
Copyright	notice 	Top	Next

DeVIDE	is	copyright	(c)	2002-2008	Charl	P.	Botha,	TU	Delft

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

·						Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

·						Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

·						Neither	the	name	of	the	TU	Delft	nor	the	names	of	its	contributors	may	be
used	to	endorse	or	promote	products	derived	from	this	software	without
specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

		

Sponsors Previous	Top	Next

The	development	of	this	software	was	supported	by	the	following	institutions:
		

The	Delft	University	of	Technology	(TU	Delft),
my	fabulous	employer	and	permanent	research
home.		We	Do	Really	Cool	Stuff(tm).

The	Virtual	Laboratory	for	e-Science	(VL-e)
project	has	partly	funded	recent	development	of
the	software.

Development	of	Improved	endo-Prostheses	for
the	upper	EXtremity,	or	DIPEX,	is	the	research
programme	where	it	all	began.	DSCAS1,
DSCAS3	and	finally	DeVIDE.

		

Introduction Previous	Top	Next

This	is	the	user	manual	and	help	file	for	the	DeVIDE	software	package.	DeVIDE
is	the	open	source	Delft	Visualisation	and	Image	processing	Development
Environment.

The	software	was	designed	for	the	rapid	prototyping	and	testing	of	visualisation
and	image	processing	techniques.	All	functionality	is	packaged	in	the	form	of
modules.	One	of	the	ways	in	which	these	modules	can	be	used,	is	to	make	use	of
the	DeVIDE	Graph	Editor,	where	glyphs,	representing	modules,	can	be
connected	up	to	form	functional	data-processing	networks.	A	key	feature	is	that
any	code	object	can	be	accessed	and	interacted	with	in	real-	time.	This	enables
both	module	writers	and	users	of	the	Graph	Editor	to	experiment	with	for
example	all	parameters	and	even	the	logic	behind	a	running	piece	of
functionality.

DeVIDE	is	available	as	open	source	under	the	terms	of	the	new	BSD	license.	
Binaries	are	usually	made	available	for	the	Windows	and	Linux	platforms.

The	main	website	of	this	software	is	at
http://visualisation.tudelft.nl/Projects/DeVIDE	.		Please	go	there	for	links	to
more	documentation,	the	GoogleCode	project	site,	the	mailing	list	and	the	news
blog.

This	manual	is	in	a	perpetual	state	of	being	under	heavy	construction.	The	Graph
Editor	and	Useful	Patterns	sections	are	especially	useful	and	should	be	read
before	you	start	working	with	the	software.

		

Introduction Previous	Top	Next

The	DeVIDE	Graph	Editor	is	a	visual	programming	interface	where	glyphs
representing	the	underlying	DeVIDE	modules	can	be	connected	together	to	form
new	programs.	

It's	the	most	flexible	way	of	working	with	DeVIDE,	short	of	directly	interfacing
with	the	underlying	code.

This	chapter	will	give	a	brief	overview	of	graph	editor	usage.
		

A	small	sample	network Previous	Top	Next

The	Graph	Editor	is	introduced	by	putting	together	a	simple	network	for
rendering	the	3D	0-	surface	of	a	Super	Quadric.	It's	far	simpler	than	it	sounds.

Constructing	the	network
Start	by	building	the	network	shown	in	the	figure	below.	First	select	the
"Sources''	category	on	the	top	left	of	the	Graph	Editor.	Drag	and	drop	the
"superQuadric''	module	from	the	modules	list	on	the	bottom	left	to	the	canvas.
You	should	see	the	"superQuadric''	glyph	being	created.

Now	do	the	same	for	the	"slice3dVWR''	module	in	the	"Viewers''	category.	Note
that	you	can	select	multiple	categories	by	holding	the	Shift	key	and	clicking	a
category	(this	will	select	all	categories	between	the	previous	selected	category

and	your	current	click)	or	holding	the	control	key	and	clicking	(this	will	select
the	currently	clicked	module	along	with	any	previously	selected	modules).	The
module	list	will	contain	all	modules	in	all	selected	categories.	The	modules	are
always	alphabetically	sorted.

Connect	the	second	output	of	the	"superQuadric''	glyph	to	any	input	of	the
"slice3dVWR''	glyph	by	dragging	the	mouse,	with	the	left	button	depressed,
from	the	output	port	to	the	input	port.	Note	that	hovering	the	mouse	pointer	over
any	port	shows	more	information	about	that	port	in	the	status	bar	of	the	Graph
Editor.

Admiring	your	results
Now	press	F5	or	select	Network	|	Execute	from	the	main	menubar	to	execute	the
network.

Right-click	on	the	slice3dVWR	module	and	select	"View-Configure''	to	see	the
3D	surface	representing	the	0-surface	of	the	generated	Super	Quadric.	Note	that
this	is	how	one	activates	the	graphical	interface	of	any	glyph	on	the	canvas.	You
can	rotate	your	viewpoint	around	the	generated	3D	object	by	dragging	with	your
left	mouse	button.	Dragging	with	the	right	button	will	zoom.	Dragging	with	the
middle	button	will	pan	the	viewpoint.

The	network	can	be	saved	by	selecting	"Save''	from	the	"File''	menu.	The	default
extension	for	a	DeVIDE	network	is	.dvn.

Warping	the	Super	Quadric
The	slice3dVWR	is	a	very	special	DeVIDE	module.	Because	of	this,	its
View/Config	interface	is	non-standard.	Right	click	on	the	"superQuadric''	glyph
and	select	"View-Config''	to	see	a	more	standard	user	interface	(you	can	also	just
double-click	on	the	glyph,	many	users	find	this	to	be	quicker).	This	interface	is
shown	in	the	figure	below:

Most	module	View/Config	windows	have	the	set	of	buttons	at	the	bottom.	If	you
make	any	changes	to	any	of	the	module	parameters,	you	have	to	click	on	the
"Apply''	button	(in	which	case	the	parameters	will	be	transferred	to	the
underlying	logic)	or	the	"Execute''	button,	(in	which	case	the	new	parameters
will	be	transferred	to	the	underlying	logic	and	the	module	will	be	asked	to	re-
perform	its	execution	with	the	modified	parameters).	Clicking	on	the	"Cancel''
button	will	undo	any	changes	you've	made	without	applying	and	close	the
window.		Clicking	on	"OK"	will	apply	all	changes	and	close	the	window.

Change	the	"Phi	Roundness''	parameter	to	3.0	and	click	on	"Execute''	or	simply
press	F5	or	Alt-X.	Pressing	one	of	these	key-combinations	is	effectively	the
same	as	clicking	on	"Execute''.	See	the	results	of	your	changes	in	the
slice3dVWR	window.
		

A	few	important	tips Previous	Top	Next

Before	we	start,	a	few	productivity-enhancing	secrets	of	the	Graph	Editor	are
revealed	here.

Placing	modules
You	can	place	modules	on	the	canvas	in	more	than	one	way.
·						Drag	and	drop	the	module	name	from	the	module	list	on	the	bottom-left

onto	the	canvas.	You	can	narrow	down	the	list	of	modules	by	selecting	one	or
more	categories.	The	"ALL''	category	includes	all	modules	available.

·						Double	clicking	on	a	module	name	will	place	that	module	on	the	canvas.
·						Typing	in	the	module	search	box	on	the	upper	left	and	then	pressing	the

ENTER-key	will	place	the	first	automatically	selected	module	in	the	search
results	on	the	canvas.	See	the	next	section	for	more	details	on	this.

Placing	modules	quickly
As	mentioned	above,	modules	can	be	placed	by	typing	in	search	phrases	in	the
module	search	box	in	the	upper	left	of	the	main	DeVIDE	window.	Only	modules
in	the	currently	selected	categories	will	be	found,	therefore	it	is	recommended
that	you	select	the	"ALL''	category	when	making	use	of	this	functionality.

You	can	quickly	go	to	the	search	box	by	using	the	Ctrl-F	hotkeys.	Typing	any
search	terms	will	show	search	results	in	real-time	in	the	module	list	box.
Modules	are	searched	by	examining	their	names,	keywords	and	the	module-
specific	documentation.	At	all	times,	a	module	will	be	automatically	selected	in
the	search	results.	You	can	change	the	selection	by	using	the	up	and	down
cursors.	Pressing	the	ENTER	key	at	any	time	will	place	that	module	on	the
canvas.

Getting	module-specific	help
Many	modules	have	module-specific	help-text	built	in.	To	see	this	help,	just
select	this	module	from	the	module	list	at	the	bottom	left	of	the	main	DeVIDE
window.	The	module	help	will	appear	in	the	module	documentation	window
below	the	module	list.

Also	remember	that	selected	(special)	modules	are	documented	in	the	chapter
Special	Modules.

Reading	data,	quickly
Dragging	and	dropping	certain	data-files	on	the	Graph	Editor	canvas	will	cause
the	system	to	automatically	create	and	configure	the	applicable	module.	For
example:	selecting,	dragging	and	dropping	a	collection	of	DICOM	.dcm	files	on
the	canvas	will	result	in	a	dicomRDR	glyph	to	be	created	and	pre-configured
with	the	list	of	files	that	has	been	dropped.

Following	the	same	theme,	dragging	and	dropping	a	filename	(or	a	collection	of
filenames)	on	a	module	that	has	a	filename	attribute	(such	as	most	file	readers)
will	set	that	file	to	be	read	on	the	next	network	execute.		This	is	useful	when	you
have	a	single	network	that	you	want	to	apply	on	a	number	of	different	datasets:
just	drag	the	new	filename	onto	the	reader	in	question	and	execute!

Re-using	networks,	quickly
Dragging	and	dropping	a	.dvn	(DeVIDE	Network)	file	on	the	canvas	will
instantly	load	the	network	and	build	it	at	the	mouse	position.	This	will	not
destroy	any	of	your	current	networks	on	the	canvas.

Introduction Previous	Top	Next

This	chapter	has	more	documentation	on	some	of	the	more	complex	modules	in
DeVIDE.	Remember	that	all	modules	have	module-specific	documentation,
available	by	right	clicking	on	the	module	glyph	and	selecting	"Help	on	Module''
or	by	querying	the	doc-string	of	the	main	module	class.
		

slice3dVWR Previous	Top	Next

Introduction
This	is	probably	the	module	you'll	use	most	often.		It's	also	the	first	thing	you
should	try	whenever	you	have	any	data	you'd	like	to	visualise.		Simply	connect
the	output	of	any	data-	generating	or	filtering	module	to	any	input	of	the
slice3dVWR	and	execute	the	network.		The	slice3dVWR	picks	a	suitable	default
visualisation	based	on	the	input	data	you	supply.

Slices
When	a	volume	has	been	connected	to	an	input	of	the	slice3dVWR,	the	volume
can	be	examined	by	"slicing''	through	it.	By	default,	an	axial	slice	is	created
automatically,	but	any	number	of	additional	slices	can	be	activated.

Overlay	modes
The	slice3dVWR	has	several	overlay	modes.	These	modes	make	it	possible	to
visualise	the	correspondence	between	multiple	inputs,	for	e.g.	original	CT	data
and	a	segmentation.	If	a	second	volume	input	is	connected,	the	slice3dVWR
checks	if	the	dimensions	of	the	already	connected	volume.	If	this	is	the	case,	the
connection	is	allowed	and	the	second	volume	is	overlayed	(superimposed)	on	the
first.

There	are	several	ways	to	perform	this	overlay.	This	setting	is	user-configurable
and	its	user	interface	can	be	found	on	the	"Main''	tab	of	the	slice3dVWR
"Controls''	window,	in	the	"Slices''	section.	The	user	interface	consists	of	an
Overlay	Mode	choice	box	and	an	Alpha	slider.	The	alpha	slider	determines	the
alpha	parameter	used	for	the	fusion-based	overlay	modes.
·						Green	Fusion:	The	overlay	is	composited	with	the	user-defined	alpha

parameter.	The	value	(i.e.	brightness)	is	directly	related	to	the	image	intensity
of	the	overlay,	so	we	see	shades	of	green	(reflecting	the	overlay	intensity)
alpha	blended	with	the	primary	input.

·						Red	Fusion:	Same	as	above,	except	with	shades	of	red.
·						Blue	Fusion:	Same	as	above,	except	with	shades	of	blue.
·						Hue	Fusion:	The	value	is	kept	constant,	but	the	hue	is	directly	related	to	the

overlay	image	intensity.	The	overlay	is	alpha	blended	with	the	user-supplied
alpha	parameter.

·						Hue/Value	Fusion:	Hue	and	brightness	are	directly	related	to	the	overlay

image	intensity.	The	overlay	is	alpha-blended	with	the	user-supplied	alpha
parameter.

·						Green	Opacity	Range:	The	opacity	of	the	overlay	is	directly	related	to	its
image	intensity.	The	hue	is	constant	green	and	the	brightness	is	constant	unity.

·						Blue	Opacity	Range:	The	same	as	above,	except	the	hue	is	constant	red.
·						Blue	Opacity	Range:	The	same	as	above,	except	the	hue	is	constant	blue.
·						Hue	Opacity	Range:	The	hue	and	the	opacity	of	the	overlay	are	directly

related	to	the	overlay	image	intensity.

Adjusting	the	alpha	slider	whilst	one	of	the	"fusion''	overlay	modes	is	active	will
result	in	real-	time	changes.	The	idea	is	to	adjust	it	up	and	down	its	complete
range	in	order	to	get	a	better	idea	of	the	amount	of	the	image	correspondence.

CodeRunner Previous	Top	Next

Introduction
With	the	CodeRunner,	arbitrary	snippets	of	Python	code,	using	any	of	the
libraries	shipping	with	DeVIDE,	can	be	inserted	into	a	functional	network.		This
is	a	pretty	powerful	concept	that	enables	*very*	rapid	prototyping	of	new	ideas
or	quick	implementation	of	processing	solutions.

An	example
We'll	illustrate	with	an	example.		First	build	up	this	small	network:

Double	click	on	the	CodeRunner,	causing	its	View	to	appear.		The	View's	top-
half	consists	of	an	editor	component	with	three	tabs:	Scratch,	Setup	and
Execute.		Paste	the	block	of	code	below	into	the	Setup	tab:

#	this	block	goes	into	the	"Setup"	tab	of	the	CodeRunner
import	vtk
fe	=	vtk.vtkFeatureEdges()
tf	=	vtk.vtkTubeFilter()
tf.SetRadius(0.01)
tf.SetNumberOfSides(16)
tf.SetInputConnection(fe.GetOutputPort())

...	and	the	following	block	into	the	"Execute"	tab:

#	this	block	goes	into	the	"Execute"	tab	of	the	CodeRunner
fe.SetInput(obj.inputs[0])
tf.Update()

obj.outputs[0]	=	tf.GetOutput()

Now	click	on	the	"Execute"	button	at	the	bottom	of	the	CodeRunner	View.		In
your	slice3dVWR,	you	should	see	something	looking	more	or	less	like	the	figure
below:

Pretty	slick	eh?	

Working	with	Scratch,	Setup	and	Execute	tabs
Using	CodeRunner	modules,	you	can	insert	arbitrary	code	segments	into	your
DeVIDE	networks.		The	"Scratch"	tab	is	for	experimentation,	the	"Setup"	tab
code	runs	ONCE	for	any	changes	that	you	make	(you	should	use	this	for
building	pipelines	for	example),	and	the	"Execute"	tab	runs	every	time	the
network	is	executed	and	the	CodeRunner's	inputs	have	changed	or	any	of	the
CodeRunner	tabs	have	been	modified.

Whilst	editing	any	of	the	tabs,	press	Control-Enter	to	execute	just	that	tab	at	that
moment.	Clicking	on	the	"Execute"	button	at	the	bottom	of	the	View	requests	the
whole	network	to	be	run.		Liberal	use	of	Control-Enter	whilst	editing	will	make
sure	that	all	Python	objects	that	you	have	created	will	be	instantiated.		Besides
the	fact	that	code-completion	and	inline	documentation	can	then	do	its	thing,	you

can	easily	experiment	at	run-time.
		

DICOMBrowser Previous	Top	Next

Introduction
With	the	DeVIDE	DICOMBrowser,	released	with	8.5,	you	can	easily	explore
collections	of	DICOM	data.		It	is	intended	to	be	used	as	a	visual	interface	with
which	DICOM	series	can	be	easily	selected	and	loaded,	using	the	companion
DICOMReader	module,	into	DeVIDE	for	further	processing.

Below	a	screenshot	of	the	DICOMBrowser	GUI	is	shown:

Also	see	our	introductory	screencast	on	youtube:
http://www.youtube.com/watch?v=iLfu6JXkWP4

http://www.youtube.com/watch?v=iLfu6JXkWP4

Starting	the	exploration
Enter	any	number	of	directories	and	or	filenames	into	the	"Files	and	Directories
to	Scan"	text	input	box,	separated	by	semicolons.		You	can	either	type	these	in
yourself,	cut	and	paste	them	from	some	other	application,	or	make	use	of	the
"Add	Dirs"	and	"Add	Files"	dialog	buttons.

After	having	entered	all	paths	that	you	wish	to	scan,	click	on	the	"Scan"	button.	
Post	8.5	versions	of	the	DICOMBrowser	will	show	a	progress	bar	whilst
scanning.

When	scanning	has	been	completed,	all	other	panels	in	the	interface	will	be
filled	out	with	information.

Exploring	your	data
DICOM	data	is	divided	up	into	studies,	where	each	study	is	associated	with	a
patient,	a	number	of	series	per	study,	and	a	number	of	images	per	series.		The
DICOMBrowser	allows	you	to	select	any	of	these	elements	by	clicking	in	the
relevant	panel.
Once	you've	selected	a	specific	series,	which	can	usually	be	seen	as	a	single	data
volume,	you	can	browse	through	the	images	in	that	series	by	clicking	on	the
relevant	file	in	the	"Image	Files"	panel,	or	by	making	use	of	the	Ctrl-N	Ctrl-P
hotkeys	for	next	image	and	previous	image,	or	by	clicking	on	the	image	and	then
using	the	mousewheel	to	move,	1	image	at	a	time,	through	the	series.		Control-
Mousewheel	will	skip	10	images	at	a	time	and	allows	rapid	scrolling	through	a
series.

Loading	data	for	further	processing
Once	you	have	identified	an	interesting	series,	you	can	create	a	DICOMReader
module	on	the	DeVIDE	canvas,	and	then	drag	directly	from	the	series	item	or
from	a	selection	of	filenames	onto	the	DICOMReader.		The	DICOMReader	will
now	be	configured	with	the	correct	filenames	and	can	be	executed	to	load	the
data	for	further	processing	by	DeVIDE	networks.

You	can	also	drag	a	series	or	selection	of	files	onto	most	file	manager	windows
(explorer	on	Windows,	nautilus	on	Gnome)	to	copy	those	files	into	the
destination	directory.

Shortcuts
Ctrl-N,	mousewheel	down	on
image Next	image	in	series

Ctrl-P,	mousewheel	up	on	image Previous	image	in	series
Ctrl-mousewheel	on	image Skip	10	images

Ctrl-0,	Ctrl-1 Change	view	layouts	(default,	max
image)

	 	
	 	
		

Introduction Previous	Top	Next

This	chapter	contains	a	selection	of	howtos,	i.e.	very	short	descriptions	of	how	to
perform	some	action	with	the	DeVIDE	software.
		

Loading	and	viewing	DICOM	data Previous	Top	Next

The	easiest	way	to	load	a	DICOM	dataset	is	to	select	the	relevant	DICOM	files
(often	with	a	.dcm	extension)	in	your	file	browser	(e.g.	Explorer	in	Windows	and
Konqueror	in	KDE)	and	to	drag	and	drop	the	selected	files	on	the	Graph	Editor
Canvas.	A	DICOMReader	module	will	be	automatically	created	with	the
selected	filenames	added.

Alternatively,	you	can	create	a	DICOMReader	module	in	the	normal	way,	i.e.	by
dragging	and	dropping	the	module	from	the	Module	Palette	onto	the	canvas.
Double	click	on	the	module	to	open	its	View/Config	window.	Click	on	the	Add
Files	button	to	add	any	number	of	DICOM	filenames.	Remember	to	click	on
Apply	after	having	added	the	relevant	filenames.	Alternatively	drag	and	drop	a
number	of	DICOM	files	onto	the	listbox,	or	directly	onto	the	glyph	on	the
canvas.		This	is	often	far	easier.

To	start	visualising	the	volume	that	you	have	just	loaded,	create	a	slice3dVWR
module	and	then	connect	the	output	of	the	DICOMReader	module	to	any	input
of	the	slice3dVWR	module.	The	module	interface	will	automatically	appear	with
the	default	axial	slice.	To	read	more	about	interacting	with	this	slice,	see	the
slices	section	of	the	slice3dVWR	documentation.

For	a	far	more	pleasant	DICOM	browsing	experience,	try	the	DICOMBrowser.	
A	screencast	demonstrating	this	functionality	is	available	at
http://www.youtube.com/watch?v=iLfu6JXkWP4.

		

http://www.youtube.com/watch?v=iLfu6JXkWP4

Smoothing	data Previous	Top	Next

There	are	a	number	of	filters	in	DeVIDE	that	can	be	used	for	smoothing	volume
data.

Filters.imageGaussianSmooth	performs	a	straight-forward	Gaussian	smoothing
(also	known	as	"blurring''	in	some	image	processing	packages).	The	standard
deviation	(in	pixels)	can	be	set	for	all	three	dimensions.	A	truncation,	or	cut-off,
can	also	be	set	for	all	three	dimensions.	Take	into	account	the	resolution	of	your
image	when	selecting	these	parameters.

curvatureFlowDenoising,	curvatureAnisotropicDiffusion	and
gradientAnisotropicDiffusion,	all	in	the	"Insight''	module	category,	are	more
advanced	smoothing	algorithms	that	attempt	to	smooth	homogeneous	regions
whilst	retaining	edge	information.	These	are	all	compute-	intensive	ITK-based
filters.	Please	read	the	tooltips	available	in	the	configuration	windows:	i.e.
double	click	on	the	module	and	then	let	your	mouse	hover	over	any	of	the	input
boxes	to	get	more	information	about	the	variable	required	for	that	input	box.	The
defaults	are	naturally	good	values	to	start	with.

When	you	use	these	with	VTK	data,	for	example	the	output	of	a	vtiRDR,	you
have	to	use	a	VTKtoITKF3	conversion	module.	To	visualisation	the	output,	you
need	to	convert	back	to	VTK	data	by	making	use	of	an	ITKF3toVTK	module.
However,	if	you're	planning	to	use	the	output	in	an	ITK	filter,	for	example	the
demonsRegistration,	you	don't	need	an	ITKF3toVTK	conversion	module	at	the
output.	The	figure	below	shows	an	example	of	this.

		

Performing	landmark	registration	on	two	volumes Previous	Top	Next

In	the	MRI	retrobulbar	fat	mobility	study,	multiple	MRI	datasets	are	made	of	a
subject	during	different	directions	of	gaze.	Although	great	care	is	taken	to
prevent	rigid	head	motion,	this	does	still	occur.	So	before	the	deformation	of	the
fat	is	calculated,	rigid	head	motion	has	to	be	eliminated	by	means	of	a	landmark-
based	rigid	registration.

One	of	the	directions	of	gaze	is	chosen	as	the	central	or	reference	direction:	all
other	datasets	have	to	be	registered	onto	this	dataset.	In	this	way,	all	datasets	will
share	a	common	frame	of	reference.

In	the	next	subsections,	we	will	explain	how	to	perform	one	such	registration.
This	obviously	has	to	be	performed	for	all	datasets	that	you	have	to	register	onto
the	reference	dataset.	The	figure	below	shows	an	example	DeVIDE	network	for
performing	this	landmark-based	rigid	registration.	Refer	to	it	during	the
following	explanation.

Select	source	and	target	points
Select	at	least	3,	preferably	more	rigid	landmarks	that	can	be	accurately	localised
in	all	datasets.

Select	these	points	in	the	reference	datasets	by	using	the	mouse	cursor	in	a	3D
slice3dVWR.	You	have	to	name	these	points	(in	the	slicedVWR	control	panel,

enter	the	name	into	the	"name''	input	box	before	clicking	on	the	"Store	this
point''	button.	The	names	of	these	points	have	to	start	with	"Target'',	for	example
"Target	Zygoma	1''.

Save	your	network	regularly!

Now	load	in	the	first	dataset	that	you	want	to	register	onto	the	reference	dataset.
Select	and	store	all	corresponding	points	in	this	dataset.	Use	a	separate
slice3dVWR.	The	names	of	these	points	all	have	to	start	with	"Source'',	for
example	"Source	Zygoma	1''.

It	is	very	important	that	you	select	these	points	in	the	same	order	as	the	target
points.

Derive	the	transform
Instantiate	a	"landmarkTransform''	module	from	the	Filters	category.	Read	its
help	by	right-	clicking	on	the	module	and	selecting	"Help	on	Module''.

Briefly	connect	and	disconnect	the	first	output	of	the	reference	dataset
"slice3dVWR''	to	any	input	of	the	second	"slice3dVWR''.	This	will	copy	the
"Target''	points	to	the	second	"slice3dVWR''.

Now	connect	the	first	output	of	the	second	"slice3dVWR''	to	the	input	of	the
"landmarkTransform''	module.	This	module	will	now	have	access	to	the	source
and	target	points	of	the	two	datasets	that	you	are	trying	to	register.	As	mentioned
earlier,	the	order	of	the	source	points	should	be	identical	to	that	of	the	target
points.

Transform	the	dataset
Connect	the	output	of	the	"landmarkTransform''	to	the	second	input	of	a
"transformVolumeData''	module	(category	"Filters'').	Connect	the	dataset	that
you	are	registering	onto	the	reference	dataset	to	the	first	input	of	the
"transformVolumeData''	module.	The	output	of	this	module	will	be	the
transformed	volume	dataset.	You	can	add	it	to	one	of	the	reference	dataset's
slice3dVWR's	inputs	for	an	overlay.	Select	the	"Primary	LUT	fusion''	overlay
mode	in	the	slice3dVWR	control	panel.	The	Alpha-parameter	can	be	adjusted	to
"fade''	from	the	reference	dataset	to	the	registered	dataset	and	back.

Don't	forget	to	save	your	transformed	dataset:	Connect	the	output	of	the
"transformVolume''	module	to	the	input	of	a	"vtiWRT''	module	for	example.
Double	click	on	the	"vtkWRT''	module	and	then	click	on	the	browse	button	to
select	a	filename.	For	all	writer	modules,	you	HAVE	to	click	on	the	"Execute''
button	for	it	to	save	the	file.

Determining	optical	flow	between	two	volumes Previous	Top	Next

In	order	to	determine	the	optical	flow	between	two	rigidly	registered	datasets,
we	make	use	of	the	demonsRegistration	non-rigid	registration	module.	Do	this
after	the	rpgid	landmark-based	pre-registration	and	after	having	extracted	a
common	sub-volume	from	all	datasets.

This	is	an	ITK	module,	so	you	have	to	use	the	ITK-enabled	version	of	DeVIDE.
For	each	pair	of	successive	volumes,	determine	the	optical	flow	by	making	use
of	a	network	like	the	one	shown	in	the	figure	below:

Text	to	be	completed...
		

Flow	visualisation	with	glyphs	only	on	slice3dVWR	slices Previous	Top	Next

If	a	vector	dataset	is	available,	such	as	the	one	generated	by	the	optical	flow
procedure	described	above,	the	deformation	vector	field	can	be	visualised	by
making	use	of	the	Filters|glyphs	module.	However,	this	module	visualises	the
complete	vector	field.

One	can	also	visualise	only	the	vectors	on	the	current	slices	in	the	slice3dVWR.
To	do	this,	build	a	network	as	shown	below:

The	slice3dVWR	outputs	a	poly	data	representing	the	geometry	of	all	current
planes.	In	this	case,	we	use	it	as	a	probe	input	so	that	we	can	visualise	arrow
glyphs	located	on	the	plane.

Remember	that	the	opacity	of	slices	can	be	adjusted	(Slices	menu:	"Set
Opacity'')	so	that	visualising	a	background	slice	along	with	the	deformation
vectors	on	it	is	easier.
		

Probing	and	warping	(interactive	advection) Previous	Top	Next

The	figure	below	shows	how	to	perform	interactive	probing	and	warping
(advection)	with	DeVIDE:

The	volume	data	has	been	loaded	with	vtkRDR	dvm11	and	serves	as	context	in
the	slice3dVWR.	In	this	case,	we	are	using	two	vector	fields,	loaded	with
respectively	metaImageRDR	dvm7	and	dvm11fyi11.	Points	that	have	been
selected	and	stored	with	the	slice3dVWR	(these	can	be	changed	at	any	time,	the
network	updates	interactively)	are	changed	into	spherical	shells	of	points	by	the
pointsToSpheres	module	dvm6ldz6.	The	output	of	this	module	can	be	connected
to	the	slice3dVWR	to	view	the	initial	sphere.

The	first	probeFilter	dvm7fxg7	maps	and	interpolates	the	vectors	from	the	first
vector	field	onto	the	points	of	the	spherical	cloud.	Connect	the	output	of	the
probeFilter	to	the	warpPoints	module.	After	connecting	the	warpPoints	input,
make	sure	to	"Execute''	and	"Apply''	the	warpPoints	module	once.	The	correct
"Vectors	selection''	can	then	be	made	from	its	View/Config	window.	"Default

Active	Vectors''	is	very	often	NOT	what	you	want.	Experiment	with	this.	(Thijs
en	Ronald,	in	jullie	geval	moet	dit	"ImageFile''	zijn!).	After	having	made	this
selection,	"Apply''	or	"Execute''	the	module	again.	Now	you	can	connect	its
output	to	the	slice3dVWR.	The	points	are	advected	by	the	vectors	that	you	have
associated	to	them.

This	output	is	also	used	in	the	next	advection	step,	using	the	next	vector	field.
Once	again,	make	sure	to	select	the	correct	vectors	in	the	warpPoints	module
View/Config	window.	You	could	also	simply	copy	and	paste	the	first	probeFilter
and	warpPoints	module	(AFTER	you've	performed	the	vector	selection	step),	in
which	case	the	selection	will	already	be	correct.

Add	as	many	of	these	steps	as	are	necessary	to	complete	the	full	advection	with
all	your	available	vector	fields.	At	each	step,	check	that	your	sphere	is	being
correctly	advected	before	you	continue.

Introduction Previous	Top	

This	chapter	will	explain	the	various	ways	in	which	you	can	extend	DeVIDE's
functionality.	This	mostly	happens	via	the	creation	of	new	DeVIDE	modules.	
There	are	various	types	of	modules	that	one	can	create,	this	chapter	documents
most	of	'em.

Other	possibilities	for	extending	DeVIDE	include	writing	Snippets	(a	kind	of
poor	man's	plugins)	or	simply	making	use	of	the	CodeRunner	module.		The	latter
is	recommended	if	you	want	to	test	your	idea	as	quickly	as	possible	and	can't	be
bothered	with	reading	manuals.	Making	a	new	module,	although	taking	slightly
more	time,	has	its	advantages,	such	as	more	flexibility,	easier	distribution,	and
creating	DeVIDE	MiniApps!

		

	Copyright notice
	Sponsors
	Introduction

