x3E " Panel.Selected info

[coL_PanELSCROLLEAR

Text |[0:alis] " Panel.Scrollbar

[coL_panELTEXT

H
>
—

0x1B " Panel.Normal text

[coL_pANELTITLE

Text |[0:alis] " Panel.Normal title

[coL_PaNELCURSOR

0x30 " Panel.Nirmal cursor

l[coL_EDITORSELECTEDTEXT

0x30 " Editor.Selected text

[coL_epTORSTATUS

0x30 " Editor.Status line

[coL_epzToRTEXT

Dl 0x1B " Editor.Normal text

l[coL_cOMMANDLINESELECTED

Text

0x70 " Command line.Selected text

l[coL_comMMANDLINEPREFIX

it <@l 0x07 " Command line.Prefix text

[coL_commanpLIne

it <@l 0x07 " Command line.Normal text

[coL_HELPBOXTITLE

0x30 " Help.Title

l[coL_HELPSELECTEDTOPIC

Text

0x0F " Help.Selected link

l[coL_HELPHIGHLIGHTTEXT

15l Ox3F " Help.Highlighted text

[coL_wELPTOPIC

'@l 0x3E " Help.Link

>

[coL_nELPBOX

0x30 " Help.Border

|coL_HELPSCROLLEAR

0x30 " Help.Scrollbar

"COL_HELPTEXT

0x30 || Help.Normal text

[coL_viEwercLock

x30 " Clock.Viewer

[coL_epxToRCLOCK

| O

x30 " Clock.Editor

COL_CLOCK

I 0x30 “ Clock.Panel

COL_DIALOGLISTARROWS

o
%

0x30 || Dialog.List box.Long string

indicators

COL_DIALOGLISTARROWSDISABLED

Dialog.List box.Long string
indicators.Disabled item

COL_DIALOGLISTARROWSSELECTED

Dialog.List box.Long string
indicators.Selected item

COL_DIALOGCOMBOARROWS

Dialog.Combobox.Long string
indicators

COL_DIALOGCOMBOARROWSDISABLED

0x38 || Dialog.Combobox.Long string
indicators.Disabled item

COL_DIALOGCOMBOARROWSSELECTED

0xOE || Dialog.Combobox.Long string
indicators.Selected item

COL_WARNDIALOGLISTARROWS

Warning message.List box.Long
string indicators

COL_WARNDIALOGLISTARROWSDISABLED

Warning message.List box.Long
string indicators.Disabled item

COL_WARNDIALOGLISTARROWSSELECTED

Warning message.List box.Long
string indicators.Selected item

COL_WARNDIALOGCOMBOARROWS

115l Ox3E || Warning
message.Combobox.Long string
indicators

COL_WARNDIALOGCOMBOARROWSDISABLED

Warning
message.Combobox.Long string
indicators.Disabled item

COL_WARNDIALOGCOMBOARROWSSELECTED

Warning
message.Combobox.Long string
indicators.Selected item

COL_MENUARROWS

COL_MENUARROWSDISABLED

0x38 || Menu.Long string
indicators.Disabled item

COL_MENUARROWSSELECTED

0xOE || Menu.Long string
indicators.Selected item

COL_COMMANDLINEUSERSCREEN

Text I 0x07 " Command line.User screen

COL_EDITORSCROLLBAR

COL_MENUGRAYTEXT

|
| Text |0X1B " Editor.Scrollbar
|

COL_MENUSELECTEDGRAYTEXT

-I 0x38 " Menu.Gray text

0x07 || Menu.Selected gray text

COL_DIALOGCOMBOGRAY

0x38 || Dialog.Combobox.Gray text

COL_DIALOGCOMBOSELECTEDGRAYTEXT

0x07 || Dialog.Combobox.Selected gray

text

COL_DIALOGLISTGRAY

Text I 0X78 " Dialog.List box.Gray text

"CO L_DIALOGLISTSELECTEDGRAYTEXT

"COL_WARNDIALOGCOMBOGRAY

[co L_WARNDIALOGCOMBOSELECTEDGRAYTEXT

"COL_WARNDIALOGLISTGRAY

0x07 " Dialog.List box.Selected gray text

0x38 || Warning

message.Combobox.Gray text

0x07 || Warning
message.Combobox.Selected gray
text

0x48 || Warning message.List box.Gray

text

"CO L_WARNDIALOGLISTSELECTEDGRAYTEXT

Text || 0x70 || Warning message.List

box.Selected gray text

l[coL_RESERVED®

B E

0x00 || (reserved for internal needs)

AR Manager key codes

in | types and definitions | virtual key codes

This table shows the hexadecimal key codes used in FAR manager (in
farkeys.hpp the BaseDefKeyboard enum).

asic set:

Key KEY_* Hex Remarks

Ctrl KEY_CTRL 01000000 Left Ctrl
Alt KEY_ALT 02000000 Left Alt

04000000
10000000 Right Ctrl
20000000 Right Alt

Shift KEY_SHIFT
Right Ctrl KEY_RCTRL
Right Alt KEY_RALT

[KEY_BRACKET 0000005B
] KEY_BACKBRACKET 0000005D
, KEY_COMMA 0000002C
" KEY_QUOTE 00000022
. KEY_DOT 0000002E
/ KEY_SLASH 0000002F
: KEY_COLON 0000003A
\ KEY_BACKSLASH 0000005C
Backspace KEY_BS 00000008
Tab KEY_TAB 00000009
Enter KEY_ENTER 0000000D
Esc KEY_ESC 0000001B
Space KEY_SPACE 00000020
Break KEY_BREAK 00000103 Ctrl-Pause
Page Up KEY_PGUP 00000121
Page KEY_PGDN 00000122
Down

End KEY_END 00000123
Home KEY_HOME 00000124
Left KEY_LEFT 00000125
UP KEY_UP 00000126
Right KEY_RIGHT 00000127
Down KEY_DOWN 00000128
Insert KEY_INS 0000012D
Delete KEY_DEL 0000012E
Left Win KEY_LWIN 0000015B
Right Win KEY_RWIN 0000015C
Apps KEY_APPS 0000015D

Numpad 0 KEY_NUMPADO 00000160 Numeric keypad (if "UseNumPad" option is

on)

00000161 Numeric keypad (if "UseNumPad" option is
on)

00000162 Numeric keypad (if "UseNumPad" option is
on)

00000163 Numeric keypad (if "UseNumPad" option is
on)

00000164 Numeric keypad (if "UseNumPad" option is
on)

00000165 Numeric keypad

00000166 Numeric keypad (if "UseNumPad" option is

Numpad 1 KEY_NUMPAD1
Numpad 2 KEY_NUMPAD?
Numpad 3 KEY_NUMPAD3
Numpad 4 KEY_NUMPAD?

Numpad 5 KEY_NUMPADS5S
Numpad 6 KEY_NUMPADG6

on)

Numpad 7 KEY_NUMPAD7 00000167 Numeric keypad (if "UseNumPad" option is
on)

Numpad 8 KEY_NUMPADS8 00000168 Numeric keypad (if "UseNumPad" option is
on)

Numpad 9 KEY_NUMPAD9 00000169 Numeric keypad (if "UseNumPad" option is
on)

KEY_CLEAR 00000165 Same as KEY_NUMPADS

Gray * KEY_MULTIPLY
Gray + KEY_ADD

Gray - KEY_SUBTRACT
Gray / KEY_DIVIDE

0000016A Numeric keypad
0000016B Numeric keypad
0000016D Numeric keypad
0000016F Numeric keypad

F1 KEY_F1 00000170
F2 KEY_F2 00000171
F3 KEY_F3 00000172
F4 KEY_F4 00000173
F5 KEY_F5 00000174
F6 KEY_F6 00000175
F7 KEY_F7 00000176
F8 KEY_F8 00000177
F9 KEY_F9 00000178
F10 KEY_F10 00000179
F11 KEY_F11 0000017A
F12 KEY_F12 0000017B
F13 KEY_F13 0000017C
F14 KEY_F14 0000017D
F15 KEY_F15 0000017E
F16 KEY_F16 0000017F
F17 KEY_F17 00000180

F18 KEY_F18

00000181

F19
F21
F22
F23
F24

KEY_F19

KEY_F20

KEY_F22

KEY_F23

KEY_F24
KEY_BROWSER_BACK
KEY_BROWSER_FORWARD
KEY_BROWSER_REFRESH
KEY_BROWSER_STOP
KEY_BROWSER_SEARCH
KEY_BROWSER_FAVORITES
KEY_BROWSER_HOME
KEY_VOLUME_MUTE
KEY_VOLUME_DOWN
KEY_VOLUME_UP
KEY_MEDIA_NEXT_TRACK
KEY_MEDIA_PREV_TRACK
KEY_MEDIA_STOP
KEY_MEDIA_PLAY_ PAUSE
KEY_LAUNCH_MAIL

00000182

00000183

00000184

00000185

00000186

000001A6 Same as VK_BROWSER_BACK
000001A7 Same as VK_BROWSER_FORWARD
000001A8 Same as VK_BROWSER_REFRESH
000001A9 Same as VK_BROWSER_STOP
000001AA Same as VK_BROWSER_SEARCH
000001AB Same as VK_BROWSER_FAVORITES
000001AC Same as VK_BROWSER_HOME
000001AD Same as VK_VOLUME_MUTE
000001AE Same as VK_VOLUME_DOWN
000001AF Same as VK_VOLUME_UP
000001B0O Same as VK_MEDIA_NEXT_TRACK
000001B1 Same as VK_MEDIA_PREV_TRACK
000001B2 Same as VK_MEDIA_STOP
000001B3 Same as VK_MEDIA_PLAY_PAUSE
000001B4 Same as VK_LAUNCH_MAIL

KEY LAUNCH_MEDIA_ SELECT 000001B5 Same as VK_LAUNCH_MEDIA_SELECT

KEY_LAUNCH_APP1
KEY_LAUNCH_APP2

KEY_CTRLALTSHIFTPRESS

KEY_CTRLALTSHIFTRELEASE

KEY_MSWHEEL_UP
KEY_MSWHEEL_DOWN
KEY_NUMDEL
KEY_DECIMAL
KEY_NUMENTER
KEY_MSWHEEL_LEFT
KEY_MSWHEEL_RIGHT
KEY_STANDBY
KEY_MSLCLICK

000001B6 Same as VK_LAUNCH_APP1
000001B7 Same as VK_LAUNCH_APP2

000001XX Other special keys that have a virtual code
other than OxFF, are formed by the following
formula: "KEY_FKEY_BEGIN" +
"Virtual code".

In macros such keys are stored as
"OemXXXXX" (here XXXXX is the virtual
key code).

00000201 All three keys are pressed

00000202 All the three keys were released
00000203 The mouse wheel is rotated one notch up
00000204 The mouse wheel is rotated one notch down
00000209 Del on the numpad when NumLock is off
0000020A Del on the numpad when NumLock is on
0000020B Enter on the numpad

0000020C The mouse wheel is rotated one notch left
0000020D The mouse wheel is rotated one notch right
0000020E Same as VK_SLEEP

0000020F Click left mouse button (only for macros -
shortcuts and within macro sequences)

KEY_MSRCLICK

KEY_MSMI1CLICK

KEY_MSM2CLICK

KEY_MSM3CLICK

KEY_VK_0xFF_BEGIN

KEY_VK_O0xFF_END

KEY_NONE
KEY_IDLE
KEY_END_SKEY

00000210 Click right mouse button (only for macros -
shortcuts and within macro sequences)

00000211 Click middle (next to left) mouse button
(only for macros - shortcuts and within
macro sequences)

00000212 Click third after left mouse button (only for
macros - shortcuts and within macro
sequences)

00000213 Click fourth after left mouse button (only for
macros - shortcuts and within macro
sequences)

00000300 Beginning of special keys definitions that
have a virtual code of OxFF (i.e. misc.
multimedia keys which are added by
keyboard manufacturers). Key code is
formed using the following formula:
"KEY_VK_OXFF_BEGIN" + ScanCode.
In macros those keys are saved as
"SpecXXXXX" (here XXXXX is the scan
code of the key).

000003FF Ending of special keys definitions.

00001001 Idle
00001002 Idle
OOOOFFFF The end of basic set

irtual key codes
in | FAR Manager key codes
The following table shows the symbolic constant names, hexadecimal values,

and mouse or keyboard equivalents for the virtual-key codes used by the system.
The codes are listed in numeric order.

Symbolic constant name Value (hex) Mouse or keyboard equivalents

VK_LBUTTON 01 Left mouse button

VK_RBUTTON 02 Right mouse button

VK_CANCEL 03 Control-break processing

VK_MBUTTON 04 Middle mouse button (three-button mouse)

VK_XBUTTON1 05 Windows 2000/XP/2003/Vista/2008/7: X1 mouse button

VK_XBUTTON2 06 Windows 2000/XP/2003/Vista/2008/7: X2 mouse button

- 07 Undefined

VK_BACK 08 BACKSPACE key

VK_TAB 09 TAB key

- 0A-0B Reserved

VK_CLEAR 0C CLEAR key

VK_RETURN 0D ENTER key

- OE-OF Undefined

VK_SHIFT 10 SHIFT key

VK_CONTROL 11 CTRL key

VK_MENU 12 ALT key

VK_PAUSE 13 PAUSE key

VK_CAPITAL 14 CAPS LOCK key

VK_KANA 15 Input Method Editor (IME) Kana mode

VK_HANGUEL 15 IME Hanguel mode (maintained for compatibility; use
VK_HANGUL)

VK_HANGUL 15 IME Hangul mode

- 16 Undefined

VK_JUNJA 17 IME Junja mode

VK_FINAL 18 IME final mode

VK_HANJA 19 IME Hanja mode

VK_KANIJI 19 IME Kanji mode

- 1A Undefined

VK_ESCAPE 1B ESC key

VK_CONVERT 1C IME convert (Reserved for Kanji systems)

VK_NONCONVERT 1D IME nonconvert (Reserved for Kanji systems)

VK_ACCEPT 1E IME accept (Reserved for Kanji systems)

VK_MODECHANGE 1F IME mode change request (Reserved for Kanji systems)

VK_SPACE 20 SPACEBAR

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/VirtualKeyCodes.asp

VK_PRIOR
VK_NEXT
VK_END
VK_HOME
VK_LEFT
VK_UP
VK_RIGHT
VK_DOWN
VK_SELECT
VK_PRINT
VK_EXECUTE
VK_SNAPSHOT
VK_INSERT
VK_DELETE
VK_HELP
VK_0

VK_1

VK_2

VK_3

VK_4

VK_5

VK_6

VK_7

VK_8

VK_9

VK_A

VK_B

VK_C

VK_D

VK_E

VK_F

VK_G

VK_H

VK_I

VK_J

VK_K

VK_L

VK_M
VK_N

VK_O

21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A-40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

PAGE UP key
PAGE DOWN key
END key

HOME key

LEFT ARROW key
UP ARROW key
RIGHT ARROW key
DOWN ARROW key
SELECT key
PRINT key
EXECUTE key
PRINT SCREEN key for Windows 3.0 and later
INS key

DEL key

HELP key

0 key

1 key

2 key

3 key

4 key

5 key

6 key

7 key

8 key

9 key

Undefined

A key

B key

C key

D key

E key

F key

G key

H key

I key

J key

K key

L key

M key

N key

O key

VK_P

VK_Q

VK_R

VK_S

VK_T

VK_U

VK_V

VK_W

VK_X

VK_Y

VK_Z
VK_LWIN
VK_RWIN
VK_APPS
VK_SLEEP
VK_NUMPADO
VK_NUMPADI1
VK_NUMPAD?2
VK_NUMPAD3
VK_NUMPAD4
VK_NUMPADS
VK_NUMPADG6
VK_NUMPAD7
VK_NUMPADS
VK_NUMPADY
VK_MULTIPLY
VK_ADD

VK_SEPARATOR

VK_SUBTRACT
VK_DECIMAL
VK_DIVIDE
VK_F1

VK_FE2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_F8

VK_F9

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
SE
SF
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78

P key

Q key

R key

S key

T key

U key

V key

W key

X key

Y key

Z key

Left Windows key (Microsoft Natural Keyboard)
Right Windows key (Microsoft Natural Keyboard)
Applications key (Microsoft Natural Keyboard)
Reserved

Computer Sleep key
Numeric keypad 0 key
Numeric keypad 1 key
Numeric keypad 2 key
Numeric keypad 3 key
Numeric keypad 4 key
Numeric keypad 5 key
Numeric keypad 6 key
Numeric keypad 7 key
Numeric keypad 8 key
Numeric keypad 9 key
Multiply key

Add key

Separator key

Subtract key

Decimal key

Divide key

F1 key

F2 key

F3 key

F4 key

F5 key

F6 key

F7 key

F8 key

F9 key

VK_F10

VK_F11

VK_F12

VK_F13

VK_F14

VK_F15

VK_F16

VK_F17

VK_F18

VK_F19

VK_F20

VK_F21

VK_F22

VK_F23

VK_F24
VK_NUMLOCK
VK_SCROLL
VK_OEM_NEC_EQUAL
VK_OEM_FJ_JISHO
VK_OEM_FJ_MASSHOU
VK_OEM_FJ_TOUROKU
VK_OEM_FJ_LOYA
VK_OEM_FJ_ROYA
VK_LSHIFT
VK_RSHIFT
VK_LCONTROL
VK_RCONTROL
VK_LMENU
VK_RMENU
VK_BROWSER_BACK
VK_BROWSER_FORWARD

VK_BROWSER_REFRESH

VK_BROWSER_STOP
VK_BROWSER_SEARCH

VK_BROWSER_FAVORITES

79
7A
7B
7C
7D
7E
7F
80H
81H
82H
83H
84H
85H
86H
87H
88-8F
90
91
92
92
93
94
95
96
97-9F
A0
Al
A2
A3
A4
A5
A6
A7

A8

A9
AA

AB

F10 key

F11 key

F12 key

F13 key

F14 key

F15 key

F16 key

F17 key

F18 key

F19 key

F20 key

F21 key

F22 key

F23 key

F24 key
Unassigned
NUM LOCK key
SCROLL LOCK key

NEC PC-9800 kbd definitions: '=' key on numpad
Fujitsu/OASY'S kbd definitions: 'Dictionary' key
Fujitsu/OASY'S kbd definitions: 'Unregister word' key
Fujitsu/OASY'S kbd definitions: 'Register word' key
Fujitsu/OASY'S kbd definitions: 'Left OYAYUBI' key
Fujitsu/OASY'S kbd definitions: 'Right OYAYUBI' key

Unassigned

Left SHIFT key
Right SHIFT key
Left CONTROL key
Right CONTROL key
Left MENU key
Right MENU key

Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:

key

Windows 2000/XP/2003/Vista/2008/7:

key

Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:

key

Windows 2000/XP/2003/Vista/2008/7:

key

Browser Back key

Browser Forward
Browser Refresh

Browser Stop key

Browser Search

Browser Favorites

VK_BROWSER_HOME AC
VK_VOLUME_MUTE AD
VK_VOLUME_DOWN AE
VK_VOLUME_UP AF

VK_MEDIA_NEXT_TRACK BO
VK_MEDIA_PREV_TRACK B1
VK_MEDIA_STOP B2
VK_MEDIA_PLAY_ PAUSE B3

VK_LAUNCH_MAIL B4
VK_LAUNCH_MEDIA_SELECT B5
VK_LAUNCH_APP1 B6
VK_LAUNCH_APP? B7

- B8-B9
VK_OEM_1 BA
VK_OEM_PLUS BB
VK_OEM_COMMA BC
VK_OEM_MINUS BD
VK_OEM_PERIOD BE
VK_OEM_2 BF
VK_OEM_3 Cco

- C1-D7
- D8-DA
VK_OEM_4 DB
VK_OEM_5 DC
VK_OEM_6 DD
VK_OEM_7 DE
VK_OEM_8 DF

- EO

Windows 2000/XP/2003/Vista/2008/7:
Home key

Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
key

Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
Windows 2000/XP/2003/Vista/2008/7:
key

Windows 2000/XP/2003/Vista/2008/7:
key

Reserved

Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the ';:' key
Windows 2000/XP/2003/Vista/2008/7:
country/region, the '+' key

Windows 2000/XP/2003/Vista/2008/7:
country/region, the ',' key

Windows 2000/XP/2003/Vista/2008/7:
country/region, the '-' key

Windows 2000/XP/2003/Vista/2008/7:
country/region, the '.' key

Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the '/?' key
Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the "~' key
Reserved

Unassigned

Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the '[{' key
Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the '\|' key
Windows 2000/XP/2003/Vista/2008/7:
standard keyboard, the]}’ key
Windows 2000/XP/2003/Vista/2008/7:

Browser Start and

Volume Mute key
Volume Down key
Volume Up key
Next Track key
Previous Track key
Stop Media key
Play/Pause Media

Start Mail key
Select Media key
Start Application 1

Start Application 2

For the US
For any
For any
For any
For any
For the US

For the US

For the US
For the US
For the US

For the US

standard keyboard, the 'single-quote/double-quote' key

Used for miscellaneous characters; it can vary by keyboard.

Reserved

VK_OEM_102

VK_PROCESSKEY

VK_PACKET

E1
E2

E3-E4
E5

E6
E7

OEM specific

Windows 2000/XP/2003/Vista/2008/7: Either the angle
bracket key or the backslash key on the RT 102-key
keyboard

OEM specific

Windows 95/98/Me,

Windows NT/2000/XP/2003/Vista/2008/7: IME
PROCESS key

OEM specific

Windows 2000/XP/2003/Vista/2008/7: Used to pass
Unicode characters as if they were keystrokes. The
VK_PACKET key is the low word of a 32-bit Virtual Key
value used for non-keyboard input methods. For more
information, see Remark in KEYBDINPUT

SendInput

WM KEYDOWN

, and

WM KEYUP

JavaScript:link122.Click()
JavaScript:link123.Click()
JavaScript:link124.Click()
JavaScript:link125.Click()

- E8 Unassigned

VK_OEM_RESET E9 Only used by Nokia.
VK_OEM_JUMP EA Only used by Nokia.
VK_OEM_PA1 EB Only used by Nokia.
VK_OEM_PA2 EC Only used by Nokia.
VK_OEM_PA3 ED Only used by Nokia.
VK_OEM_WSCTRL EE Only used by Nokia.
VK_OEM_CUSEL EF Only used by Nokia.
VK_OEM_ATTN FO Only used by Nokia.
VK_OEM_FINNISH F1 Only used by Nokia.
VK_OEM_COPY F2 Only used by Nokia.
VK_OEM_AUTO F3 Only used by Nokia.
VK_OEM_ENLW F4 Only used by Nokia.
VK_OEM_BACKTAB F5 Only used by Nokia.
VK_ATTN F6 Attn key
VK_CRSEL F7 CrSel key
VK_EXSEL F8 ExSel key
VK_EREOF F9 Erase EOF key
VK_PLAY FA Play key
VK_7ZO00OM FB Zoom key
VK_NONAME FC Reserved for future use.
VK_PA1 FD PA1 key
VK_OEM_CLEAR FE Clear key

FF Multimedia keys. See ScanCode keys.

)peration mode
in | types and definitions
The OpMode parameter passes to plugin additional information about function

operation mode and place, from which it was called. It can be a combination of
the following values (OPERATION_MODES enum):

Mode Description

OPM_SILENT Plugin should minimize user requests if possible,
because the called function is only a part of a more
complex file operation.

OPM_FIND Plugin function is called from Find file or another
directory scanning command. Screen output has to be
minimized.

OPM_VIEW Plugin function is called as part of a file view

operation. If file is viewed on quickview panel, than
both OPM_VIEW and OPM_QUICKVIEW are set.

OPM_QUICKVIEW Plugin function is called as part of a file view
operation activated from the quick view panel
(activated by pressing Ctr1-Q in the file panels).

OPM_EDIT Plugin function is called as part of a file edit operation.

OPM_DESCR Plugin function is called to get or put file with file
descriptions.

OPM_TOPLEVEL All files in host file of file based plugin should be

processed. This flag is set when executing Shift-F2
and Shift-F3 FAR commands outside of host file.
Passed to plugin functions files list also contains all
necessary information, so plugin can either ignore this
flag or use it to speed up processing.

e also:
SetDirectory, PutFiles, ProcessHostFile, GetFiles, DeleteFiles,
GetFindData, MakeDirectory

orting methods

in | types and definitions

Sorting method can be one of the following values
(OPENPLUGININFO_SORTMODES enum):

Method Description

SM_DEFAULT Default sort mode
SM_UNSORTED Unsorted

SM_NAME Sort by name

SM_EXT Sort by extension
SM_MTIME Sort by file modification time
SM_CTIME Sort by file creation time
SM_ATIME Sotr by last file access time
SM_SIZE Sort by size

SM_DESCR sotr by description
SM_OWNER Sort by owner
SM_COMPRESSEDSIZE Sort be compressed size
SM_NUMLINKS Sort by number of hard file links

e also:
Compare | OpenPluginInfo | Panellnfo

AR_PKF_FLAGS

in | types and definitions

The members of the FAR_PKF FLAGS enumeration describe the state of the
shift keys of an event sent to the ProcessKey function.

Flag Description

PKF_CONTROL Ctrl is pressed

PKF_ALT Alt is pressed

PKF_SHIFT Shift is pressed

PKF_PREPROCESS Preprocessing: - FAR passes a "raw" keystroke.

This flag is applicable only to the virtual key code
(second parameter of the ProcessKey function).

emarks

e Since FAR Manager 1.70 build 2052 keyboard events are sent to the plugins
with no exclusions (refer to the remarks on the ProcessKey function). If the
PKF_PREPROCESS flag is set, plugin may ignore calls to the
ProcessKey function. In this case after the input is complete FAR will form
the needed command and pass it to the plugin.

For example, if a user enters "cd ..Enter" in the command line the
plugin receives the sequence
"80043h 80044h 80020h 800BEh 80OBEh 8000Dh" (every
virtual code has the PKF_PREPROCESS flag set).
The plugin may behave in two ways:

1. process the sequence by itself;

2. ignore the calls to ProcessKey with PKF_PREPROCESS set and

wait for FAR to call SetDirectory with Dir = "..".

e also:
ProcessKey

FAR_NO_NAMELESS_UNIONS

in | types and definitions

The macro FAR_NO_NAMELESS_UNIONS controls whether the
FarDialogltem structure uses anonymous unions. Anonymous unions are a
language feature that is allowed by the C++ standard but not supported in ANSI
C.

If the macro _FAR_NO_NAMELESS_UNIONS is not defined, the
FarDialogItem structure will be compatible with FAR Manager versions
prior to FAR 1.70 beta 3 (inclusive). So the FarDialogltem structure will have
the following form:

struct FarDialogItem

{
union {
int Selected;
char *History;
char *Mask;

struct FarList *ListItems;
CHAR_INFO *VBuf;

b
union {
char Data[512];
struct {
DWORD PtrFlags;
int PtrLength;
char *PtrData;
char PtrTail[1l];
} Ptr;
b
3

So to access the Data member of the FarDialogltem structure it will be suficient
to write Data, and to access the Selected member - Selected.

If the macro _FAR_NO_NAMELESS_UNIONS is defined, the structure will

use named unions. Then it will be compatible with ANSI C compilers, but will
not be source-level compatible with plugins written for FAR 1.65. The structure
will have the following form:

struct FarDialogItem

{
union {
int Selected;
char *History;
char *Mask;
struct FarList *ListItems;
CHAR_INFO *VBuf;
} Param;
union {
char Data[512];
struct {
DWORD PtrFlags;
int PtrLength;
char *PtrData;
char PtrTail[1l];
} Ptr;
} Data;

i

In this case to access the Data member of the structure you will have to write
Data.Data, and to access the Selected member - Param.Selected.

The macro must be defined before the #include "plugin.hpp" directive:

#define _FAR_NO_NAMELESS_UNIONS
#include "plugin.hpp"

Attentjon!
N entfgleR 1.70 beta 4, the default variant is compatible with old plugins

(_LFAR_NO_NAMELESS_UNIONS is not defined). However, in FAR
1.70 release the new default will be
_FAR_NO_NAMELESS_UNIONS. So if you want your plugins to be

source-level compatible with FAR 1.70 release, you can right now
define the _FAR_NO_NAMELESS_UNIONS macro and modify the
source code of your plugins accordingly.

e also:
GetMinFarVersion

ARMANAGERVERSION

in | types and definitions

The FARMANAGERVERSION constant defines the current FAR Manager
version and has the following format - ©XBBBBXXYY:

BBBB = build number (343 = 0x0157)
XX = major version (FAR 1.70 = 0x01)
YY = minor version (FAR 1.70 = 0x46)

So for FAR Manager 1.70 beta 3 build 343 this constant will be: 0x01570146

The FARMANAGERVERSION constant is formed using the
MAKEFARVERSION macro.

e also:
GetMinFarVersion

IAKEFARVERSION

in | types and definitions

The macro MAKEFARVERSION is intended to be used in the
GetMinFarVersion function to return the minimal FAR Manager version needed
to run the plugin.

MAKEFARVERSION(major,minor, build)

e also:
GetMinFarVersion

arConfirmationsSettings

in | types and definitions

Information about the confirmation settings (FarConfirmationsSettings enum).
Corresponds to options in the "Confirmations" dialog.

Constant Description
FCS_COPYOVERWRITE "Overwrite files when copying"
FCS_MOVEOVERWRITE "Overwritte files when moving"
FCS_DRAGANDDROP "Drag and drop"
FCS_DELETE "Delete"

FCS_DELETENONEMPTYFOLDERS "Delete non-empty folders"

FCS_INTERRUPTOPERATION "Interrupt operation”

FCS_DISCONNECTNETWORKDRIVE | "Disconnect network drive"

FCS_RELOADEDITEDFILE "Reload edited file"
FCS_CLEARHISTORYLIST "Clear history list"
FCS_EXIT Exit

e also:

ACTL. _GETCONFIRMATIONS

arinterfaceSettings

in | types and definitions

Information about the interface settings (FarInterfaceSettings enum).
Corresponds to options in the "Interface settings" dialog.

Constant

Description

FIS_CLOCKINPANELS

"Clock in panels"

FIS_CLOCKINVIEWERANDEDITOR

"Clock in viewer and editor"

FIS_MOUSE

"Mouse"

FIS_SHOWKEYBAR

"Show key bar"

FIS_ALWAYSSHOWMENUBAR

"Always show menu bar, even when
it's inactive"

FIS_USERIGHTALTASALTGR

"Use right Alt as AltGr"

FIS_SHOWTOTALCOPYPROGRESSINDICATOR

1

"Show total copy progress indicator’

FIS_SHOWCOPYINGTIMEINFO

"Show copying time information"

FIS_USECTRLPGUPTOCHANGEDRIVE

"Use Ctrl-PgUp to change drive"

e also:
ACTL _GETINTERFACESETTINGS

arDialogSettings

in | types and definitions

Information about the dialog settings (FarDialogSettings enum). Corresponds to
options in the "Dialog Settings" dialog.

Constant Description
FDIS_AUTOCOMPLETEININPUTLINES "AutoComplete in edit controls"
FDIS_HISTORYINDIALOGEDITCONTROLS "History in dialog edit controls"

(applies to some internal dialogs)

FDIS_PERSISTENTBLOCKSINEDITCONTROLS | "Persistent blocks in edit controls"

FDIS_BSDELETEUNCHANGEDTEXT "Backspace deletes unchanged text".
If this option is turned on, pressing
BackSpace inside an input line with
unchanged text will delete the whole
line as if Del was pressed.

FDIS_ DELREMOVESBLOCKS "Del removes blocks in edit controls"

FDIS_MOUSECLICKOUTSIDECLOSESDIALOG | "Mouse click outside a dialog closes
itll

e also:
ACTL _GETDIALOGSETTINGS

arDescriptionSettings

in | types and definitions

Information about the file description settings (FarDescriptionSettings enum).
Corresponds to options in the "File descriptions" dialog.

Constant Description

FDS_SETHIDDEN "Set "Hidden" attribute to new description lists"

FDS_UPDATEALWAYS "Always update descriptions"

FDS_UPDATEIFDISPLAYED "Update descriptions if displayed"

FDS_UPDATEREADONLY "Update read only description file"
emarks

The FDS_UPDATEALWAYS and FDS_UPDATEIFDISPLAYED flags are
mutually exclusive.

e also:
ACTL _GETDESCSETTINGS

arSystemSettings

in | types and definitions

Information about the system settings (FarSystemSettings enum). Corresponds
to options in the "System settings" dialog.

Constant Description
FSS_CLEARROATTRIBUTE "Clear R/O attribute from CD files"
FSS_DELETETORECYCLEBIN "Delete to Recycle Bin"
FSS_USESYSTEMCOPYROUTINE "Use system copy routine"

FSS_COPYFILESOPENEDFORWRITING "Copy files opened for writing"

FSS_SCANSYMLINK "Scan symbolic links"
FSS_CREATEFOLDERSINUPPERCASE "Create folders in uppercase"
FSS_SAVECOMMANDSHISTORY "Save commands history"
FSS_SAVEFOLDERSHISTORY "Save folders history"
FSS_SAVEVIEWANDEDITHISTORY "Save view and edit history"
FSS_USEWINDOWSREGISTEREDTYPES | "Use Windows registered types"
FSS_AUTOSAVESETUP "Auto save setup"

e also:

ACTL. GETSYSTEMSETTINGS

arPanelSettings

in | types and definitions

Information about the panel settings (FarPanelSettings enum). Corresponds to
options in the "Panel settings" dialog.

Constant

Description

FPS_SHOWHIDDENANDSYSTEMFILES

"Show hidden and system files"

FPS_HIGHLIGHTFILES

"Highlight files"

FPS_AUTOCHANGEFOLDER

"Auto change folder"

FPS_SELECTFOLDERS

"Select folders"

FPS_ALLOWREVERSESORTMODES

"Allow reverse sort modes"

FPS_SHOWCOLUMNTITLES

"Show column titles"

FPS_SHOWSTATUSLINE

"Show status line"

FPS_SHOWFILESTOTALINFORMATION

"Show files total information"

FPS_SHOWEFREESIZE

"Show free space"

FPS_SHOWSCROLLBAR

"Show scrollbar"

FPS_SHOWBACKGROUNDSCREENSNUMBER

"Show background screens number"

FPS_SHOWSORTMODELETTER

"Show sort mode letter"

e also:
ACTL GETPANELSETTINGS

ile masks

in

File masks are frequently used in FAR commands to select a single file and/or
folder or a group files and/or folders. Masks may contain common valid file
name symbols, wildcards ("*' and '?") and special expressions:

Expression Description

* Zero or more characters.

? Any single character.

[c,x-2] Any character enclosed in the brackets. Both lists and
ranges of characters are allowed.

For example, files ftp.exe, fc.exe and f.ext may be selected using the
mask T*.ex?, the mask *co* will select both color.ini and edit.com,
the mask [c-T, t]*.txt will select config. txt, demo. txt, faq.txt
and tips. txt.

In many FAR commands you may enter several file masks separated by commas
or semicolons. For example, to select all the documents, you can enter
*.doc, *.txt, *.wri in the "Select" command.

It is allowed to put any of the masks (in a list) in quotes (but not the whole list).
For example, you have to do this when a mask contains any of the delimiting
characters (a comma or a semicolon), so that the mask isn't confused with a list
of masks.

In some commands (find files, file selection, file associations, sort groups and
file highlighting) you may use exclude masks. An exclude mask is one or
multiple file masks that must not be matched by the needed files. The
exclude mask is delimited from the main mask by the '|' character.

Usage examples of exclude masks:

—_

* . cppAll files with the cpp extension.

.|*.bak, *.tmp

All files except for the files with bak and tmp extensions.

3. %

This mask has an error - the character '|', is entered, but the mask itself is

not specified.
4. *.*|*.bak|*.tmp

N

Also an error - the character '|' may not be specified in the mask more than
once.

5. | *.bak
The same as '* | * . bak'

elp topic syntax
in | Help files

The HelpTopic parameter describes a help topic and can be in one of the
following formats:

Format Description

"Topic" Reference to a topic in the plugins help file.

":Topic" Reference to a topic from the main FAR Manager help file.

"<FullPath>Topic" Reference to a topic in a help file located in a folder with
full or relative path of FullPath. An ending backslash must
be added.

The reference must not be split on mutiple lines. For
example, the plugin Foo is located in folder
'D:\FAR\Plugins\Foo' and we need to show the topic
'Foolnfo' from its help file:

"<D:\FAR\Plugins\Foo\>FooInfo"

"<FullModuleName>Topic" Reference to a topic in a help file located in the same
folder as the plugin with the relative or full path of
FullModuleName.
The reference must not be split on mutiple lines. For
example, we need to show the help topic 'Foolnfo' from the
help file of the plugin Foo 'D:\FAR\Plugins\Foo\Foo.dll":

"<D:\FAR\Plugins\Foo\Foo.d1l1>FooInfo"

e also:
ShowHelp, Dialog, DialogEx, DN HELP, InputBox, Menu,
Message

ontrol statements
in | language and help files

In the beginning, language and help files can contain the following control
statements, starting from a dot character.

Control
statement

.Language

.PluginContents

.Options

Description

.Language=<Language name>, <Language description>

This statement must be present at the beginning of all language and help files.
<Language name>

describes the file language and must be a standard language name in English. All file
<Language name> field.

<Language description>

can contain a language description in arbitrary form. It will be displayed in the Lanc

.PluginContents=<Contents topic name>

This optional statement can be used to add the <Contents topic name> entry to the plug
Shift-F2 is pressed. After choosing this entry, the topic Contents of the plugin he
Contents topic).

.Options <KeyName>=<Value>

This optional statement can be used to specify additional options in help files. There are
<KeyName>

One of the following options:

e CtrlColorChar <Value> contains the character that will be used to specify the
files" about the Ctr1ColorChar option). For example specifying:

.Options CtrlColorChar=\

sets the \ character to be the color specifying character.
e TabSize

<Value> specifies the tab size in the HLF file. Must be in the range of 1 to 16,
e CtrlStartPosChar

<Value> contains the character that will be used to mark a block alignment pc

.Options CtrlStartPosChar=&

means that the '&' character will mark a block alignment position, then the blc

item 1 - &Joe;'s father is strong in math, he stud

will be aligned as follows:

item 1 - Joe's father is strong in math,
he studies instead of Joe all year long.

xample:

.Language=Engish, English

.PluginContents=FTP client

@Contents

$ #FTP client#
~Connecting to an FTP server~@FTPConnect@
~Working with server names~@FTPNames@
~FTP client commands~@FTPCmd@
~FTP client configuration~@FTPCfg@

~FTP client panel modes~@FTPPanel

e also:
Language and Help files, Help files

anguage files
in | language and help files | GetMsg

The language file (a text file with the . LNG extension) is intended to store
language resources used by the plugin to output messages in dialogs and menus.

Messages in language files must be enclosed in double quotes. You can use the
double quote character inside messages as well.

All lines not beginning with a dot or a double quote are ignored. Leading spaces
are ignored.

.Language=English, English
"Please register your copy"
"Registered"

IIYeSII

IINOII

//functional keys - 6 characters max
1" Helpll
"UserMn"

"Group"
IISelUpII
//End of functional keys

emarks

1. When using double quotes inside messages it is not obligatory to prepend
them with a backslash. While processing each line of language file, FAR
Manager checks only the opening and closing quotes. For example:

"Option "Autodetect character table" is off."
"Copy \"%.55s\" to"

both lines are correct;

2. aline may not be longer than 1000 characters;

messages may not be split on mutiple lines;

4. the following control charachters are allowed: '\n"', '\r', '"\\',
1 \b 1 , 1 \t 1

w

e also:
Control statements, Language and Help files, GetMsg

elp files
in | language and help files

elp file syntax.

The following control statements can be used in help files.

Control statement

@Topic (at the beginning of a line)

$Text (at the beginning of a line)

~Text~@Topic@

~Text~@<FullPath>Topic@

~Text~@<FullModuleName>Topic@

~Text~@URL@

Description

Starts a topic definition. There are four topics with special names:

1. The topic with the name Contents has a special meaning. I
the FAR command line when the plugin is active or when a
plugins help list.

2. If a plugin can be configured, it is recommended to specify
topic for the configuration dialog. This topic will be shown
plugins configuration menu (Options|Plugins configuration

3. If a plugin can be invoked both in the panels and in the edit
functions depending on where it was invoked, it is recomm
Viewer for describing the operation in the viewer and editc
be shown when Shift-F1 is pressed in the list of plugin
editor.

Defines a non-scrolling region. All lines starting with $ must be ir
(immediately after the line starting with @) and will be shown in
from the rest of the text with a horizontal line.

Reference to a topic. If you wish to access a topic from the main 1
plugins help, precede the topic name with a colon (':").
The reference must not be split on mutiple lines.

Reference to a topic in a help file located at a folder with full or re
ending backslash must be added.

The reference must not be split on mutiple lines.

For example, the plugin Foo is located in folder 'D:\FAR\Plugins\
topic 'FooInfo' from its help file.

~About Foo~@<D:\FAR\Plugins\Foo\>FooInfo@

Reference to a topic in a help file located at the same folder as the
path of FullModuleName.

The reference must not be split on mutiple lines.

For example, we need to show the help topic 'Foolnfo' from the he
'D:\FAR\Plugins\Foo\Foo.dll'".

~About Foo~@<D:\FAR\Plugins\Foo\Foo.dl1l>Fa

URL activator, allowing to run applications that support URL pror
the protocols that can be used in help files:

#Text#

A (at the beginning of a line or after
$)
@- (at the beginning of a line)

@+ (at the beginning of a line)

<CtrlColorChar>XX

<CtrlColorChar>-

emarks

~File access protocol~@file://C:\Program F
~File transfer protocol~@ftp://ftp.kgb.ru/
~HTTP~@http://plugring.farmanager.com/@
~MailTo~@mailto:vskirdin@@mail. ru@
~News~@news://fido7.far.support@
~Telnet~@telnet://fido7.far.support@

The reference must not be split on mutiple lines.
Highlights the text Text.

Centers the line.

Disables text auto format. By default FAR formats all lines in whi
position (is not indented). Must be placed in a separate line.

Enables text auto format. Must be placed in a separate line.

Specifies a color attribute that will be used to display the text follc
consists of two hexadecimal digits (0-9A-F).

For example, the backslash ('\") character is set to be the color spe:
(<CtrlColorChar>). Then the statement \4F will force the help
text with white letters on dark red background.

(see CtrlColorChar)

Specifies that the following text must be displayed in default colo
(see CtrlColorChar)

1. The length of a text string in a help file must not exceed 300 characters.
2. If you need to display the characters ~, # or @, duplicate them (~~, ##,

@@).

3. In the <URL> field of URL activators, the ~ and # characters may be
duplicated or specified once, but the @ character must be always
duplicated. If the URL must contain a sequence of two ~ or # characters,
specify a sequence of 3 or 4 characters (for example, ~~~ and ~~~~ will be

shown as ~~).

4. Don't use special characters ~, # or @ inside a reference that is not an URL

activator.

xample

The following example is taken from the FarEng.hlf file.

@FolderShortcuts

$ #Folder shortcuts#

Folder shortcuts are designed to provide fast acc
used folders. Press Ctrl-Shift-0..9, to create a shor
to the current folder. To change to the folder recorc
press RightCtrl-0..9. If RightCtrl-0..9 pressed in ec
the shortcut path into the line.

The #Show folder shortcuts# item in the ~Commands
used to view, set, edit and delete folder shortcuts.
It looks like this:

CCHIAKKM Ha NankwM

CChIAKKM Ha NankwM MEHD HOMaH,

The following examples demonstrates usage of the URL activator.
E-mail client activation:

~vskirdin@@mail.ru~@mailto:vskirdin@@mail. ru@

Browser activation:
~http://plugring.farmanager.com/~@plugring.farmanager
or

~http://www.uic.nnov.ru/~~ruiv/plugring/~@http://www.

The following example demonstrates usage of color attributes:

.Language=English, English
.PluginContents=Reversi - Game
.Options CtrlColorChar=\

@_
Reversi, also known as Othello, is a stratec
\70 B \-\2F W \- played by two players: Black and
\2F W \-\70 B \- #White#. It is played on an 8x8 L
using 64 disks with different color on each

@+

It looks like this:

e also:

Control statements, Language files

/lin32 structures

in

Structure

Description

CHAR INFO

specifies the character and its attributes

CONSOLE CURSOR INFO

contains information about the console cursor

COORD defines the coordinates of a character cell in a
console screen buffer
FILETIME the 64-bit number of 100-nanosecond intervals

since January 1, 1601 (UTC)

FOCUS EVENT RECORD

reports focus events in a console
INPUT RECORD structure

INPUT RECORD

reports input events in the console input buffer

KEY EVENT RECORD

reports keyboard input events in a console
INPUT RECORD structure

MENU EVENT RECORD

reports menu events in a console
INPUT RECORD structure

MOUSE EVENT RECORD

reports mouse input events in a console
INPUT RECORD structure

RECT defines the coordinates of the upper-left and lower-
right corners of a rectangle

SMALL RECT defines the coordinates of the upper-left and lower-
right corners of a rectangle

SYSTEMTIME represents a date and time using individual

members for the month, day, year, weekday, hour,
minute, second, and millisecond

WIN32 FIND DATA

describes a file found by the FindFirstFile,
FindFirstFileEx, or FindNextFile function

WINDOW BUFFER SIZE RECORD

reports changes in the size of the screen buffer in a
console INPUT RECORD structure

e also:
Exported functions Service functions
Addons

HAR_INFO

in | structures | win32 structures

The CHAR_INFO structure specifies the Unicode or ANSI character and the
colour attributes of the screen character cell. This structure is used by console
functions to read from and write to a console screen buffer.

typedef struct _CHAR_INFO {
// Unicode or ANSI character
union {
WCHAR UnicodeChar;
CHAR AsciiChar;
} Char;

// Text and background colors
WORD Attributes;
} CHAR_INFO, *PCHAR_INFO;

embers

Char

Unicode (wide-character) or ANSI character of a screen buffer character cell,
depending on whether it is used with the Unicode or ANSI version of a
function.

Attributes

Character attributes. There are two classes of the attributes - colour and
DBCS. This member can be zero or any combination of the following
attributes: (all of them are defined in Wincon. h).

Attribute Description
FOREGROUND_BLUE Text color contains blue.
FOREGROUND_GREEN Text color contains green.
FOREGROUND_RED Text color contains red.
FOREGROUND_INTENSITY Text color is intensified.
BACKGROUND_BLUE Background color contains blue.
BACKGROUND_GREEN Background color contains green.

BACKGROUND_RED Background color contains red.

BACKGROUND_INTENSITY Background color is intensified.

COMMON_LVB_LEADING_BYTE DBCS: Leading byte.

COMMON_LVB_TRAILING_BYTE DBCS: Trailing byte.

COMMON_LVB_GRID_HORIZONTAL | DBCS: Grid attribute: top horizontal.

COMMON_LVB_GRID_LVERTICAL DBCS: Grid attribute: left vertical.

COMMON_LVB_GRID_RVERTICAL DBCS: Grid attribute: right vertical.

COMMON_LVB_REVERSE_VIDEO DBCS: Reverse foreground and background
attributes.

COMMON_LVB_UNDERSCORE DBCS: Underscore.

The foreground attributes (FOREGROUND_*) define the colour of the text
symbols. The background attributes (BACKGROUND_*) define the colour of
the background of the text cell. Other attributes (COMMON_LVB_*) are used
with DBCS.

emarks

e also:
ReadConsoleOutput

ScrollConsoleScreenBuffer

WriteConsoleOutput

JavaScript:link28.Click()
JavaScript:link29.Click()
JavaScript:link30.Click()

ONSOLE_CURSOR_INFO

in | structures | win32 structures

The CONSOLE_CURSOR_INFO structure contains information about the
console cursor.

typedef struct _CONSOLE_CURSOR_INFO {
DWORD dwSize;
BOOL bVisible;
} CONSOLE_CURSOR_INFO, *PCONSOLE_CURSOR_INFO;

embers

dwSize

Percentage of the character cell that is filled by the cursor. This value is
between 1 and 100. The cursor appearance varies, ranging from completely
filling the cell to showing up as a horizontal line at the bottom of the cell.

= Wind X/M
4 win Qf%ss%ow aefully filled cursor in Windows 9x/Me set this value to 99.

bVisible
Visibility of the cursor. If the cursor is visible, this member is TRUE.

e also:
GetConsoleCursorInfo

SetConsoleCursorInfo

JavaScript:link31.Click()
JavaScript:link32.Click()

OORD

in | structures | win32 structures

The COORD structure defines the coordinates of a character cell in a console
screen buffer. The origin of the coordinate system (0,0) is at the top, left cell of
the buffer.

typedef struct _COORD {
SHORT X;
SHORT Y;

} COORD;

embers

X
Horizontal coordinate or column value.

Y
Vertical coordinate or row value.

emarks

e also:

ILETIME

in | structures | win32 structures

The FILETIME data structure is a 64-bit value representing the number of 100-
nanosecond intervals since January 1, 1601. It is the means by which Win32
determines the date and time.

typedef struct _FILETIME {
DWORD dwLowDateTime;
DWORD dwHighDateTime;

} FILETIME;

embers

dwLowDateTime
Specifies the low-order 32 bits of the Win32 date/time value.

dwHighDateTime
Specifies the high-order 32 bits of the Win32 date/time value.

emarks

It is not recommended that you add or substract values from this structure to
obtain relative times. Instead, you should do the following:

e Copy this structure to a ULARGE_INTEGER

structure.
e Use standard 64-bit arithmetic on the ULARGE INTEGER

value or cast a variable of

JavaScript:link33.Click()
JavaScript:link34.Click()

FILETIME type to the __int64 type:
FILETIME WriteTimel, WriteTime2;

if(*(__int64*) & WriteTimel == *(__int64*) & Writ«

Not all file systems can record creation and last access time and not all file
systems record them in the same manner. For example, on NT FAT, create time
has a resolution of 10 milliseconds, write time has a resolution of 2 seconds, and
access time has a resolution of 1 day (really, the access date). On NTFS, access
time has a resolution of 1 hour. Therefore, the GetFileTime function may not
return the same file time information set using the SetFileTime function.
Furthermore, FAT records times on disk in local time. However, NTFS records
times on disk in UTC.

e also:
CompareFileTime

, GetFileTime,
SetFileTime, ULARGE INTEGER

JavaScript:link35.Click()
JavaScript:link36.Click()

OCUS_EVENT_RECORD

in | structures | win32 structures | INPUT RECORD

The FOCUS_EVENT_RECORD structure is used to report focus events in a
console INPUT_RECORD structure. These events are used internally and
should be ignored.

typedef struct _FOCUS_EVENT_RECORD {
BOOL bSetFocus;
} FOCUS_EVENT_RECORD;

embers

bSetFocus
Reserved.

e also:
INPUT _RECORD

JPUT_RECORD

in | structures | win32 structures

The INPUT_RECORD structure is used to report input events in the console
input buffer. These records can be read from the input buffer by using the
ReadConsolelnput or PeekConsolelnput function, or written to the input buffer
by using the WriteConsolelnput function.

typedef struct _INPUT_RECORD {

WORD EventType,

union {
KEY_EVENT_RECORD KeyEvent;
MOUSE_EVENT_RECORD MouseEvent;
WINDOW_BUFFER_SIZE_RECORD WindowBufferSizeEvent;
MENU_EVENT_RECORD MenuEvent;
FOCUS_EVENT_RECORD FocusEvent,

} Event;

} INPUT_RECORD;

embers

Eventlype

Handle to the type of input event and the event record stored in the Event
member.
This member can be one of the following values.

Value Description

KEY_EVENT The Event member contains a
KEY EVENT RECORD structure with
information about a keyboard event.

MOUSE_EVENT The Event member contains a
MOUSE EVENT RECORD structure with
information about a mouse movement or button
press event.

WINDOW_BUFFER_SIZE_EVENT | The Event member contains a
WINDOW BUFFER SIZE RECORD structure

with information about the new size of the screen
buffer.

MENU_EVENT The Event member contains a
MENU EVENT RECORD structure. These
events are used internally and should be ignored.

FOCUS_EVENT The Event member contains a
FOCUS EVENT RECORD structure. These
events are used internally and should be ignored.

FARMACRO_KEY_EVENT The Event member contains a

KEY EVENT RECORD structure with
information about a keyboard event. Plugin
receives this specific message from FAR
manager version 1.70 build 1663 and higher
while playing keyboard macro.

Event

Event information. The format of this member depends on the event type
specified by the EventType member.

e also:

KEY EVENT RECORD, MOUSE EVENT RECORD,

WINDOW BUFFER SIZE RECORD,

MENU EVENT RECORD, FOCUS EVENT RECORD,
PeekConsolelnput, ReadConsolelnput, WriteConsoleInput

EY_EVENT_RECORD

in | structures | win32 structures | INPUT RECORD

The KEY_EVENT_RECORD structure is used to report keyboard input events
in a console INPUT_ RECORD structure.

typedef struct _KEY_EVENT_RECORD {
BOOL bKeyDown;
WORD wRepeatCount;
WORD wVirtualKeyCode;
WORD wVirtualScanCode;
union {
WCHAR UnicodeChar;
CHAR AsciiChar;
} uChar;
DWORD dwControlKeyState;
} KEY_EVENT_RECORD;

embers

bKeyDown
Indicates whether a key is down. This member is TRUE if the key is pressed,
or FALSE if the key is released.

wRepeatCount

Count indicating that a key is being held down. For example, when a key is
held down, you might get five events with this member equal to 1, one event
with this member equal to 5, or multiple events with this member greater than
or equal to 1.

wVirtualKeyCode
Virtual-key code that identifies the given key in a device-independent manner.

wVirtualScanCode
Virtual scan code of the given key that represents the device-dependent value
generated by the keyboard hardware.

uChar

Translated Unicode or ASCII character, depending on whether the wide-
character (Unicode) or ANSI version of the ReadConsolelnput function was
used.

dwControlKeyState

Indicates the state of the control keys. This member can be one or more of the
following values.

Key Value Description
CAPSLOCK_ON 0x0080 The CAPS LOCK light is on.
ENHANCED_KEY 0x0100 The key is enhanced.
LEFT_ALT_PRESSED 0x0002 The left ALT key is pressed.
LEFT_CTRL_PRESSED 0x0008 The left CTRL key is pressed.
NUMLOCK_ON 0x0020 The NUM LOCK light is on.
RIGHT_ALT_PRESSED 0x0001 The right ALT key is pressed.
RIGHT_CTRL_PRESSED | 0x0004 The right CTRL key is pressed.
SCROLLLOCK_ON 0x0040 The SCROLL LOCK light is on.
SHIFT_PRESSED 0x0010 The SHIFT key is pressed.
emarks

Enhanced keys for the IBM® 101- and 102-key keyboards are the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and direction keys in the clusters to the
left of the keypad; and the divide (/) and ENTER keys in the keypad.

Keyboard input events are generated when any key, including control keys, is
pressed or released. However, the ALT key when pressed and released without
combining with another character, has special meaning to the system and is not
passed through to the application. Also, the CTRL+C key combination is not
passed through if the input handle is in processed mode
(ENABLE_PROCESSED_INPUT).

e also:
PeekConsoleInput, ReadConsolelnput, WriteConsolelnput,
INPUT RECORD

IENU_EVENT_RECORD

in | structures | win32 structures | INPUT RECORD

The MENU_EVENT_RECORD structure reports menu events in a console
INPUT_RECORD structure. These events are used internally and should be
ignored.

typedef struct _MENU_EVENT_RECORD {
UINT dwCommandId;
} MENU_EVENT_RECORD, *PMENU_EVENT_RECORD;

embers

dwCommandld
Reserved.

e also:
INPUT _RECORD

IOUSE_EVENT_RECORD

in | structures | win32 structures | input record

The MOUSE_EVENT_RECORD structure is used in a console
INPUT_RECORD structure to report mouse input events.

typedef struct _MOUSE_EVENT_RECORD {
COORD dwMousePosition;
DWORD dwButtonState;
DWORD dwControlKeyState;
DWORD dwEventFlags;
} MOUSE_EVENT_RECORD;

embers

dwMousePosition

Location of the cursor, in terms of the screen buffer's character-cell
coordinates (see COORD structure).

dwButtonState

Indicates the status of the mouse buttons. The least significant bit corresponds
to the leftmost mouse button. The next least significant bit corresponds to the
rightmost mouse button. The next bit indicates the next-to-leftmost mouse
button. The bits then correspond left to right to the mouse buttons. A bit is 1 if
the button was pressed.

The following constants are defined for the first five mouse buttons:
FROM_LEFT_1ST_BUTTON_PRESSED
RIGHTMOST_BUTTON_PRESSED
FROM_LEFT_2ND_BUTTON_PRESSED
FROM_LEFT_3RD_BUTTON_PRESSED
FROM_LEFT_4TH_BUTTON_PRESSED

dwControlKeyState

Indicates the state of the control keys. This member can be one or more of the
following values.

Value Description
CAPSLOCK_ON The CAPS LOCK light is on.
ENHANCED_KEY The key is enhanced.

LEFT_ALT_PRESSED The left ALT key is pressed.

LEFT_CTRL_PRESSED The left CTRL key is pressed.

NUMLOCK_ON The NUM LOCK light is on.

RIGHT_ALT_PRESSED The right ALT key is pressed.

RIGHT_CTRL_PRESSED The right CTRL key is pressed.

SCROLLLOCK_ON The SCROLL LOCK light is on.

SHIFT_PRESSED The SHIFT key is pressed.
dwEventFlags

Indicates the type of mouse event. If this value is zero, it indicates a mouse
button being pressed or released. Otherwise, this member is one of the
following values.

Value Description

DOUBLE_CLICK The second click (button press) of a double-click
occurred. The first click is returned as a regular
button-press event.

MOUSE_MOVED A change in mouse position occurred.

MOUSE_WHEELED Windows 2000/XP/2003/Vista/2008/7: The vertical
mouse wheel was moved. If this flag is set, high
word of dwButtonState indicates the distance the

wheel is rotated, expressed in multiples or divisions
of WHEEL_DELTA.

MOUSE_HWHEELED Windows Vista/2008/7: The horizontal mouse wheel
was moved. If this flag is set, high word of
dwButtonState indicates the distance the wheel is

rotated, expressed in multiples or divisions of
WHEEL_DELTA.

emarks

Mouse events are placed in the input buffer when the console is in mouse mode
(ENABLE_MOUSE_INPUT).

Mouse events are generated whenever the user moves the mouse, or presses or
releases one of the mouse buttons. Mouse events are placed in the console input
buffer only when the console group has the keyboard focus and the cursor is
within the borders of the console window.

e also:
COORD, PeekConsolelnput, ReadConsolelnput,
WriteConsolelnput, INPUT RECORD

ECT

in | structures | win32 structures

The RECT structure defines the coordinates of the upper-left and lower-right
corners of a rectangle.

typedef struct _RECT {
LONG left;
LONG top;
LONG right;
LONG bottom;
} RECT, *PRECT;

embers
left

Specifies the X-coordinate of the upper-left corner of the rectangle.
top

Specifies the Y-coordinate of the upper-left corner of the rectangle.
right

Specifies the X-coordinate of the lower-right corner of the rectangle.

bottom
Specifies the Y-coordinate of the lower-right corner of the rectangle.

emarks

e also:
SMALL RECT

MALL_RECT

in | structures | win32 structures

The SMALL_RECT structure defines the coordinates of the upper-left and
lower-right corners of a rectangle.

typedef struct _SMALL_RECT {
SHORT Left;
SHORT Top;
SHORT Right;
SHORT Bottom;
} SMALL_RECT;

embers
Left

X-coordinate of the upper left corner of the rectangle.
Top

Y-coordinate of the upper left corner of the rectangle.
Right

X-coordinate of the lower right corner of the rectangle.

Bottom
Y-coordinate of the lower right corner of the rectangle.

emarks

This structure is used by console functions to specify rectangular areas of
console screen buffers, where the coordinates specify the rows and columns of
screen-buffer character cells.

e also:
RECT

YSTEMTIME

in | structures | win32 structures

The SYSTEMTIME structure represents a date and time using individual
members for the month, day, year, weekday, hour, minute, second, and
millisecond.

typedef struct _SYSTEMTIME {
WORD wYear ;
WORD wMonth;
WORD wDayOfWeek;
WORD wbDay;
WORD wHour ;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;
} SYSTEMTIME;

embers

wYear
Specifies the current year. The year must be greater than 1601.

= Windows XP, Windows S
- WInCoME, year cannot be gerlé‘é%gr than 30827.

wMonth

Specifies the current month; January = 1, February = 2, and so on.
wDayOfWeek

Specifies the current day of the week; Sunday = 0, Monday = 1, and so on.

wDay

Specifies the current day of the month.
wHour

Specifies the current hour (0-23).

wMinute
Specifies the current minute (0-59).

wSecond

Specifies the current second (0-59).

wMilliseconds
Specifies the current millisecond (0-999).

emarks

It is not recommended that you add or substract values from this structure to
obtain relative times. Instead, you should do the following:

e Convert the SYSTEMTIME structure to a FILETIME structure using the

SystemTimeToFileTime function.
e Copy the resulting FILETIME structure to a ULARGE_INTEGER

structure.
e Use standard 64-bit arithmetic on the ULARGE INTEGER

value or cast a variable of
FILETIME type to the __int64 type:

FILETIME WriteTimel, WriteTime2;

if(*(__int64*) & WriteTimel == *(__1int64*) & Writ«

JavaScript:link116.Click()
JavaScript:link117.Click()
JavaScript:link118.Click()

e also:
FILETIME, LARGE INTEGER

GetSystemTime

SetSystemTime

JavaScript:link119.Click()
JavaScript:link120.Click()
JavaScript:link121.Click()

/IN32_FIND_DATA

in | structures | win32 structures

The WIN32_FIND_DATA structure describes a file found by the FindFirstFile,
FindFirstFileEx or FindNextFile function.

typedef struct _WIN32_FIND_DATA {
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftLastAccessTime;
FILETIME ftLastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelLow;
DWORD dwReservedO;
DWORD dwReservedl;
TCHAR cFileName[MAX_PATH];
TCHAR cAlternateFileName[14];
} WIN32_FIND_DATA;

embers

dwFileAttributes

Specifies the file attributes of the file found. This member can be one or more
of the following values.

Attribute Description

FILE_ATTRIBUTE_ARCHIVE The file or directory is an archive
file or directory. Applications use
this attribute to mark files for
backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed.
For a file, this means that all of the
data in the file is compressed. For a
directory, this means that
compression is the default for newly
created files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The handle identifies a directory.

FILE_ATTRIBUTE_ENCRYPTED The file or directory is encrypted.
For a file, this means that all data in
the file is encrypted. For a directory,
this means that encryption is the

default for newly created files and

subdirectories.
FILE_ATTRIBUTE_HIDDEN The file or directory is hidden. It is

not included in an ordinary

directory listing.
FILE_ATTRIBUTE_NORMAL The file or directory has no other

attributes set. This attribute is valid
only if used alone.

FILE_ATTRIBUTE_OFFLINE The file data is not immediately
available. This attribute indicates
that the file data has been physically
moved to offline storage.

FILE_ATTRIBUTE_READONLY The file or directory is read-only.
Applications can read the file but
cannot write to it or delete it. In the
case of a directory, applications
cannot delete it.

FILE_ATTRIBUTE_REPARSE_POINT The file has an associated reparse
point.

FILE_ATTRIBUTE_SPARSE_FILE The file is a sparse file.

FILE_ATTRIBUTE_SYSTEM The file or directory is part of the

operating system or is used
exclusively by the operating system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary
storage. File systems attempt to
keep all of the data in memory for
quicker access, rather than flushing
it back to mass storage. A
temporary file should be deleted by
the application as soon as it is no
longer needed.

FILE_ATTRIBUTE_NOT_CONTENT_INDEXED | The file or directory is not be
indexed by the content indexing
service.

FILE_ATTRIBUTE_VIRTUAL A file is a virtual file.

ftCreationTime

A FILETIME structure that specifies when the file or directory was created. If
the underlying file system does not support creation time, ftCreationTime is
zero.

ftLastAccessTime

A FILETIME structure. For a file, the structure specifies when the file was last

read from or written to. For a directory, the structure specifies when the

directory was created. For both files and directories, the specified date will be

correct, but the time of day will always be set to midnight. If the underlying

file system does not support last access time, ftLastAccessTime is zero.
ftLastWriteTime

A FILETIME structure. For a file, the structure specifies when the file was last
written to. For a directory, the structure specifies when the directory was
created. If the underlying file system does not support last write time,
ftLastWriteTime is zero.

nFileSizeHigh

Specifies the high-order DWORD value of the file size, in bytes. This value is
zero unless the file size is greater than MAXDWORD. The size of the file is
equal to (nFileSizeHigh * (1+MAXDWORD)) + nFileSizeLow.

nFileSizeLow
Specifies the low-order DWORD value of the file size, in bytes.
dwReserved0

If the dwFileAttributes member includes the
FILE_ATTRIBUTE_REPARSE_POINT attribute, this member specifies
the reparse tag. Otherwise, this value is undefined and should not be used.

dwReserved1

Reserved.
cFileName

A null-terminated string that is the name of the file.
cAlternateFileName

A null-terminated string that is an alternative name for the file. This name is in
the classic 8.3 (filename.ext) file name format.

emarks

e If a file has a long file name, the complete name appears in the cFileName
field, and the 8.3 format truncated version of the name appears in the
cAlternateFileName field. Otherwise cAlternateFileName is empty. As an
alternative, you can use the GetShortPathName

JavaScript:link126.Click()

function to find the 8.3 format
version of a file name.

e Not all file systems can record creation and last access time and not all file
systems record them in the same manner. For example, on NT FAT, create
time has a resolution of 10 milliseconds, write time has a resolution of 2
seconds, and access time has a resolution of 1 day (really, the access date).
On NTEFS, access time has a resolution of 1 hour.

e also:

FAR USE WIN32 FIND DATA, FAR FIND DATA,
FILETIME, TWin32FindData

/INDOW_BUFFER_SIZE_RECORD

in | structures | win32 structures

The WINDOW_BUFFER_SIZE_RECORD structure is used in a console
INPUT_RECORD structure to report changes in the size of the screen buffer.

typedef struct _WINDOW_BUFFER_SIZE_RECORD {
COORD dwSize;
} WINDOW_BUFFER_SIZE_RECORD;

embers

dwSize
Size of the screen buffer, in character cell columns and rows.

emarks
Buffer size events are placed in the input buffer when the console is in window-
aware mode (ENABLE_WINDOW_INPUT).

e also:
INPUT RECORD, COORD, ReadConsolelnput

/Iin32 functions

in
Function Description
GetFileTime retrieves the date and time that a file was created, last
accessed, and last modified
PeekConsolelnput reads data from the specified console input buffer
without removing it from the buffer
ReadConsolelnput reads data from a console input buffer and removes it
from the buffer
SetFileApisToAnsi causes the file I/O functions to use the ANSI character
set code page
SetFileApisToOem causes the file I/O functions to use the OEM character
set code page
SetFileTime sets the date and time that a file was created, last
accessed, or last modified
WriteConsolelnput writes data directly to the console input buffer
e also:

Exported functions Service functions
Addons

etFileTime

in | structures | win32 structures

The GetFileTime function retrieves the date and time that a file was created, last
accessed, and last modified.

BOOL GetFileTime(
HANDLE hFile,
CONST FILETIME *1pCreationTime,
CONST FILETIME *1lplLastAccessTime,
CONST FILETIME *lpLastWriteTime

),

arameters

hFile

Handle to the file for which to get dates and times. The file handle must have
been created with the GENERIC_READ access to the file.

IpCreationTime

Pointer to a FILETIME structure to receive the date and time the file was
created. This parameter can be NULL if the application does not require this
information.

IpLastAccessTime

Pointer to a FILETIME structure to receive the date and time the file was last
accessed. The last access time includes the last time the file was written to,
read from, or, in the case of executable files, run. This parameter can be
NULL if the application does not require this information.

IpLastWriteTime

Pointer to a FILETIME structure to receive the date and time the file was last
written to. This parameter can be NULL if the application does not require this
information.

eturn value

If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,

call GetLastError

emarks

The FAT and NTFS file systems support the file creation, last access, and last
write time values.

+ Ti . .
e BhSeRle time precision can vary depending on operating system, file
system, network configuration. See remarks for the FILETIME for
details.

4 W‘“d"\X"fﬁng‘rﬁg%s NT creates a list of folders (e.g. DIR command) in a
NTFS volume, it modifies last access date/time for all found folders. It
can degrade effectiveness if the number of folders is very large.

This behaviour can be controled, see Disable the NTFS I.ast Access
Time Stamp for details.

If you rename or delete a file, then restore it shortly thereafter, Windows
NT searches the cache for file information to restore. Cached
information includes its short/long name pair and creation time.

xample

The following example demonstrates how to retrieve last-write time for a file in
string form (Windows N'T/2000).

BOOL GetLastWriteTime(HANDLE hFile, LPSTR lpszString)
{

FILETIME ftCreate, ftAccess, ftWrite;

SYSTEMTIME stUTC, stlLocal;

// get file time and date
if (!'GetFileTime(hFile, &ftCreate, &ftAccess, &ftWr
return FALSE;

JavaScript:link37.Click()
http://www.winguides.com/registry/display.php/50/

// convert modification time to local time.
FileTimeToSystemTime(&ftWrite, &stUTC);
SystemTimeToTzSpecificLocalTime(NULL, &stUTC, &stlLc

// convert retrieved time to string

wsprintf(lpszString, "%02d/%02d/%d %02d:%02d",
stLocal.wDay, stLocal.wMonth, stLocal.wYear,
stLocal.wHour, stLocal.wMinute);

return TRUE;

e also:
FILETIME, GetFileSize

, SetFileTime,

GetFileType

JavaScript:link38.Click()
JavaScript:link39.Click()

eekConsolelnput

in | structures | win32 structures

The PeekConsoleInput function reads data from the specified console input
buffer without removing it from the buffer.

BOOL PeekConsoleInput(
HANDLE hConsoleInput,
PINPUT_RECORD lpBuffer,
DWORD nLength,
LPDWORD lpNumberOfEventsRead

),

arameters
hConsolelnput

Handle to the input buffer. The handle must have GENERIC_READ access.
IpBuffer

Pointer to an INPUT_RECORD buffer that receives the input buffer data.
nLength

Specifies the size, in records, of the buffer pointed to by the IpBuffer
parameter.

IpNumberOfEventsRead
Pointer to a variable that receives the number of input records read.

eturn value

If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,

call GetLastError

emarks

JavaScript:link40.Click()

If the number of records requested exceeds the number of records available in
the buffer, the number available is read. If no data is available, the function
returns immediately.

= Wi T/2 XP/2 ista/2008/
o wmdof%sls ur/lc(t)i(())(r)l/use/s ggﬁg Eﬁlco%% cZaracters or 8-bit characters from the

console's current code page. The console's code page defaults initially to
the system's OEM code page. To change the console's code page, use

the SetConsoleCP or

SetConsoleOutputCP functions,
or use the chcp ormode con cp select=commands.

e also:
INPUT RECORD, ReadConsolelnput, SetConsoleCP

SetConsoleOutputCP

JavaScript:link41.Click()
JavaScript:link42.Click()
JavaScript:link43.Click()
JavaScript:link44.Click()

WriteConsolelnput

eadConsolelnput

in | structures | win32 structures

The ReadConsoleInput function reads data from a console input buffer and
removes it from the buffer.

BOOL ReadConsoleInput(
HANDLE hConsoleInput,
PINPUT_RECORD lpBuffer,
DWORD nLength,
LPDWORD lpNumberOfEventsRead

),

arameters
hConsolelnput

Handle to the input buffer. The handle must have GENERIC_READ access.
IpBuffer

Pointer to an INPUT_RECORD buffer that receives the input buffer data.
nLength

Specifies the size, in input records, of the buffer pointed to by the lpBuffer
parameter.

IpNumberOfEventsRead
Pointer to a variable that receives the number of input records read.

eturn value

If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,

call GetLastError

emarks

JavaScript:link45.Click()

If the number of records requested in the nLength parameter exceeds the
number of records available in the buffer, the number available is read. The
function does not return until at least one input record has been read.

A process can specify a console input buffer handle in one of the wait functions
to determine when there is unread console input. When the input buffer is not
empty, the state of a console input buffer handle is signaled.

To determine the number of unread input records in a console's input buffer, use
the GetNumberOfConsoleInputEvents function. To read input records from a
console input buffer without affecting the number of unread records, use the
PeekConsolelnput function. To discard all unread records in a console's input

buffer, use the FlushConsolelnputBuffer
function.

= Wind T/2000/XP/Vista/2008/7
4w Qﬁlsls unction uses ellstﬁler n81code characters or 8-bit characters from the

console's current code page. The console's code page defaults initially to
the system's OEM code page. To change the console's code page, use

the SetConsoleCP or

SetConsoleOutputCP functions,
or use the chcp ormode con cp select=commands.

JavaScript:link46.Click()
JavaScript:link47.Click()
JavaScript:link48.Click()

e also:
INPUT RECORD, SetConsoleCP

SetConsoleOutputCP

b

WriteConsolelnput, PeekConsolelnput, FlushConsoleInputBuffer

GetNumberOfConsoleInputEvents

, ReadConsole

, ReadFile

JavaScript:link49.Click()
JavaScript:link50.Click()
JavaScript:link51.Click()
JavaScript:link52.Click()
JavaScript:link53.Click()
JavaScript:link54.Click()

etFileApisTOANSI

in | structures | win32 structures

The SetFileApisToANSI function causes the file I/O functions to use the ANSI
character set code page. This function is useful for 8-bit console input and output
operations.

VOID SetFileApisTOANSI(VOID);

arameters
This function has no parameters.

eturn value
This function has no return value.

emarks

The SetFileApisToANSI function complements the SetFileApisToOEM
function, which causes file I/O functions to use the OEM character set code

page.

The 8-bit console functions use the OEM code page by default. All other
functions use the ANSI code page by default. This means that strings returned by
the console functions may not be processed correctly by other functions, and
vice versa. For example, if the FindFirstFileA function returns a string that
contains certain extended ANSI characters, and the 8-bit console functions are
set to use the OEM code page, then the WriteConsoleA function does not
display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file
I/0O functions is currently using. Use the SetConsoleCP and
SetConsoleOutputCP functions to set the code page for the 8-bit console
functions.

To solve the problem of code page incompatibility, it is best to use Unicode for
console applications. Console applications that use Unicode are much more
versatile than those that use 8-bit console functions. Barring that solution, a
console application can call the SetFileApisToOEM to cause the set of file /0O
functions to use OEM character set strings rather than ANSI character set
strings. Use the SetFileApisToANSI to set those functions back to the ANSI
code page.

The SetFileApisToANSI and SetFileApisToOEM functions affect the
following set of Win32 file functions.

Function Description

_lopen open existing file

CopyFile copy file

CreateDirectory create directory

CreateFile create/open an object (file, pipe, etc.)
CreateProcess create process

JavaScript:link55.Click()
JavaScript:link56.Click()
JavaScript:link57.Click()
JavaScript:link58.Click()
JavaScript:link59.Click()

DeleteFile delete file

FindFirstFile start searching for a file object
FindNextFile continue searching
GetCurrentDirectory get the current directory
GetDiskFreeSpace get disk info

JavaScript:link60.Click()
JavaScript:link61.Click()
JavaScript:link62.Click()
JavaScript:link63.Click()
JavaScript:link64.Click()

GetDriveType get drive type

GetFileAttributes get file attributes

GetFullPathName get path to a file

GetModuleFileName get full name of the module

JavaScript:link65.Click()
JavaScript:link66.Click()
JavaScript:link67.Click()
JavaScript:link68.Click()

GetModuleHandle get handle of the module

GetSystemDirectory get path to the system directory

GetTempFileName get name for a temporary file

GetTempPath get path to the TEMP directory

JavaScript:link69.Click()
JavaScript:link70.Click()
JavaScript:link71.Click()
JavaScript:link72.Click()

GetVolumelnformation get file system information

GetWindowsDirectory get path to the Windows directory
LoadLibrary load library (DLL)

LoadLibraryEx load library (DLL)

JavaScript:link73.Click()
JavaScript:link74.Click()
JavaScript:link75.Click()
JavaScript:link76.Click()

MoveFile move/rename file or directory
MoveFileEx move/rename file or directory
OpenFile create/open/delete file
RemoveDirectory delete directory

JavaScript:link77.Click()
JavaScript:link78.Click()
JavaScript:link79.Click()
JavaScript:link80.Click()

SearchPath search for a file

SetCurrentDirectory set current directory

SetFileAttributes set file attributes

When dealing with command lines, a console application should obtain the
command line in Unicode form and then convert it to OEM form using the
relevant character-to-OEM functions. Note also that the array in the argv
parameter contains ANSI character set strings in this case.

e also:
SetFileApisToOOEM

JavaScript:link81.Click()
JavaScript:link82.Click()
JavaScript:link83.Click()

etFileApisTOOEM

in | structures | win32 structures

The SetFileApisToOEM function causes the file I/O functions to use the OEM
character set code page. This function is useful for 8-bit console input and output
operations.

VOID SetFileApisToOEM(VOID);

arameters
This function has no parameters.

eturn value
This function has no return value.

emarks

The SetFileApisToOOEM function complements the SetFileApisToANSI
function, which causes file I/O functions to use the ANSI character set code

page.

The 8-bit console functions use the OEM code page by default. All other
functions use the ANSI code page by default. This means that strings returned by
the console functions may not be processed correctly by other functions, and
vice versa. For example, if the FindFirstFileA function returns a string that
contains certain extended ANSI characters, and the 8-bit console functions are
set to use the OEM code page, then the WriteConsoleA function does not
display the string properly.

Use the AreFileApisANSI function to determine which code page the set of file
I/0O functions is currently using. Use the SetConsoleCP and
SetConsoleOutputCP functions to set the code page for the 8-bit console
functions.

To solve the problem of code page incompatibility, it is best to use Unicode for
console applications. Console applications that use Unicode are much more
versatile than those that use 8-bit console functions. Barring that solution, a
console application can call the SetFileApisToOEM to cause the set of file /0O
functions to use OEM character set strings rather than ANSI character set
strings. Use the SetFileApisToANSI to set those functions back to the ANSI
code page.

The SetFileApisToANSI and SetFileApisToOEM functions affect the
following set of Win32 file functions.

Function Description

_lopen open existing file

CopyFile copy file

CreateDirectory create directory

CreateFile create/open an object (file, pipe, etc.)
CreateProcess create process

JavaScript:link84.Click()
JavaScript:link85.Click()
JavaScript:link86.Click()
JavaScript:link87.Click()
JavaScript:link88.Click()

DeleteFile delete file

FindFirstFile start searching for a file object
FindNextFile continue searching
GetCurrentDirectory get the current directory
GetDiskFreeSpace get disk info

JavaScript:link89.Click()
JavaScript:link90.Click()
JavaScript:link91.Click()
JavaScript:link92.Click()
JavaScript:link93.Click()

GetDriveType get drive type

GetFileAttributes get file attributes

GetFullPathName get path to a file

GetModuleFileName get full name of the module

JavaScript:link94.Click()
JavaScript:link95.Click()
JavaScript:link96.Click()
JavaScript:link97.Click()

GetModuleHandle get handle of the module

GetSystemDirectory get path to the system directory

GetTempFileName get name for a temporary file

GetTempPath get path to the TEMP directory

JavaScript:link98.Click()
JavaScript:link99.Click()
JavaScript:link100.Click()
JavaScript:link101.Click()

GetVolumelnformation get file system information

GetWindowsDirectory get path to the Windows directory
LoadLibrary load library (DLL)

LoadLibraryEx load library (DLL)

JavaScript:link102.Click()
JavaScript:link103.Click()
JavaScript:link104.Click()
JavaScript:link105.Click()

MoveFile move/rename file or directory
MoveFileEx move/rename file or directory
OpenFile create/open/delete file
RemoveDirectory delete directory

JavaScript:link106.Click()
JavaScript:link107.Click()
JavaScript:link108.Click()
JavaScript:link109.Click()

SearchPath search for a file

SetCurrentDirectory set current directory

SetFileAttributes set file attributes

When dealing with command lines, a console application should obtain the
command line in Unicode form and then convert it to OEM form using the
relevant character-to-OEM functions. Note also that the array in the argv
parameter contains ANSI character set strings in this case.

e also:
SetFileApisToANSI

JavaScript:link110.Click()
JavaScript:link111.Click()
JavaScript:link112.Click()

etFileTime

in | structures | win32 structures

The SetFileTime function sets the date and time that a file was created, last
accessed, or last modified.

BOOL SetFileTime(
HANDLE hFile,
CONST FILETIME *1pCreationTime,
CONST FILETIME *1lplLastAccessTime,
CONST FILETIME *lpLastWriteTime

),

arameters

hFile
Handle to the file for which to set the dates and times. The file handle must
have been created with GENERIC_WRITE access to the file.
IpCreationTime

Pointer to a FILETIME structure that contains the date and time the file was
created. This parameter can be NULL if the application does not need to set
this information.

IpLastAccessTime

Pointer to a FILETIME structure that contains the date and time the file was
last accessed. The last access time includes the last time the file was written
to, read from, or (in the case of executable files) run. This parameter can be
NULL if the application does not need to set this information.

IpLastWriteTime

Pointer to a FILETIME structure that contains the date and time the file was
last written to. This parameter can be NULL if the application does not want
to set this information.

eturn value

If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,

call GetLastError

emarks

The FAT and NTFS file systems support the file creation, last access, and last
write time values.

The file time precision can vary depending on operating system, file system,
network configuration. See remarks for the FILETIME for details.

xample

The following example sets the last-write time for a file to the current system
time.

BOOL SetFileToCurrentTime(HANDLE hFile)
{

FILETIME ft;

SYSTEMTIME st,;

GetSystemTime(&st); // gets current
SystemTimeToFileTime(&st, &ft); // converts to
return SetFileTime(hFile, // sets last-wr
(LPFILETIME) NULL, (LPFILETIME) NULL, &
}
e also:

FILETIME, GetFileSize

, GetFileTime,

JavaScript:link113.Click()
JavaScript:link114.Click()

GetFileType

JavaScript:link115.Click()

IriteConsolelnput

in | structures | win32 structures

The WriteConsoleInput function writes data directly to the console input
buffer.

BOOL WriteConsoleInput(
HANDLE hConsoleInput,
CONST INPUT_RECORD *1pBuffer,
DWORD nLength,
LPDWORD lpNumberOfEventsWritten
)i

arameters

hConsolelnput

Handle to the console input buffer. The handle must have GENERIC_WRITE
access.

IpBuffer

Pointer to an INPUT_RECORD buffer containing data to be written to the
input buffer.

nLength
Specifies the number of input records to be written.

IpNumberOfEventsWritten
Pointer to a variable that receives the number of input records actually written.

eturn value

If the function succeeds, the return value is nonzero.
If the function fails, the return value is zero. To get extended error information,

call GetLastError

emarks

JavaScript:link127.Click()

WriteConsoleInput places input records into the input buffer behind any
pending events in the buffer. The input buffer grows dynamically, if necessary, to
hold as many events as are written.

= Wind T/2000/XP/2003/Vista/2008/
4w Qﬁlsls unction uses eitﬁer B’rﬁ/cod% cZaracters or 8-bit characters from the

console's current code page. The console's code page defaults initially to
the system's OEM code page. To change the console's code page, use

the SetConsoleCP or

SetConsoleOutputCP functions,
or use the chcp ormode con cp select=commands.

e also:
INPUT RECORD, ReadConsolelnput, SetConsoleCP

SetConsoleOutputCP

JavaScript:link128.Click()
JavaScript:link129.Click()
JavaScript:link130.Click()
JavaScript:link131.Click()

PeekConsolelnput

/Iin32 definitions

in

Constant

Description

Virtualkeycodes

virtual key codes

e also:
Exported functions Service functions
Addons

ialog functions
in | Dialog API

The following functons are used in the dialog API.

Function Description
Dialog Shows "uncontrollable" dialog
DialogEx Shows extended dialog
SendDIgMessage Sends a message to the dialog callback function
DefDlgProc Calls the default dialog callback function
DlgProc Dialog callback function template

e also:

Structures, Dialog items, Dialog item flags, Events and Messages,
Exported functions, Service functions, Structures, Archive
support, Addons

ARWINDOWPROC

in | Dialog API | macros and types

The FARWINDOWPROC type describes the dialog window callback function.

typedef LONG_PTR (WINAPI *FARWINDOWPROC) (
HANDLE hD1g,
int Msg,
int Paraml,
LONG_PTR Param2

),

e also:
DialogEx

1_BUTTON

in | Dialog API | Dialog items
The DI_BUTTON dialog item describes a Push Button control.

struct FarDialogItem

{
int Type = DI_BUTTON
int X1 =X
int Y1 =Y
int X2 = 0 (not used in Dialog API 1.0)
int Y2 = Y (equals to Y1)
int Focus = Focus
int Selected = Selected
DWORD Flags = Flags
int DefaultButton = DefaultButton
char Data[512] = Button caption
i

 Attentign!

enu'gms is an exemplary structure; read full description here.
OCuUs
Keyboard focus flag.

elected
If the button had focus when the user pressed <Enter> this field is set to 1.

lags
There are several flags applicable to the DI_BUTTON item:
Flag Description
DIF BTNNOCLOSE Disables dialog closing after pressing the button.

DIF CENTERGROUP

Sequential items having this flag set and equal vertical
coordinates will be horizontally centered in the dialog.
Their X1 and X2 coordinates are ignored. Useful for
centering button groups.

DIF NOBRACKETS Display button titles without brackets.

DIF_SETCOLOR

The low byte of Flags will be used as the item color.

DIF DISABLE

Disables user access to the control.

DIF NOFOCUS

The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF SHOWAMPERSAND

Show ampersand symbol in caption instead of using it
for defining hotkeys.

vent

Event

Description

DN DRAWDLGITEM

This event is sent to the dialog callback function just before the button con
drawn.

DN CTLCOLORDLGITEM

The plugin should pass the color attributes of the button when this event ai
Param?2 argument (foreground-+background):

Loword LoByte - color of the caption
(COL WARNDIALOGBUTTON or
COL DTIALOGBUTTON)
Loword HiByte - color of highlighted text
(COL WARNDIALOGHIGHLIGHTBUTTON or
COL DIALOGHIGHLIGHTBUTTON)

Param2, when the button has focus:

Loword LoByte - color of the caption
(COL WARNDIALOGSELECTEDBUTTON or
COL DIALOGSELECTEDBUTTON)
Loword HiByte - color of highlighted text
(COL WARNDIALOGHIGHLIGHTSELECTEDBL
COL DIALOGHIGHLIGHTSELECTEDBUTTON)

Hiword LoByte - 0
HiwWord HiByte - 0

If the special DIF_SETCOLOR flag is used, then the button's caption (Lo\
LoByte) will be drawn according to the above settings.

DN KEY

This event comes after the user has pressed a key in the dialog.

DN HOTKEY

A hotkey was pressed (Alt-<letter>).

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
dialog with a mouse button.

DN BTNCLICK

The button was pressed.

DN KILLFOCUS

This event is sent before the button loses the focus, if the flag DIF. NOFO!
was not used.

DN _GOTFOCUS This event is sent after the button has received the keyboard focus, if the fl
DIF NOFOCUS was not used.

emarks

The FarDialogItem structure is described assuming the use of named unions.
For more information, see _FAR_NO NAMELESS UNIONS.

e also:
DI_CHECKBOX, DI RADIOBUTTON, FarDialogltem

1_CHECKBOX

in | Dialog API | Dialog items

The DI_CHECKBOX dialog item describes a Check Box control. It is also
known as a "button with independent fixation" or an "on/off switch". The switch
is considered to be ON when the dialog item has non-zero Selected field.

struct FarDialogItem

{
int Type
int X1
int Y1
int X2
int Y2
int Focus
int Selected
DWORD Flags
int DefaultButton
char Data[512]

+s

= DI_CHECKBOX

=X

Y

0 (not used in Dialog API 1.0)
Y (equals to Y1)

Focus

= Selected

Flags

DefaultButton

= Checkbox caption

 Attentign! . -
t]lghl}s is an exemplary structure; read full description here.

OCuUs
Keyboard focus flag.

elected

This field reflects current state of the checkbox control; is it switched on or off.

lags

There are several flags applicable to the DI_CHECKBOX item:

Flag
DIF CENTERGROUP

DIF SETCOLOR

Description

Sequential items having this flag set and equal vertical
coordinates will be horizontally centered in the dialog.
Their X1 and X2 coordinates are ignored. Useful for
centering checkbox groups.

The low byte of Flags will be used as the item color.

DIF DISABLE

Disables user access to the control.

DIF NOFOCUS

The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF 3STATE

The checkbox will have 3 possible states: "off", "on",
"undefined".

DIF SHOWAMPERSAND

Show ampersand symbol in caption instead of using it
for defining hotkeys.

vents

Event

Description

DN DRAWDLGITEM

This event is sent to the dialog callback function just before the control is «

DN CTLCOLORDLGITEM

The plugin should pass the color attributes of the checbox when this event
comes. Param?2 argument (foreground-+background):

Loword LoByte - color of the caption
(COL WARNDIALOGBUTTON or
COL DTIALOGBUTTON)
Loword HiByte - color of highlighted text
(COL WARNDIALOGHIGHLIGHTBUTTON or
COL DIALOGHIGHLIGHTBUTTON)

Param2, when the checkbox has focus:

Loword LoByte - color of the caption
(COL WARNDIALOGSELECTEDBUTTON or
COL DIALOGSELECTEDBUTTON)
Loword HiByte - color of highlighted text
(COL WARNDIALOGHIGHLIGHTSELECTEDBL
COL DIALOGHIGHLIGHTSELECTEDBUTTON)

HiwWord LoByte - 0
Hiword HiByte - 0

If the special flag DIF SETCOLOR is used, the checkbox's caption (LoW
LoByte) will be drawn according to the above settings.

DN HOTKEY

A hotkey was pressed (Alt-<letter>).

DN BTNCLICK

The state of the checkbox was changed.

DN KEY

This event comes after the user has pressed a key in the dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
dialog with a mouse button.

DN KILLFOCUS

This event is sent before the button loses the focus, if the flag DIF. NOFO!
was not used.

DN _GOTFOCUS This event is sent after the button has received the keyboard focus, if the fl
DIF NOFOCUS was not used.

emarks

It is strongly recommended to set correct values for X2 and Y2 fields, though
they aren't used in Dialog API 1.0.

e also:
DI_RADIOBUTTON, DI BUTTON, FarDialogltem

1_COMBOBOX

in | Dialog API | Dialog items

The DI_COMBOBOX dialog item describes an edit box with a drop-down list

(Combo Box).

struct FarDialogItem
L

int Type

int X1

int Y1

int X2

int Y2

int Focus

union {

FarList *ListItems
int ListPos

i

DWORD Flags

int DefaultButton

union {
char Data[512];
struct {

DWORD PtrFlags;

int PtrLength;

char *PtrData;

char PtrTail[1l];
} Ptr;
3
i

DI_COMBOBOX

X1

Y

X2

Y (equals to Y1)
Focus

ListItems [passed to]

ListPos [returned]
Flags
DefaultButton

the text for editing (without

advanced flags (not used in D
size of the user buffer point
the pointer to the user buffe
the remainder part of Data

the text for editing (with DI

 Attentign! . -
t]lghl}s is an exemplary structure; read full description here.

oOCuUs
Keyboard focus flag.

istitems

This is the pointer to the FarList structure containing fields for the combo box

initialization. The "edit" part of the combo box gets the value of the first item in
the list with the LIF_SELECTED flag set, if any.

If this field is set to NULL, then the list box will not be shown.

istPos

Current position in the Listltems.Items list. The index of the item selected by the
user is stored in this field after the dialog has been closed.

lags

There are several flags applicable to the DI_COMBOBOX control (for the flags
of the list box, see FarListltem):

Flag Description

DIF DROPDOWNLIST Shows non-editable drop-down list instead of a
common combo box.

DIF _EDITEXPAND Expand environment variables.

DIF LISTAUTOHIGHLIGHT Assigns hotkeys for the list elements automatically,
starting with the first item.

DIF LISTNOAMPERSAND Shows a hotkey instead of showing the ampersand
itself.

DIF LISTWRAPMODE If this flag is set, trying to move the cursor up from the

first element or down from the last element will move
the cursor to the bottom or the top of the list,

respectively.
DIF DISABLE Disables user access to the combo box.
DIF READONLY Sets read-only state for the edit control.
DIF SELECTONENTRY Makes the edit control always select the text when it

receives focus.

DIF NOFOCUS The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF VAREDIT If this flag is set, the dialog manager will use only the
Ptr.* members instead of Data in the FarDialogltem
structure. The use of this flag allows to exceed the
512-byte limit for the edit control.

vents

Event Description

DN DRAWDLGITEM This event is sent to the dialog callback function before the combo box is

drawn.

DN CTLCOLORDLGITEM

Plugin should pass the color attributes of the edit item of the combo box w
this event comes. Param2 parameter:

Loword LoByte color of the text in the edit cont
(COL WARNDIALOGEDIT or

COL DIALOGEDIT)

color of selected text

(COL DIALOGEDITSELECTED)

color of unchanged text

(COL DIALOGEDITUNCHANGED)

color of the drop-down arrow

(COL DIALOGTEXT)

Loword HiByte

HiwWord LoByte

HiwWord HiByte

DN CTLCOLORDLGLIST

When this event comes, the plugin may change the color attributes of the 1
item of the combo box to be drawn.

DN KEY

This event comes after the user has pressed a key in the dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
the dialog with the mouse button.

DN EDITCHANGE

The text in the edit field has been changed.

DN KILLFOCUS

This event is sent before the combo box loses the focus, if the flag
DIF NOFOCUS was not used.

DN _GOTFOCUS

This event is sent after the button has received the keyboard focus, if the fl
DIF NOFOCUS was not used.

emarks

e also:
DI LISTBOX, FarDialogltem

1_DOUBLEBOX

in | Dialog API | Dialog items

The DI_DOUBLEBOX dialog item describes a double line frame.

struct FarDialogItem

{

int Type

int X1

int Y1

int X2

int Y2

int Focus
int Selected
DWORD Flags

int DefaultButton

char Data[512]
i

= DI_DOUBLEBOX
X1

Y1

X2

Y2

0]

=0

Flags

0]

= Caption

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

lags

There are several flags applicable to the DI_DOUBLEBOX control:

Flag
DIF SETCOLOR

DIF LEFTTEXT

DIF SHOWAMPERSAND

vents

Event

DN DRAWDLGITEM

DN CTLCOLORDLGITEM

Description
The low byte of Flags will be used as the frame color.
The caption of the frame will be left aligned.

Show ampersand symbol in caption instead of using it
for defining hotkeys.

Description

This event is sent to the dialog callback function just before the double lin
drawn.

The plugin should pass the color attributes of the frame item when this eve
comes. Param2 parameter:

LowWord LoByte

LowWord HiByte

HiWord LoByte

HiWord HiByte

color of text in the caption

(COL WARNDIALOGBOXTITLE or

COL DIALOGBOXTITLE)

color of highlighted text in the c
(COL WARNDIALOGHIGHLIGHTBOXTITLE ¢
COL DIALOGHIGHLIGHTBOXTITLE)
color of the frame lines

(COL WARNDIALOGBOX or COL DIALOGB(
© (not used)

DN HOTKEY

Hotkey was pressed (Alt-<letter>).

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
dialog with the mouse button.

emarks

1. If this item is the first in the dialog items array, its caption is copied into the
FAR console window title.
2. When X1==X2 or Y1==Y2, a line (vertical or horizontal) will be drawn

instead of the frame.

e also:
DI SINGLEBOX, FarDialogltem

1_EDIT

in | Dialog API | Dialog items

The DI_EDIT dialog item describes an edit box.

struct FarDialogItem
L,
int Type
int X1
int Y1
int X2
int Y2
int Focus
char *History
DWORD Flags
int DefaultButton
union {
char Data[512];
struct {
DWORD PtrFlags;
int PtrLength;
char *PtrData;
char PtrTail[1l];
} Ptr;
3
3

DI_EDIT

X1

Y

X2

Y (equals to Y1)
Focus

History

Flags
DefaultButton

the text for editing (without

advanced flags (not used in D
size of the user buffer point
the pointer to the user buffe
the remainder part of Data

the text for editing (with DI

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

OCuUs
Keyboard focus flag.

istory

Contains the address of a null-terminated text string that will be used as the
internal history name when an edit control has the DIF_HISTORY flag. If
several edit fields have the same history name, they will share the same history

list.

lags

There are several flags applicable to the DI_EDIT control:

Flag Description

DIF EDITOR Sequential edit controls with this flag are grouped into
a simple editor with the ability to insert and delete
lines.

DIF _HISTORY Adds a history list to an edit control. If this flag is set,
the History field must contain the address of a text
string that will be used as the internal name of the
history.

DIF MANUALADDHISTORY Specifies that items will be added to the history list of
an edit box only manually, not automatically. Must be
used together with DIF_HISTORY.

DIF USELASTHISTORY The initial value will be set to the last history element.

DIF _EDITEXPAND Expand environment variables.

DIF DISABLE Disables user access to the edit control.

DIF READONLY Sets read-only state for the edit control.

DIF SELECTONENTRY Makes the edit control always select the text when it
receives the focus.

DIF NOFOCUS The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF VAREDIT If this flag is set, the dialog manager will use only the
Ptr.* members instead of Data in the FarDialogltem
structure. The use of this flag allows to exceed the
512-byte limit for the edit control.

vents
Event Description
DN DRAWDLGITEM This event is sent to the dialog callback function just before the edit box is

drawn.

DN CTLCOLORDLGITEM | The plugin should pass the color attributes of the edit control when this ev:

comes. Param?2 parameter:

Loword LoByte - color of the text
(COL WARNDIALOGEDIT or
COL DIALOGEDIT)

Loword HiByte - color of selected text
(COL DIALOGEDITSELECTED)

HiWord LoByte - color of unchanged text

(COL DIALOGEDITUNCHANGED)
HiWord HiByte - color of the History drop-down arr
(COL DIALOGTEXT)

DN KEY

This event comes after the user has pressed a key in the dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
the dialog with the mouse button.

DN EDITCHANGE

The text in the edit field has been changed.

DN KILLFOCUS

This event is sent before the combo box loses the focus, if the flag
DIF NOFOCUS was not used.

DN _GOTFOCUS

This event is sent after the button has received the keyboard focus, if the fl
DIF NOFOCUS was not used.

e also:

DI PSWEDIT, DI FIXEDIT, FarDialogltem

1_FIXEDIT

in | Dialog API | Dialog items

The DI_FIXEDIT dialog item describes a fixed size edit box. It is the same as
DI_EDIT, except the text in the DI_FIXEDIT cannot be scrolled.

struct FarDialogItem

{
int Type = DI_FIXEDIT
int X1 = X1
int Y1 =Y
int X2 = X2
int Y2 = Y (equals to Y1)
int Focus = Focus
union{
char *History = History
char *Mask; = Mask
Iy
DWORD Flags = Flags
int DefaultButton = DefaultButton

char Data[512]
i

the text for editing

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

oOCuUs
Keyboard focus flag.

istory

Contains the address of a null-terminated text string that will be used as the
internal history name when an edit control has the DIF_HISTORY flag. If
several edit fields have the same history name, they will share the same history
list.

ask

Contains the address of a null-terminated string that serves as a mask for user
input when the DIF_MASKEDIT flag is set. NULL value means the edit field
has no input mask.

The DIF_HISTORY flag has higher priority than the
DIF_MASKEDIT flag.

lags
There are several flags applicable to DI_FIXEDIT:
Flag Description
DIF _HISTORY Adds a history list to an edit control. If this flag is set,

the History field must contain the address of a text
string that will be used as the internal name of the
history.

DIF MANUALADDHISTORY Specifies that items will be added to the history list of
an edit box only manually and not automatically. Must
be used together with DIF_HISTORY.

DIF USELASTHISTORY The initial value will be set to the last history element.

DIF MASKEDIT Uses the null-terminated string in the Mask field as a
filter for user input.

DIF DISABLE Disables user access to the edit control.

DIF READONLY Sets read-only state for the edit control.

DIF SELECTONENTRY Makes the edit control always select the text when it

receives the focus.

DIF NOFOCUS The dialog item cannot receive keyboard focus, but
can handle other user events.

vents
Event Description
DN DRAWDLGITEM This event is sent to the dialog callback function just before the edit box is

drawn.

DN _CTLCOLORDLGITEM | Plugin should pass the color attributes of the edit control when this event
comes. Param?2 parameter:

Loword LoByte - color of the text

(COL WARNDIALOGEDIT or

COL DIALOGEDIT)

color of selected text

(COL DIALOGEDITSELECTED)

color of unchanged text

(COL DIALOGEDITUNCHANGED)

color of the History drop-down arr
(COL DIALOGTEXT)

Loword HiByte

HiwWord LoByte

HiwWord HiByte

DN KEY

This event comes after the user has pressed a key in the dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog items or outsi
the dialog with the mouse button.

DN EDITCHANGE

The text in the edit field has been changed.

DN KILLFOCUS

This event is sent before the combo box loses the focus, if the flag
DIF NOFOCUS was not used.

DN GOTFOCUS

This event is sent after the button has received the keyboard focus, if the fl
DIF NOFOCUS was not used.

emarks

The text cursor in the DI_FIXEDIT edit field will initially be in overwrite

mode.

e also:

DI EDIT, DI PSWEDIT, FarDialogltem

I_LISTBOX

in | Dialog API | Dialog items
The DI_LISTBOX dialog item describes a list box.

struct FarDialogItem

{

int Type = DI_LISTBOX

int X1 = X1

int Y1 = Y1l

int X2 = X2

int Y2 = Y2

int Focus = Focus

union {
FarList *ListItems= ListItems [passed to]
int ListPos = ListPos [returned]

i

DWORD Flags = Flags

int DefaultButton = DefaultButton

char Data[512]; = Caption

+s

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

istitems

This is a pointer to the FarList structure containing fields for the list box
initialization.
istPos

Current position in the Listltems.Items list. The index of the item selected by the
user will be stored in this filed when the dialog is closed.

lags
There are several flags applicable to the DI_LISTBOX (for the flags of the list
box, see FarListltem):

Flag Description
DIF LISTAUTOHIGHLIGHT Assigns hotkeys for the list elements automatically,

starting with the first item.

DIF LISTNOAMPERSAND

Shows a hotkey when a letter is preceded with an
ampersand instead of showing the ampersand itself.

DIF LISTWRAPMODE

If this flag is set, trying to move the cursor up from the
first element or down from the last element will move
the cursor to the bottom or the top of the list,
respectively.

DIF DISABLE

Disables user access to the list box.

DIF NOFOCUS

The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF LISTNOBOX

Disables the drawing of a frame around the list. The
Data field is ignored in this case.

vents

Event

Description

DN DRAWDLGITEM

This event is sent to the dialog callback function just
before the list box is drawn.

DN CTLCOLORDLGLIST

Plugin should pass the color attributes of the list box
when this event comes.

DN LISTCHANGE

Position in the list was changed.

DN LISTHOTKEY

This event comes after the user has pressed a hotkey in
the list.

e also:
DI COMBOBOX, FarDialogltem

1_PSWEDIT

in | Dialog API | Dialog items

DI_PSWEDIT dialog item describes a password edit control. It is the same as
DI_EDIT, except the text in the DI_PSWEDIT is hidden with *' symbols.

struct FarDialogItem

{
int Type = DI_PSWEDIT
int X1 = X1
int Y1 =Y
int X2 = X2
int Y2 = Y (equals to Y1)
int Focus = Focus
int Selected =0
DWORD Flags = Flags
int DefaultButton = DefaultButton
char Data[512] = the text for editing
Iy

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

OCUS
Keyboard focus flag.
lags
There are several flags applicable to the DI_PSWEDIT:
Flag Description
DIF DISABLE Disables user access to the password control.
DIF READONLY Sets read-only state for the password control.
DIF SELECTONENTRY Makes the password control always select the text

when it receives focus.

DIF NOFOCUS The dialog item cannot receive keyboard focus, but
can handle other user events.

vents

Event

Description

DN DRAWDLGITEM

This event is sent to the dialog callback function just before
the password box is drawn.

DN CTLCOLORDLGITEM

Plugin should pass the color attributes of the password
control when this event comes. Param2 parameter:

color of the text

(COL WARNDIALOGEDIT or
COL DIALOGEDIT)

color of selected text
(COL DIALOGEDITSELECTED)
color of unchanged text
(COL DIALOGEDITUNCHANGED)
® (not used)

Loword LoByte

Loword HiByte

HiwWord LoByte

HiwWord HiByte

DN KEY

This event comes after the user has pressed a key in the
dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog
items or outside the dialog with the mouse button.

DN EDITCHANGE

The text in the password field was changed.

DN KILLFOCUS

This event is sent before the password control loses focus, if
the flag DIF NOFOCUS was not used.

DN GOTFOCUS

This event is sent after the password control receives
keyboard focus, if the flag DIF. NOFOCUS was not used.

emarks

The DI_PSWEDIT control doesn't allow copying password text to the

clipboard.

e also:

DI EDIT, DI FIXEDIT, FarDialogltem

1_RADIOBUTTON

in | Dialog API | Dialog items

The DI_RADIOBUTTON dialog item describes a Radio Button control. It is
also known as the "button with dependent fixation". It acts like a Check Box,
except that if the first radio button item in a group of several consequent radio
button items have the DIF_GROUP flag set, they become mutually exclusive —
if one of them has been switched on all others will be switched off.

struct FarDialogItem

{
int Type = DI_RADIOBUTTON
int X1 =X
int Y1 =Y
int X2 = 0 (not used in Dialog API 1.0)
int Y2 = Y (equals to Y1)
int Focus = Focus
int Selected = Selected
DWORD Flags = Flags
int DefaultButton = DefaultButton

char Data[512]
i

Radio button caption

 Attentign! . -
t]lghl}s is an exemplary structure; read full description here.

oOCuUs
Keyboard focus flag.

elected

The field reflects current state of the radio button control; is it switched on or
off.

lags

There are several flags applicable to the DI_RADIOBUTTON control:
Flag Description
DIF SETCOLOR The low byte of Flags will be used as the item's color.

DIF_GROUP This flag should be set for the first radio button item in

a group.

DIF MOVESELECT

Change selection in a radio button group when focus is
moved. Radio buttons with this flag set are also drawn
without parentheses around the selection mark
(example: FAR color selection dialog).

DIF CENTERGROUP

Sequential items with this flag set and equal vertical
coordinates will be horizontally centered in the dialog.
Their X1 and X2 coordinates are ignored.

DIF DISABLE

Disables user access to the control.

DIF NOFOCUS

The dialog item cannot receive keyboard focus, but
can handle other user events.

DIF SHOWAMPERSAND

Show ampersand symbol in caption instead of using it
for defining hotkeys.

vents

Event

Description

DN DRAWDLGITEM

This event is sent to the dialog callback function before the
control is drawn.

DN CTLCOLORDLGITEM

Plugin should pass the color attributes of the control when this
event comes. Param?2 parameter (foreground+background):

Loword LoByte - color of the caption

(COL WARNDIALOGBUTTON or

COL DIALOGTEXT)
Loword HiByte - color of highlighted text
(COL WARNDIALOGHIGHLIGHTTEXT
COL DTIALOGHIGHLIGHTTEXT)
0
0

HiwWord LoByte
HiwWord HiByte

If a special attribute is used (DIF_SETCOLOR flag), the caption
(LoWord LoByte) will be drawn according to the parameters.

or

DN HOTKEY

Hotkey was pressed (Alt-<letter>).

DN BTNCLICK

State of the radiobutton was changed.

DN KEY

This event comes after the user has pressed a key in the dialog.

DN MOUSECLICK

This event comes after the user has clicked one of the dialog
items or outside the dialog with the mouse button.

DN KILLFOCUS

This event is sent just before the button loses focus, if the flag
DIF NOFOCUS was not used.

DN GOTFOCUS

This event is sent after the button has received keyboard focus, if
the flag DIF NOFOCUS was not used.

emarks

It is strongly recommended to set correct values for X2 and Y2 fields, although
they aren't used in Dialog API 1.0.

e also:
DI_CHECKBOX, DI BUTTON, FarDialogltem

1_SINGLEBOX

in | Dialog API | Dialog items
The DI_SINGLEBOX dialog item describes a single line frame.

struct FarDialogItem

{
int Type = DI_SINGLEBOX
int X1 = X1
int Y1 = Y1l
int X2 = X2
int Y2 = Y2
int Focus =0
int Selected =0
DWORD Flags = Flags
int DefaultButton = 0
char Data[512] = Caption
Iy

 Attentign! . .
t]lghl}s is an exemplary structure; read full description here.

lags

There are several flags applicable to the DI_SINGLEBOX control:
Flag Description
DIF SETCOLOR The low byte of Flags will be used as the frame color.
DIF LEFTTEXT The caption of the frame will be left aligned.
DIF SHOWAMPERSAND Show ampersand symbol in caption instead of using it

for defining hotkeys.

vents
Event Description
DN DRAWDLGITEM This event is sent to the dialog callback function before the double line bo:

drawn.

DN CTLCOLORDLGITEM | Plugin should pass the color attributes of the frame when this event comes
parameter:

Loword LoByte - color of text in the caption

(COL WARNDIALOGBOXTITLE or
COL DTIALOGBOXTITLE)
Loword HiByte - color of highlighted text in the ¢
(COL WARNDIALOGHIGHLIGHTBOXTITLE ¢
COL DIALOGHIGHLIGHTBOXTITLE)
HiWord LoByte - color of the frame lines
(COL WARNDIALOGBOX or COL DIALOGBC
HiwWord HiByte - 0 (not used)

DN HOTKEY Hotkey was pressed (Alt-<letter>).

DN MOUSECLICK This event comes after the user has clicked one of the dialog items or outsi
dialog with the mouse button.

emarks

1. If this item is the first in the dialog items array, its caption is copied into the

FAR console window title.
2. When X1==X2 or Y1==Y2, a line (vertical or horizontal) will be drawn

instead of a frame.

e also:
DI DOUBLEBOX, FarDialogltem

I_TEXT

in | Dialog API | Dialog items

The DI_TEXT dialog item describes a static text label.

struct FarDialogItem

{
int Type = DI_TEXT
int X1 = X1
int Y1 =Y
int X2 = X2
int Y2 =Y (not used in Dialog API 1.0, n
int Focus =0
int Selected =0
DWORD Flags = Flags
int DefaultButton = 0
char Data[512] = text label

+s

 Attentign! . -
t]lQhI}s is an exemplary structure; read full description here.

lags

There are several flags applicable to the DI_TEXT control:
Flag Description
DIF SETCOLOR The low byte of Flags will be used as the item's color.
DIF BOXCOLOR The text item will be displayed using frame color

(COL_DIALOGBOX or COL. WARNDIALOGBOX)

DIF CENTERGROUP Sequential strings with this flag set and equal vertical
coordinates will be horizontally centered in the dialog.
Their X1 and X2 coordinates are ignored.

DIF SEPARATOR Draws a single-line separator. You may write any text
on the separator line, just use Data and the coordinate
fields.

DIF SEPARATOR? Draws a double-line separator. You may write any text
on the separator line, just use Data and the coordinate
fields.

DIF SHOWAMPERSAND Show ampersand symbol in caption instead of using it
for defining hotkeys.

DIF CENTERTEXT Centers the text between the X1 and X2 coordinates.

vents
Event Description
DN DRAWDLGITEM This event is sent to the dialog callback function just before the

text item is drawn.

DN CTLCOLORDLGITEM | Plugin should pass the color attributes of the text item when this
event comes. Param?2 parameter (foreground+background):

color of the text

(COL WARNDIALOGTEXT or

COL DIALOGTEXT).

If DIF BOXCOLOR flag is set:
COL WARNDTALOGBOX or

COL DIALOGBOX

color of highlighted text
(COL WARNDIALOGHIGHLIGHTTEXT lor
COL DIALOGHIGHLIGHTTEXT)
0 (not used)

© (not used)

LowWord LoByte

LowWord HiByte

HiWord LoByte
HiWord HiByte

If a special attribute is used (DIF_SETCOLOR flag), the text
(LoWord LoByte) will be drawn according to the parameters.

DN MOUSECLICK This event comes after the user has clicked one of the dialog
items or outside the dialog with the mouse button.
DN HOTKEY Hotkey was pressed (Alt-<letter>).
emarks

1. It is recommended to set the Y2 coordinate correctly, although it's not used
in Dialog API 1.0. Just set it equal to the Y1 coordinate.

2. If the DIF_CENTERTEXT flag is set, the X2 field must have adequate
value for the correct text centering.

3. If the DIF_CENTERTEXT flag is not set, FAR will calculate X2 and Y2
coordinates automatically.

4. If this text item is the first in the dialog items array, the text string is copied
into the FAR console window title.

5. If the text of the DI_TEXT item has a hotkey and
DIF_SHOWAMPERSAND flag isn't set, then pressing Alt-Letter causes
the keyboard focus to move to the next available dialog item.

e also:
DI VTEXT, FarDialogltem

1_USERCONTROL

in | Dialog API | Dialog items

The DI_USERCONTROL dialog item describes an user-defined control
controlled completely by the plugin: initialize, draw etc.

struct FarDialogItem

{
int Type = DI_USERCONTROL
int X1 = X1
int Y1 = Y1l
int X2 = X2
int Y2 = Y2
int Focus = User Defined
CHAR_INFO *VBuf = Virtual Draw Buffer
DWORD Flags = Flags
int DefaultButton = 0

char Data[512] User Defined

+s

 Attentign! . -
t]lQhI}s is an exemplary structure; read full description here.

irtual Draw Buffer

VBuf parameter points to an array of CHAR INFO structures that contain
characters and their attributes to be drawn in the dialog.

If VBuf is NULL, the plugin itself must draw the control using the Text service
function when a DN_ DRAWDLGITEM event comes.

If VBuf is not NULL, the plugin must fill the VBuf array when it receives the
DN_DRAWDLGITEM event, and the dialog manager will then copy the
contents of the buffer to the screen.

This is the typical scenario for using the DI_USERCONTROL (see the source
code of Reversi plugin):

// allocate memory for the virtual buffer before call
#define DIM(Item) (((Item).X2-(Item).X1+1)*((Item).Yz
CHAR_INFO *VBuf=new CHAR_INFO[DIM(DialogItems[11])];
DialogItems[11].VBuf=VBuf;

http://plugring.farmanager.com/downld/files/reversi.rar

// 1in the dialog callback function
struct FarDialogItem DialogItem;

case DN_DRAWDLGITEM:
if(Paraml == 11)

{

char Face[4]=" ",
SMALL_RECT Rect;
BYTE AddColor=0x00;

// get coordinates of the dialog and description
Info.SendDlgMessage(hDlg, DM_GETDLGRECT, O, (LONG_PT
Info.SendDlgMessage(hDlg, DM_GETDLGITEM, 11, (LONG_F

// drawing the game field
for(Y=0; Y < 8; ++Y)
{

for(X=0; X < 8; ++X)

{

// prepare one rectangle

// 1f the cell is not used...
if (GAME[O].Field[Y*8+X]==0)
Face[1]="' ';
// for the white player
else if (GAME[O].Field[Y*8+X]==GAME[0].P11)
{
Face[l]=FaceWhite;
AddColor=0x00;
}
// for the black player
else if (GAME[0].Field[Y*8+X]==GAME[0].P12)
{
Face[1l]=FaceBlack;
AddColor=0x0F;

}

}
}
}

// 1if the memory couldn't be allocated,

// draw with the Text function

if(!DialogItem.VBuf)

{

Info.Text(Rect.Left+DialogItem.X1+X*3,
Rect.Top+DialogItem.Y1+Y,

ColorsPanel[Y&1][X&1l]|AddColor,
Face);

}

else // if the memory was allocated, use virt

{
CHAR_INFO *VBuf=&DialogItem.VBuUf[Y*8*3+X*3]

VBUf[0].Char.AsciiChar=Face[0];
VBuf[1].Char.AsciiChar=Face[1];
VBuf[2].Char.AsciiChar=Face[2];

VBUf[0].Attributes=
VBuUf[1].Attributes=
VBuf[2].Attributes=ColorsPanel[Y&1][X&1]

}

return TRUE;

lags

There are several flags applicable to the DI_USERCONTROL control:

Flag

Description

DIF NOFOCUS

The user-defined dialog control cannot receive
keyboard focus, but can handle other user events.

DIF DISABLE

Disables user access to the control.

DIF NOTCVTUSERCONTROI, do not convert characters (CHAR_INFQO::Char) while

writing the virtual buffer to the screen.

vents

Event Description

DN DRAWDLGITEM This event is sent to the dialog callback function just
before the item is drawn.

DN KEY This event comes after the user has pressed a key in
the dialog.

DN MOUSECLICK This event comes after the user has clicked a mouse
button; coordinates are counted from upper left corner
of the item

DN KILLFOCUS This event is sent before the button loses focus, if the
flag DIF_ NOFOCUS was not used.

DN GOTFOCUS This event is sent after the button has received
keyboard focus, if the flag DIF. NOFOCUS was not
used.

emarks

1. For a description of how to manage the text cursor in a user-defined dialog
control, see DM_GETCURSORPOS or DM_SETCURSORPOS.
2. The DI_USERCONTROL item is not supported by the Dialog function.

e also:
FarDialogltem

1_VTEXT

in | Dialog API | Dialog items

The DI_VTEXT dialog item describes a vertical static text label.

struct FarDialogItem

{
int Type = DI_VTEXT
int X1 =X
int Y1 =Yl
int X2 = X (not used in Dialog API 1.0, n
int Y2 = Y2
int Focus =0
int Selected =0
DWORD Flags = Flags
int DefaultButton = 0
char Data[512] = text label

+s

 Attentign! . -
t]lQhI}s is an exemplary structure; read full description here.

lags

There are several flags applicable to the DI_VTEXT control:
Flag Description
DIF SETCOLOR The low byte of Flags will be used as the item's color.
DIF BOXCOLOR The text item will be displayed using box colors

(COL_DIALOGBOX or COL. WARNDIALOGBOX)

DIF CENTERGROUP Centers two vertical text labels with equal horizontal
position (Y1 is ignored)

DIF SEPARATOR Draws a single-line vertical separator; Y1 is ignored if
Data is empty;
if Data is not empty, it will also be drawn with Y1 as
its starting position.

DIF SEPARATOR? Draws a double-line vertical separator Y1 is ignored if
Data is empty;
if Data is not empty, it will also be drawn with Y1 as
its starting position.

DIF SHOWAMPERSAND Show ampersand symbol in caption instead of using it

for defining hotkeys.

DIF CENTERTEXT Centers the text between the Y1 and Y2 coordinates.
vents

Event Description

DN DRAWDLGITEM This event is sent to the dialog callback function just before the

text item is drawn.

DN _CTLCOLORDLGITEM | Plugin should pass the color attributes of the text item when this
event comes. Param?2 parameter (foreground+background):

color of the text

(COL WARNDIALOGTEXT or

COL DIALOGTEXT).

If DIF BOXCOLOR flag is set:
COL WARNDTALOGBOX or

COL DIALOGBOX

color of highlighted text
(COL WARNDIALOGHIGHLIGHTTEXT lor
COL DIALOGHIGHLIGHTTEXT)
© (not used)

© (not used)

LowWord LoByte

LowWord HiByte

HiwWord LoByte
HiwWord HiByte

If a special attribute is used (DIF_SETCOLOR flag), the text
(LoWord LoByte) will be drawn according to the parameters.

DN MOUSECLICK This event comes after the user has clicked one of the dialog
items or outside the dialog with the mouse button.

emarks

1. It is recommended to set the X2 coordinate correctly, although it isn't used
in Dialog API 1.0. Just set it equal to the X1 coordinate.

2. If the DIF_CENTERTEXT flag is set, the Y2 field must have an adequate
value for the correct text centering.

3. If the DIF_CENTERTEXT flag is not set, FAR will calculate the X2 and Y2
coordinates automatically.

4. If the text of the DI_TEXT item has a hotkey and
DIF_SHOWAMPERSAND flag isn't set, then pressing Alt-Letter causes
the keyboard focus to move to the next available dialog item.

e also:
DI TEXT, FarDialogltem

IF_3STATE

in | Dialog API | Dialog item flags

The DIF_3STATE flag indicates that a DI_CHECKBOX element will have
three states:

[] - off (FarDialogItem.Selected = 0)
[X] - on (FarDialogItem.Selected = 1)
[?] - undefined (FarDialogItem.Selected = 2)
ontrols

The DIF_3STATE flag is applicable to the following dialog items:

Control Description
DI CHECKBOX Check box.
emarks

When using the DIF_3STATE flag it is necessary to remember what the user
expects while working with such checkbox. That is, if the user have selected the
undefined checkbox state, then the option being controlled by this checkbox
must be completely ignored during further processing. File attributes dialog is
the striking example:

[] - clear attribute
[+] - set attribute
[?] - don't do anything with this attribute

e also:

IF_BOXCOLOR
in | Dialog API | Dialog item flags
The DIF_BOXCOLOR flag allows to specify initial element color

corresponding to the dialog frame color (COL_WARNDIALOGBOX or
COL_DIALOGBOX).

ontrols
The DIF_BOXCOLOR flag is applicable to the following dialog items:

Control Description

DI TEXT Text string.

DI VTEXT Vertical text string.
emarks

It is possible to change the color value upon receiving the
DN_CTLCOLORDLGITEM event in the dialog callback function.

e also:
DIF SETCOLOR, Color indexes

IF_BTNNOCLOSE

in | Dialog API | Dialog item flags

The DIF_BTNNOCLOSE flag directs the button not to close the dialog when
pressed. Default behavior of the buttons is to end dialog processing. Another
way to change the normal behavior is to return FALSE for the DN_CLOSE
event.

ontrols
The DIF_BTNNOCLOSE flag is applicable to the following dialog items:

Control Description
DI BUTTON Push Button.
emarks
The DIF_BTNNOCLOSE flag has no meaning for a dialog with no callback
function.
e also:

DM CLOSE

IF_CENTERGROUP

in | Dialog API | Dialog item flags

Sequentially declared elements with the DIF_ CENTERGROUP flag and with
the same vertical position will be centered in the dialog. Horizontal coordinates
of those elements (X1 and X2) are ignored.

ontrols
The DIF_CENTERGROUP flag is applicable to the following dialog items:

Control Description

DI BUTTON Push button.

DI CHECKBOX Check box.

DI RADIOBUTTON Radio button.

DI TEXT Text string .

DI VTEXT Vertical text string.
emarks

1. Itis convenient for centering a group of buttons.
2. FAR itself handles group centering upon dialog resize.

e also:

IF_CENTERTEXT

in | Dialog API | Dialog item flags

The DIF_CENTERTEXT flag allows to align text in the DI_TEXT and
DI_VTEXT elements centering it relatively to element's geometry.

ontrols
The DIF_CENTERTEXT flag is applicable to the following dialog items:

Control Description

DI TEXT Text string.

DI VTEXT Vertical text string.
emarks

If you specify this flag, it is necessary to fill the X2 coordinate (for the DI TEXT
control) and the Y2 coordinate (for the DI_VTEXT control) correctly.

e also:

IF_DISABLE

in | Dialog API | Dialog item flags

The DIF_DISABLE flag directs the Dialog Manager to disable this item. It
means that such dialog element will not receive input focus and will not respond
to mouse, but at the same time a control with this flag set can be changed
programmatically.

ontrols
The DIF_DISABLE flag is applicable to the following dialog items:

Control Description
All All dialog items can be disabled.
emarks

1. To change Enabled/Disabled state of a control, send the DM_ENABLE
message to the Dialog Manager (using the SendDIgMessage function).

2. Disabled edit controls are displayed using the
COL_DIALOGEDITDISABLED color. If you want to change the color of
a control, you must add the following code to the dialog handler:

if(msg == DN_CTLCOLORDLGITEM)

{
if(Paraml >= 9 && Paraml <= 13)

{
int Lo=(int)Info.AdvControl(Info.ModuleNumber,
int Hi=(int)Info.AdvControl(Info.ModuleNumber,
return (LONG_PTR)MAKELONG(MAKEWORD (Lo, Hi), MAKI

}
}

In this example, predefined colors for disabled items are modified to match
colors corresponding to the normal state of the edit control.

e also:

IF_DROPDOWNLIST

in | Dialog API | Dialog item flags

The DIF_DROPDOWNLIST flag specifies that a DI_COMBOBOX control is
a read-only drop-down list.

ontrols
The DIF_DROPDOWNLIST flag is applicable to the following dialog items:

Control Description
DI COMBOBOX Combo box.
emarks

e also:

IF_EDITEXPAND

in | Dialog API | Dialog item flags

The DIF_EDITEXPAND flag "expands" environment variables after
completion of dialog execution (for example, %TEMP% will be expanded to
C:\TEMP)

ontrols
The DIF_EDITEXPAND flag is applicable to the following dialog items:

Control Description

DI COMBOBOX Combo box.

DI EDIT Edit box.
emarks

Environment variables "expansion" is done by using the

ExpandEnvironmentStrings function, so if
some % VariableName% value doesn't exist in the environment, it will remain

untouched.

e also:

JavaScript:link9.Click()

IF_EDITOR

in | Dialog API | Dialog item flags

Sequentially declared edit controls (DI_EDIT) with the DIF_EDITOR flag set
are grouped into an editor capable of insertion and removal of lines.

ontrols
The DIF_EDITOR flag is applicable to the following dialog items:

Control Description
DI EDIT Edit box.
emarks

In order to create an edit area with the size of 5 rows it is necessary to place 5
elements of type DI_EDIT with DIF_EDITOR flag set, as shown in the
following example:

DI_EDIT,5,3,29,3,1,1,DIF_EDITOR,0,"",
DI_EDIT,5,4,29,4,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,5,29,5,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,6,29,6,0,1,DIF_EDITOR,0,"",
DI_EDIT,5,7,29,7,0,1,DIF_EDITOR,0,"",

e also:

IF_GROUP

in | Dialog API | Dialog item flags

The DIF_GROUP flag, if specified with the first DI RADIOBUTTON control,
and groups sequentially declared radio buttons:

// color selection dialog in FAR Manager:

// first group of radiobuttons
DI_RADIOBUTTON, 6,3,0,0,0,0, F_LIGHTGRAY | B_BLACK |DIF_GF
DI_RADIOBUTTON,6,4,0,0,0,0, F_BLACK|B_RED|DIF_SETCOLOF

// second group of radiobuttons
DI_RADIOBUTTON,21,3,0,0,0,0, F_LIGHTGRAY |B_BLACK |DIF_C
DI_RADIOBUTTON,21,4,0,0,0,0, F_BLACK|B_RED|DIF_SETCOLC

ontrols
The DIF_GROUP flag is applicable to the following dialog items:

Control Description
DI RADIOBUTTON Radio button.
emarks

Set this flag for the first item in the group.

e also:

IF_HIDDEN

in | Dialog API | Dialog item flags
The DIF_HIDDEN flag hides a dialog item.

ontrols
The DIF_HIDDEN flag is applicable to the following dialog items:

Control Description
All All dialog elements can be hidden.
emarks

e also:

IF_HISTORY

in | Dialog API | Dialog item flags

DIF_HISTORY flag allows to keep a history list for edit controls. When this
flag is set, the History field must contain the address of a text string that will be
used as the internal history name. If several edit controls have the same history

name, they will share the same history list. For the following example
(ARCPROC.CPP file from MultiArc):

const char *PathHistoryName="ExtrDestPath";
struct InitDialogItem InitItems[]={

DI_EDIT,5,3,70,3,1, (DWORD)PathHistoryName, DIF_HISTOFR
15

the history will be stored in the registry (under
HKCU\Software\Far\SavedDialogHistory\ExtrDestPath key),
one line (key names look like "Line<number>", of REG_SZ type) for each value
entered by the user.

Kyes with names looking like "Locked<number>" (REG_DWORD) are
intended for marking lines that cannot be deleted (while in the list, this state can
be changed with the <Insert> key).

ontrols
The DIF_HISTORY flag is applicable to the following dialog items:

Control Description

DI _EDIT Edit box.

DI FIXEDIT Fixed size edit box.
emarks

1. The DIF_HISTORY flag DOES NOT WORK with the DI PSWEDIT
control!

2. DIF_HISTORY has higher priority than the DIF_MASKEDIT flag.

3. FAR 1.70 beta 3: If a plugin has an edit box with a history list, it is
assumed that the user will leave the dialog using the Esc key (Enter is
reserved for other needs), then the data will not be stored in the history

because Esc means rejection of further dialog processing. In such case,
plugin can add necessary strings to the history list. It can be carried out by
sending the DM_ADDHISTORY message to the Dialog Manager.

4. If an item has the DIF. MANUALADDHISTORY flag, then the Dialog
Manager will not add strings to the history list when the dialog closes.

5. Also, a plugin can keep united history lists using predefined names:

name " purpose

"SearchText" "search edit box

"PersPath" "personal plugins' paths

|
|
I"ReplaceTeXt" "replace edit box
|
|

"Copy" "destmatlon edit box in copy dialog

|
|
|
|
|
I"LlneNumber" "edltor goto (Alt-F8) |
I"VlewerOffset" "Vlewer goto (Alt-F8) |
|
|
|
|
|
|

I"NewEdlt" ||ed1ted files (Shift-F4/Shift-F2)
I"Masks" Iflle masks (selection, associations, filters, file search)
I"UserVarN" "user variables
I"ApplyCmd" " 'apply command" (Ctrl-G)
I"DizText" "fﬂe description edit box
I"NewFolder" "folder creation
e also:

DIF USELASTHISTORY, DM ADDHISTORY,
DIF MANUALADDHISTORY.

IF_LEFTTEXT

in | Dialog API | Dialog item flags

The DIF_LEFTTEXT flag allows to left-align the title of a frame. Frame title is
center-aligned by default.

ontrols
The DIF_LEFTTEXT flag is applicable to the following dialog items:

Control Description

DI DOUBLEBOX Double frame.

DI SINGLEBOX Single frame.
emarks

e also:

IF_LISTAUTOHIGHLIGHT

in | Dialog API | Dialog item flags

If the DIF_LISTAUTOHIGHLIGHT flag is set, then hot keys will be assigned
automatically starting from the first item.

ontrols

The DIF_LISTAUTOHIGHLIGHT flag is applicable to the following dialog
items:

Control Description

DI LISTBOX List box.

DI COMBOBOX Combo box.
emarks

e also:

IF_LISTNOAMPERSAND

in | Dialog API | Dialog item flags

The DIF_LISTNOAMPERSAND flag allows to display hot keys in the list. By
default, ampersands in the list are shown on the screen, and are not used for hot
key assignment.

ontrols

The DIF_LISTNOAMPERSAND flag is applicable to the following dialog
items:

Control Description

DI LISTBOX List box.

DI COMBOBOX Combo box.
emarks

e also:

IF_LISTNOBOX

in | Dialog API | Dialog item flags

The DIF_LISTNOBOX flag turns off the frame around a DI_LISTBOX
control.

ontrols
The DIF_LISTNOBOX flag is applicable to the following dialog items:

Control Description
DI LISTBOX List box.
emarks

e also:

IF_LISTNOCLOSE

in | Dialog API | Dialog item flags
The DIF_LISTNOCLOSE flag directs a list not to close the dialog after item
selection. Default list behavior after item selection is to end dialog processing.

Another way to change the default behavior is to return FALSE for the
DN_CLOSE event.

ontrols
The DIF_LISTNOCLOSE flag is applicable to the following dialog items:
Control Description

DI LISTBOX List box.
DI COMBOBOX Combo box.

IF_LISTWRAPMODE

in | Dialog API | Dialog item flags

If the DIF_LISTWRAPMODE flag is set, then attempts to move the cursor up
from the first item or down from the last item will result in movement to the last
or the first item, respectively.

ontrols
The DIF_LISTWRAPMODE flag is applicable to the following dialog items:

Control Description

DI LISTBOX List box.

DI COMBOBOX Combo box.
emarks

e also:

IF_MANUALADDHISTORY

in | Dialog API | Dialog item flags

The DIF_MANUALADDHISTORY flag informs the Dialog Manager that the
dialog handler will manually add strings to the history list.

ontrols

The DIF_MANUALADDHISTORY flag is applicable to the following dialog
items:

Control Description

DI EDIT Edit box.

DI FIXEDIT Fixed size edit box.
emarks

1. Adding a string to the history list is carried out by the DM_ADDHISTORY
message.

2. This flag only extends the DIF_HISTORY flag and has no meaning on its
OWI.

This flag allows to obtain the most complete control on addition of strings to the
history list.

e also:
DIF_HISTORY, DM_ADDHISTORY

IF_MASKEDIT

in | Dialog API | Dialog item flags

The DIF_MASKEDIT flag allows to set a mask for a DI_FIXEDIT control. If
this flag is set, Mask must contain the address of a text string with the mask.

For now, the following mask characters are supported:

'X" allows to enter any character at the given line position;

'#' allows to enter digits, spaces, and the minus sign at the given line position;
'9" allows to enter only digits at the given line position;

'A’ allows to enter only letters at the given line position;

'H' allows to enter only hexadecimal digits at the given line position.

It is possible to create an infinite variety of masks, for example: " (###) #99 -
99-99". In this mask, parenthesis and hyphens will be static (i.e., they cannot
be deleted) line elements, and it is possible to enter digits or spaces in the
parenthesis (e.g., city phone code), but it is possible to enter only digits in the
positions with "9" digits.

One note about the usage of the DIF_MASKEDIT flag. When you set a mask
string (e.g., to "99.99.9999"), remember that processing is organized so that the
edit string length is forcibly set to the mask string length.

ontrols
The DIF_MASKEDIT flag is applicable to the following dialog items:

Control Description
DI FIXEDIT Fixed size edit box.
emarks

The DIF_HISTORY flag has a higher priority than the DIF_MASKEDIT flag.

e also:

IF_MOVESELECT

in | Dialog API | Dialog item flags
The DIF_MOVESELECT flag allows to change the selected item in a group of
DI_RADIOBUTTON controls upon change of input focus, and the element will

have a different look -- drawen without the round brackets. For an example of
this flag usage see FAR Manager colors setup dialog.

ontrols
The DIF_MOVESELECT flag is applicable to the following dialog items:

Control Description
DI RADIOBUTTON Radio button.
emarks

e also:

IF_NOAUTOCOMPLETE

in | Dialog API | Dialog item flags
The DIF_NOAUTOCOMPLETE flag disables autocompletion for input lines.
ontrols

The DIF_NOAUTOCOMPLETE flag is applicable to the following dialog
items::

Control Description

DI COMBOBOX Combo box.

DI EDIT Edit box.

DI FIXEDIT Fixed size edit box.

DI PSWEDIT Password edit box.
enarks

e also:

IF_NOBRACKETS

in | Dialog API | Dialog item flags

The DIF_NOBRACKETS flag forces the Dialog Manager to display a
DI_BUTTON title without square brackets.

ontrols
The DIF_NOBRACKETS flag is applicable to the following dialog items:

Control Description
DI BUTTON Push button.
emarks

e also:

IF_NOFOCUS

in | Dialog API | Dialog item flags

A control item with the DIF_NOFOCUS flag set cannot receive keyboard input
focus. It is useful if only mouse control must be provided (see "Reversi" plugin
for usage example).

ontrols
The DIF_NOFOCUS flag is applicable to the following dialog items:

Control Description

DI BUTTON Push button.

DI CHECKBOX Check box.

DI EDIT Edit box.

DI FIXEDIT Fixed size edit box.

DI COMBOBOX Combo box.

DI RADIOBUTTON Radio button.

DI PSWEDIT Password edit box.

DI _LISTBOX List box.

DI USERCONTROL User control.
emarks

e also:

http://plugring.farmanager.com/downld/files/reversi11.rar

IF_NOTCVTUSERCONTROL

in | Dialog API | Dialog item flags

A dialog item with the DIF_NOTCVTUSERCONTROL flag set will not
convert characters (CHAR_INFO::Char) from the virtual buffer before writing
them to the screen. Without this flag only the CHAR_INFO::Char.AsciiChar
member is used by Far and converted according to the current output method
(OEM or Unicode).

ontrols

The DIF_NOTCVTUSERCONTROL flag is applicable to the following dialog
items:

Control Description
DI USERCONTROL User control.
emarks

e also:

IF_READONLY

in | Dialog API | Dialog item flags
The DIF_READONLY flag sets an edit box into a "read only" state.

ontrols
The DIF_READONLY flag is applicable to the following dialog items:
Control Description
DI COMBOBOX Combo box.
DI EDIT Edit box.
DI FIXEDIT Fixed size edit box.
DI PSWEDIT Password edit box.
emarks

e also:

IF_SELECTONENTRY

in | Dialog API | Dialog item flags

The contents of an edit box with the DIF_SELECTONENTRY flag set will be
selected upon receiving input focus.

ontrols
The DIF_SELECTONENTRY flag is applicable to the following dialog items:

Control Description

DI COMBOBOX Combo box.

DI EDIT Edit box.

DI FIXEDIT Fixed size edit box.

DI PSWEDIT Password edit box.
emarks

Selection in an edit box with the DIF_SELECTONENTRY flag will be cleared
upon input focus loss.

e also:

IF_SEPARATOR

in | Dialog API | Dialog item flags

A text string DI TEXT control with the DIF_SEPARATOR flag is displayed as
a single horizontal line with double line on edges.

ontrols
The DIF_SEPARATOR flag is applicable to the following dialog items:

Control Description

DI TEXT Text string.

DI VTEXT Vertical text string.
emarks

1. Separator line drawing coordinates are (left dialog edge = 0): X1 =
X1_Dialog + 3; X2 = X2_Dialog - 3.

2. X1 coordinate affects only text string positioning (is displayed above
separator line) from Data. If you need a separator line with centered text
you must specify X1 = -1.

3. If Data contains an empty string, element is displayed simply as a separator
line.

e also:
DIF_SEPARATOR?2

IF_SEPARATOR2

in | Dialog API | Dialog item flags

A text string DI TEXT control with the DIF_SEPARATOR?2 flag is displayed
as a double horizontal line with double line on edges.

ontrols
The DIF_SEPARATOR?2 flag is applicable to the following dialog items:

Control Description

DI TEXT Text string.

DI VTEXT Vertical text string.
emarks

1. Separator line drawing coordinates are (left dialog edge = 0): X1 =
X1_Dialog + 3; X2 = X2_Dialog - 3.

2. X1 coordinate affects only text string positioning (is displayed above
separator line) from Data. If you need a separator line with centered text
you must specify X1 = -1.

3. If Data contains an empty string, element is displayed simply as a separator
line.

e also:
DIF_SEPARATOR

IF_SETCOLOR

in | Dialog API | Dialog item flags

The DIF_SETCOLOR flag allows to set the initial color of an item, placing the
necessary color into the low-order byte of the FarDialogltem.Flags variable.

The DIF_COLORMASK value is a mask used by the Dialog Manager to select
the color component passed in.

ontrols
The DIF_SETCOLOR flag is applicable to the following dialog item:

Control Description

DI BUTTON Push button.

DI CHECKBOX Check box.

DI RADIOBUTTON Radio button.

DI TEXT Text string.

DI VTEXT Vertical text string.

DI DOUBLEBOX Single frame.

DI SINGLEBOX Double frame.
emarks

Color value can be changed upon receiving the DN_CTLCOLORDLGITEM
event in the dialog handler.

e also:
DIF BOXCOLOR, Color indexes

IF_SHOWAMPERSAND

in | Dialog API | Dialog item flags

The DIF_SHOWAMPERSAND flag forces the Dialog Manager to show
ampersands (&) in text items and frames, not using it for the hot key definition.

ontrols
The DIF_SHOWAMPERSAND flag is applicable to the following dialog item:

Control Description

DI BUTTON Push button.

DI CHECKBOX Check box.

DI RADIOBUTTON Radio button.

DI TEXT Text string.

DI VTEXT Vertical text string.

DI DOUBLEBOX Double frame.

DI SINGLEBOX Single frame.
emarks

e also:

IF_USELASTHISTORY

in | Dialog API | Dialog item flags

An edit box with the DIFE_ HISTORY and DIF_USELASTHISTORY flags set
is set to the initial value from the last item of the history list, if the initial value is
not specified.

ontrols
The DIF_USELASTHISTORY flag is applicable to the following dialog item:

Control Description

DI EDIT Edit box.

DI FIXEDIT Fixed size edit box.
emarks
e also:

DIF HISTORY

IF_VAREDIT

in | Dialog API | Dialog item flags

The DIF_VAREDIT flag is the "512 bytes barrier overcoming for an edit box".
The Dialog Manager, while working with an edit box or a combo box (with
DIF_VAREDIT flag set) will take into account only Ptr.* members of the
FarDialogltem structure.

ontrols
The DIF_VAREDIT flag is applicable to the following dialog items:

Control Description

DI COMBOBOX Combo box.

DI EDIT Edit box.
emarks

1. The plugin itself must take care of memory allocation for
FarDialogltem.Ptr.PtrData and fill in the size of this buffer correctly
(FarDialogltem.Ptr.PtrLength).

2. If the size of the data being used does not exceed 512 bytes (or
sizeof(FarDialogltem.Data)), then there is no sence in using the
DIF_VAREDIT flag.

e also:

ialog APl Messages

in | Dialog API | Events

Messages Description

DM ADDHISTORY add an item to the history

DM CLOSE a signal that the dialog is about to close

DM EDITUNCHANGEDFLAG controlling the "unchanged" state of a text input box

DM ENABLE enable or disable a dialog item or to determine if a
dialog item is enabled

DM ENABLEREDRAW enable or disable dialog redrawing

DM GETCHECK retrieve the state of DI_CHECKBOX or
DI_RADIOBUTTON items

DM GETCOMBOBOXEVENT determine the state of event sending for an open
combo box

DM GETCURSORPOS get cursor position

DM GETCURSORSIZE get cursor size

DM GETDLGDATA retrieve a data value associated with the dialog

DM GETDLGITEM retrieve complete information about a dialog item

DM GETDLGRECT retrieve the screen coordinates of the dialog window

DM GETDROPDOWNOPENED determine if there is an open combo box or history
list in the dialog

DM GETEDITPOSITION get cursor position in edit controls

DM GETFOCUS retrieve the ID of the dialog item that has the
keyboard focus

DM GETITEMDATA retrieve a data value associated with a dialog item

DM GETITEMPOSITION retrieve the size and position of a dialog item

DM GETSELECTION retrieve selection parameters in dialog edit lines

DM GETTEXT retrieve the text of an edit string or the caption of an
item

DM GETTEXTLENGTH get text string length

DM GETTEXTPTR retrieve the text of an edit string or the caption of a
dialog item

DM KEY and a key codes array to the dialog manager

DM LISTADD add new item to a list

DM LISTADDSTR add a string to a list

DM LISTDELETE delete list items

DM LISTFINDSTRING find list item

DM LISTGETCURPOS get current position in a list

DM LISTGETDATA retrieve a data value associated with a list item

DM LISTGETDATASIZE retrieve the size of the data value associated with a
list item

DM LISTGETITEM retrieve a list item

DM LISTGETTITLES retrieve the titles of a list

DM LISTINFO retrieve information about a list

DM LISTINSERT insert an item to a list

DM LISTSET replace a list with new list items

DM LISTSETCURPOS set position in a list

DM LISTSETDATA set the data value associated with a list item

DM LISTSETMOUSEREACTION | set the behavior for handling mouse movement in a
DI_LISTBOX

DM LISTSETTITLES set list titles

DM LISTSORT sort list items

DM LISTUPDATE update a list item

DM MOVEDIALOG move the dialog

DM REDRAW redraw the whole dialog

DM RESIZEDIALOG change dialog size

DM SET3STATE change the style of a DI_CHECKBOX

DM SETCHECK change the state of DI_CHECKBOX and
DI_RADIOBUTTON items

DM SETCOMBOBOXEVENT enable or disable the sending of DN_KEY or
DN_MOUSEEVENT events for an open combo box

DM SETCURSORPOS set cursor position in a dialog item

DM SETCURSORSIZE set cursor size

DM SETDLGDATA associate a data vaule with the dialog

DM SETDLGITEM change a specified dialog item

DM SETDROPDOWNOPENED open or close a combo box or history list

DM SETEDITPOSITION set cursor position in edit controls

DM SETFOCUS set the keyboard focus to the given dialog item

DM SETHISTORY manage availability of history in edit lines

DM SETITEMDATA associate a data vaule with a dialog item

DM SETITEMPOSITION change position of a dialog item

DM SETMAXTEXTLENGTH set the maximum length of an edit string

DM SETMOUSEEVENTNOTIFY | control initial non-altered mouse events

DM SETSELECTION select a block in dialog edit lines

DM SETTEXT set a new string value for an edit line or a new
caption for an item

DM SETTEXTPTR set a new string value for an edit line or a new
caption for an item

DM SHOWDIALOG show/hide the dialog window

DM SHOWITEM show/hide a dialog item

DM USER starting value for user defined messages

e also:

Dialog API Events

'M_ADDHISTORY

:ssages | Dialog API

The DM_ADDHISTORY message is sent to the dialog manager to add an item
to the history of a text input string.

araml
The ID of the dialog item for which the history item is added.

aram2
Pointer to a NULL-terminated string to be added to the history.

eturn

TRUE - data was successfully added.
FALSE - the specified dialog item doesn't have a history.

ontrols

Control Description

DI EDIT Text input string

DI FIXEDIT Fixed width text input string
emarks

The message applies only to the DI_EDIT and DI_FIXEDIT items with the
DIF_HISTORY flag set. Also, if the DIF_ MANUALADDHISTORY flag is not
set, items will be added to the history automatically.

xample

For example, in a calculator pressing Enter computes an expression. To save the
entered expression to history after Enter was pressed it is necessary to get that
string and add it to history:

FarDialogItem dialog[] = {
{ DI_EDIT, 10, 3, 49, 0, 1, (int)"foo_history", DIF
i

LONG_PTR WINAPI FooDlgProc(HANDLE hDlg, int Msg, int

if (Msg == DM_KEY && Param2 == KEY_ENTER){
Info.SendDlgMessage(hDlg, DM_GETTEXTPTR, 2, (LC
Info.SendDlgMessage(hDlg, DM_ADDHISTORY, 2, (LC
Res = AData.Parse(Text);

e also:
DialogEx, DIF _HISTORY, DIF MANUALADDHISTORY.

M_CLOSE

:ssages | Dialog API

The DM_CLOSE message is sent to the dialog manager when a plugin notifies
the Dialog API kernel that it wants to close the dialog.

araml

ID of the item that will be returned from the DialogEx function. If Param1 is
equal to -1, DialogEx will return the ID of the item that currently has the focus.

aram2
0

eturn
Value which is returned by dialog handler as the answer to DN_CLOSE.

emarks

The DN_CLOSE event is received immediately after the DM_CLOSE message
is sent.

xample

e also:
DialogEx, DN_CLOSE

'M_EDITUNCHANGEDFLAG

:ssages | Dialog API

The DM_EDITUNCHANGEDFLAG message allows to control the state of the
"unchanged text" flag for edit boxes.

araml
The ID of the dialog item for which the operation is performed.

aram2

One of the following values:

-1 - get the current value of the flag for an edit box;
0 - clear the "unchanged text" flag;

1 - set the "unchanged text" flag.

eturn

Previous state of the "unchanged text" flag.

ontrols
Control Description
DI COMBOBOX combined list (without DIF. DROPDOWNLIST flag
set)
DI EDIT edit line
DI FIXEDIT fixed-size input field
DI PSWEDIT password input field
emarks

1. When the dialog is initiali