
	Search

Table	of	contents

CodeBlocks	Manual

1	CodeBlocks	Project	Management
1.1	Project	View
1.2	Notes	for	Projects
1.3	Project	Templates
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets
1.6	Pre-	and	Postbuild	steps
1.7	Adding	Scripts	in	Build	Targets
1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.10	Editor	and	Tools

1.10.1	Default	Code
1.10.2	Abbreviation
1.10.3	Personalities
1.10.4	Configuration	Files
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.10.8	Including	external	tools

1.11	Tips	for	working	with	CodeBlocks
1.11.1	Tracking	of	Modifications
1.11.2	Data	Exchange	with	other	applications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.5	Switching	between	projects

1.11.6	Extended	settings	for	compilers
1.11.7	Zooming	within	the	editor
1.11.8	Wrap	Mode
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.11	Auto	complete
1.11.12	Find	broken	files
1.11.13	Including	libraries
1.11.14	Object	linking	order
1.11.15	Autosave
1.11.16	Settings	for	file	extensions

1.12	CodeBlocks	at	the	command	line
1.13	Shortcuts

1.13.1	Editor
1.13.2	Files
1.13.3	View
1.13.4	Search
1.13.5	Build

2	Plugins
2.1	Astyle
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.5	Source	Code	Exporter
2.6	Thread	Search

2.6.1	Features
2.6.2	Usage
2.6.3	Configuration
2.6.4	Options
2.6.5	Thread	search	options
2.6.6	Layout
2.6.7	Panel	Management
2.6.8	Logger	Type

2.6.9	Splitter	Window	Mode
2.6.10	Sort	Search	Results

2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.9	SVN	Support
2.10	LibFinder

2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
2.10.3	Using	LibFinder	and	projects	generated	from
wizards

2.11	AutoVersioning
2.11.1	Introduction
2.11.2	Features
2.11.3	Usage
2.11.4	Dialog	notebook	tabs

2.11.4.1	Version	Values
2.11.4.2	Status
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.4.5	Changes	Log

2.11.5	Including	in	your	code
2.11.5.1	Output	of	version.h

2.11.6	Change	log	generator
2.11.6.1	Buttons	Summary

2.12	Code	statistics
2.13	Searching	Available	Source	Code
2.14	Code	profiler
2.15	Symbol	Table	Plugin

3	Variable	Expansion
3.1	Syntax
3.2	List	of	available	built-ins

3.2.1	CodeBlocks	workspace
3.2.2	Files	and	directories

3.2.3	Build	targets
3.2.4	Language	and	encoding
3.2.5	Time	and	date
3.2.6	Random	values
3.2.7	Operating	System	Commands
3.2.8	Conditional	Evaluation

3.3	Script	expansion
3.4	Command	Macros
3.5	Compile	single	file
3.6	Link	object	files	to	executable
3.7	Global	compiler	variables
3.8	Synopsis
3.9	Names	and	Members
3.10	Constraints
3.11	Using	Global	Compiler	Variables
3.12	Variable	Sets

3.12.1	Custom	Members	Mini-Tutorial

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1	CodeBlocks	Project	Management

The	instructions	for	chapter	3	and	??	are	official	documentations	of	the
CodeBlocks	Wiki	site	and	available	in	english	only.	
The	below	illustration	shows	the	design	of	the	CodeBlocks	user	interface.	

Figure	1.1:	IDE
CodeBlocks

Management	
This	window	contains	the	interface	’Projects’	which	will	in	the
following	text	be	referred	to	as	the	project	view.	This	view	show	all
the	projects	opened	in	CodeBlocks	at	a	certain	time.	The	’Symbols’

tab	of	the	Management	window	shows	symbols,	variables	etc..	
Editor	

In	the	above	illustration,	a	source	named	hello.c	is	opened	with
syntax	highlighting	in	the	editor.	

Open	files	list	
shows	a	list	of	all	files	opened	in	the	editor,	in	this	example:
hello.c.	

CodeSnippets	
can	be	displayed	via	the	menu	’View’	/’CodeSnippets’	.	Here	you
can	manage	text	modules,	links	to	files	and	links	to	urls.	

Logs	&	others	
.	This	window	is	used	for	outputting	search	results,	log	messages	of
a	compiler	etc..

The	status	bar	gives	an	overview	of	the	following	settings:	

Absolute	path	of	an	opened	file	in	the	editor.	
The	editor	uses	the	default	character	encoding	of	your	host
operating	system.	This	setting	will	be	displayed	with	default.	
Row	and	column	number	of	the	current	cursor	position	in	the	editor.	
The	configured	keyboard	mode	for	inserting	text	(Insert	or
Overwrite).	
Current	state	of	a	file.	A	modified	file	will	be	marked	with	Modified
otherwise	this	entry	is	empty.	
The	permission	of	a	file.	A	file	with	read	only	settings	will	display
Read	only	in	the	status	bar.	In	the	window	’Open	files	list’	these	files	will
be	emphasised	with	a	lock	as	icon	overlay.	

Note:
In	the	active	editor	the	user	can	select	the	context	menu	properties.	In
the	appearing	dialog	in	the	tab	’General’	the	option	’File	is	read-only’
can	be	selected.	This	option	will	result	in	a	read-only	access	of	the

corresponding	file	within	CodeBlocks,	but	the	original	read	and	write
attributes	of	the	file	on	the	filesystem	are	not	modified.	

If	you	start	CodeBlocks	with	the	command	line	option	--
personality=<profile>	then	the	status	bar	will	show	the	currently
used	profile,	otherwise	default	will	be	shown.	The	settings	of	CodeBlocks

are	stored	in	the	corresponding	configuration	file
<personality>.conf.

CodeBlocks	offers	a	very	flexible	and	comprehensive	project	management.	The
following	text	will	address	only	some	of	the	features	of	the	project	management.	

	CodeBlocks	Manual
	1.1		Project	View

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.1	Project	View

In	CodeBlocks,	the	sources	and	the	settings	for	the	build	process	are	stored	in	a
project	file	<name>.cbp.	C/C++	sources	and	the	corresponding	header	files
are	the	typical	components	of	a	project.	The	easiest	way	to	create	a	new	project
is	executing	the	command	’File’	/’Project’	and	selecting	a	wizard.	Then	you	can
add	files	to	the	project	via	the	context	menu	’Add	files’	in	the	Management
window.	
CodeBlocks	governs	the	project	files	in	categories	according	to	their	file
extensions.	These	are	the	preset	categories:	
Sources	

includes	source	files	with	the	extensions	*.c;*.cpp;.	
ASM	Sources	

includes	source	files	with	the	extensions	*.s;*.S;*.ss;*.asm.	
Headers	

includes,	among	others,	files	with	the	extension	*.h;.	
Resources	

includes	files	for	layout	descriptions	for	wxWidgets	windows	with	the
extensions	*.res;*.xrc;.	These	file	types	are	shown	in	the
’Resources’	tab	of	the	Manangement	window.

The	settings	for	types	and	categories	of	files	can	be	adjusted	via	the	context
menu	’Project	tree’	/’Edit	file	types	&	categories’	.	Here	you	can	also	define
custom	categories	for	file	extensions	of	your	own.	For	example,	if	you	wish	to
list	linker	scripts	with	the	*.ld	extension	in	a	category	called
Linkerscript,	you	only	have	to	create	the	new	category.	

Note:
If	you	deactivate	’Project	tree’	/’Categorize	by	file	types’	in	the	context

menu,	the	category	display	will	be	switched	off,	and	the	files	will	be	listed
as	they	are	stored	in	the	file	system.	

	1		CodeBlocks	Project	Management
	1.2		Notes	for	Projects

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.2	Notes	for	Projects

In	CodeBlocks,	so-called	notes	can	be	stored	for	a	project.	These	notes	should
contain	short	descriptions	or	hints	for	the	corresponding	project.	By	displaying
this	information	during	the	opening	of	a	project,	other	users	are	provided	with	a
quick	survey	of	the	project.	The	display	of	notes	can	be	switched	on	or	off	in	the
Notes	tab	of	the	Properties	of	a	project.	

	1.1		Project	View
	1.3		Project	Templates

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.3	Project	Templates

CodeBlocks	is	supplied	with	a	variety	of	project	templates	which	are	displayed
when	creating	a	new	project.	However,	it	is	also	possible	to	store	custom
templates	for	collecting	your	own	specifications	for	compiler	switches,	the
optimisation	to	be	used,	machine-specific	switches	etc.	in	templates.	These
templates	will	be	stored	in	the	Documents	and	Settings\
<user>\Application	Data\codeblocks\UserTemplates	directory.
If	the	templates	are	to	be	open	to	all	users,	they	have	to	be	copied	to	a
corresponding	directory	of	the	CodeBlocks	installation.	These	templates	will
then	be	displayed	at	the	next	startup	of	CodeBlocks	under	’New’	/’	Project’
/’User	templates’	.	

Note:
The	available	templates	in	the	Project	Wizard	can	be	edited	by	selection	via

right-click.	

	1.2		Notes	for	Projects
	1.4		Create	Projects	from	Build	Targets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.4	Create	Projects	from	Build	Targets

In	projects	it	is	necessary	to	have	different	variants	of	the	project	available.
Variants	are	called	Build	Targets.	They	differ	with	respect	to	their	compiler
options,	debug	information	and/or	choice	of	files.	A	Build	Target	can	also	be
outsourced	to	a	separate	project.	To	do	so,	click	’Project’	/’Properties’	,	select	the
variant	from	the	tab	’Build	Targets’	and	click	the	’Create	project	from	target’
button	(see	Figure	1.2).	

Figure	1.2:
Build

Targets

	1.3		Project	Templates
	1.5		Virtual	Targets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.5	Virtual	Targets

Projects	can	be	further	structured	in	CodeBlocks	by	so-called	Virtual	Targets.	A
frequently	used	project	structure	consists	of	two	Build	Targets,	one	’Debug’
Target	which	contains	debug	information	and	one	’Release’	Target	without	this
information.	By	adding	Virtual	Targets	via	’Project’	/’Properties’	/’Build	Targets’
individual	Build	Targets	can	be	combined.	For	example,	a	Virtual	Target	’All’
can	create	the	Targets	Debug	and	Release	simultaneously.	Virtual	Targets	are
shown	in	the	symbol	bar	of	the	compiler	under	Build	Targets.	

	1.4		Create	Projects	from	Build	Targets
	1.6		Pre-	and	Postbuild	steps

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.6	Pre-	and	Postbuild	steps

CodeBlocks	makes	it	possible	to	perform	additional	operations	before	or	after
compiling	a	project.	These	operations	are	called	Prebuilt	or	Postbuilt	Steps.
Typical	Postbuilt	Steps	are:	

Creating	an	Intel	Hexformat	from	a	finished	object	
Manipulating	objects	by	objcopy	
Generating	dump	files	by	objdump

Example	
Creating	a	Disassembly	from	an	object	under	Windows.	Piping	to	a	file	requires
calling	cmd	with	the	/c	option.	

		cmd	/c	objdump	-D	name.elf	>	name.dis	
Archiving	a	project	can	be	another	example	for	a	Postbuilt	Step.	For	this
purpose,	create	a	Build	Target	’Archive’	and	include	the	following	instruction	in
the	Postbuilt	Step:	

		zip	-j9	$(PROJECT_NAME)_$(TODAY).zip	src	h	obj	$(PROJECT_NAME).cbp	
With	this	command,	the	active	project	and	its	sources,	header	and	objects	will	be
packed	as	a	zip	file.	In	doing	so,	the	Built-in	variables	$(PROJECT_NAME)
and	$(TODAY),	the	project	name	and	the	current	date	will	be	extracted	(see
section	3.2).	After	the	execution	of	the	Target	’Archive’,	the	packed	file	will	be
stored	in	the	project	directory.	
In	the	share/codeblocks/scripts	directory	you	will	find	some
examples	for	scripts.	You	can	add	a	script	via	menu	’Settings’	/’Scripting’	and
register	in	a	menu.	If	you	execute	e.g.	the	script	make_dist	from	the	menu
then	all	files	belonging	to	a	project	will	be	compressed	in	an	archive
<project>.tar.gz.	

	1.5		Virtual	Targets
	1.7		Adding	Scripts	in	Build	Targets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.7	Adding	Scripts	in	Build	Targets

CodeBlocks	offers	the	possibility	of	using	menu	actions	in	scripts.	The	script
represents	another	degree	of	freedom	for	controlling	the	generation	of	your
project.	

Note:
A	script	can	also	be	included	at	a	Build	Target.	

	1.6		Pre-	and	Postbuild	steps
	1.8		Workspace	and	Project	Dependencies

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.8	Workspace	and	Project	Dependencies

In	CodeBlocks,	multiple	projects	can	be	open.	By	saving	open	projects	via	’File’
/’Save	workspace’	you	can	collect	them	in	a	single	workspace	under
<name>.workspace.	If	you	open	<name>.workspace	during	the	next
startup	of	von	CodeBlocks,	all	projects	will	show	up	again.	
Complex	software	systems	consist	of	components	which	are	managed	in
different	CodeBlocks	projects.	Furthermore,	with	the	generation	of	such
software	systems,	there	are	often	dependencies	between	these	projects.	
Example	
A	project	A	contains	fundamental	functions	which	are	made	available	to	other
projects	in	the	form	of	a	library.	Now,	if	the	sources	of	this	project	are	modified,
then	the	library	has	to	be	rebuilt.	To	maintain	consistency	between	a	project	B
which	uses	the	functions	and	project	A	which	implements	the	functions,	project
B	has	to	depend	on	project	A.	The	necessary	information	on	the	dependencies	of
projects	is	stored	in	the	relevant	workspace,	so	that	each	project	can	be	created
separately.	The	usage	of	dependencies	makes	it	also	possible	to	control	the	order
in	which	the	projects	will	be	generated.	The	dependencies	for	projects	can	be	set
via	the	selecting	the	menu	’Project’	/’Properties’	and	then	clicking	the	’Project’s
dependencies’	button.	

	1.7		Adding	Scripts	in	Build	Targets
	1.9		Including	Assembler	files

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.9	Including	Assembler	files

In	the	Management	window	of	the	Project	View,	Assembler	files	are	shown	in
the	ASM	Sources	category.	The	user	can	change	the	listing	of	files	in
categories	(see	section	1.1).	Right-clicking	one	of	the	listed	Assembler	files	will
open	a	context	menu.	Select	’Properties’	to	open	a	new	window.	Now	select	the
’Build’	tab	and	activate	the	two	fields	’Compile	file’	and	’Link	file’.	Then	select
the	’Advanced’	tab	and	execute	the	following	steps:	

1.	 Set	’Compiler	variable’	to	CC	
2.	 Select	the	compiler	under	’For	this	compiler’	
3.	 Select	’Use	custom	command	to	build	this	file’	
4.	 In	the	window,	enter:	

		$compiler	$options	$includes	<asopts>	-c	$file	-o	$object	
The	CodeBlocks	variables	are	marked	by	$	(see	section	3.4).	They	are	set
automatically	so	that	you	only	have	to	replace	the	Assembler	option	<asopt>	by
your	own	settings.	

	1.8		Workspace	and	Project	Dependencies
	1.10		Editor	and	Tools

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10	Editor	and	Tools

1.10.1	Default	Code

The	company’s	Coding	Rules	require	source	files	to	have	a	standard	design.
CodeBlocks	makes	it	possible	to	include	a	predefined	content	at	the	beginning	of
a	file	automatically	when	creating	new	C/C++	sources	and	headers.	This
predefined	content	is	called	default	code.	This	setting	can	be	selected	under
’Stettings’	/’Editor’	Default	Code.	If	you	create	a	new	file	then	a	macro
expansion	of	variables,	e.g.	defined	via	menu	’Settings’	/’Global	variables’	,	is
performed.	A	new	file	can	be	created	via	the	menu	’File’	/’New’	/’File’	.	
Example	
		/***

			*		Project:	$(proejct)	
			*		Function:	

			*		$Author:	mario	$	
			*		$Name:		$	

			*	
			*		Copyright	2007	by	company	name	
			*	
			**/

	1.9		Including	Assembler	files
	1.10.2		Abbreviation

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.2	Abbreviation

A	lot	of	typing	can	be	saved	in	CodeBlocks	by	defining	abbreviation.	This	is
done	by	selecting	’Settings’	/’Editor’	and	defining	the	abbreviations	under	the
name	<name>,	which	can	then	be	called	by	the	keyboard	shortcut	Ctrl-J	(see
Figure	1.3).	

Figure	1.3:
Defining
abbreviations

Parametrisation	is	also	possible	by	including	variables	$(NAME)	in	the
abbreviations.	
		#ifndef	$(Guard	token)	
		#define	$(Guard	token)	
		#endif	//	$(Guard	token)	
When	performing	the	abbreviation	<name>	in	the	source	text	and	performing
Ctrl-J,	the	content	of	the	variable	is	requested	and	included.	

	1.10.1		Default	Code
	1.10.3		Personalities

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.3	Personalities

CodeBlocks	settings	are	saved	as	application	data	in	a	file	called
<user>.conf	in	the	codeblocks	directory.	This	configuration	file
contains	information	such	as	the	last	opened	projects,	settings	for	the	editor,
display	of	symbol	bars	etc.	By	default,	the	’default’	personality	is	set	so	that	the
configuration	is	stored	in	the	file	default.conf.	If	CodeBlocks	is	called
from	the	command	line	with	the	parameter	--personality=myuser,	the
settings	will	be	stored	in	the	file	myuser.conf.	If	the	profile	does	not	exist
already,	it	will	automatically	be	created.	This	procedure	makes	it	possible	to
create	the	corresponding	profiles	for	different	work	steps.	If	you	start
CodeBlocks	from	the	command	line	with	the	additional	parameter--
personality=ask,	a	selection	box	will	be	displayed	for	all	the	available
profiles.	

Note:
The	name	of	the	current	profile/personality	is	displayed	in	the	right	corner

of	the	status	bar.	

	1.10.2		Abbreviation
	1.10.4		Configuration	Files

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.4	Configuration	Files

The	CodeBlocks	settings	are	stored	in	the	default.conf	profile	in	the
codeblocks	directory	of	your	Application	Data.	When	using	personalities
(see	subsection	1.10.3),	the	configuration	details	will	be	stored	in	the
<personality>.conf	file.	
The	tool	cb_share_conf,	which	can	be	found	in	the	CodeBlocks	installation
directory,	is	used	for	managing	and	storing	these	settings.	
If	you	wish	to	define	standard	settings	for	several	users	of	a	computer,	the
configuration	file	default.conf	has	to	be	stored	in	the	directory
\Documents	and	Settings\Default	User\Application
Data\codeblocks.	During	the	first	startup,	CodeBlocks	will	copy	the
presettings	from	’Default	User’	to	the	application	data	of	the	current	users.	
To	create	a	portable	version	of	CodeBlocks	on	a	USB	stick,	proceed	as	follows.
Copy	the	CodeBlocks	installation	to	a	USB	stick	and	store	the	configuration	file
default.conf	in	this	directory.	The	configuration	will	be	used	as	a	global
setting.	Please	take	care	that	the	file	is	writeable,	otherwise	changes	of	the
configuration	cannot	be	stored.	

	1.10.3		Personalities
	1.10.5		Navigate	and	Search

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.5	Navigate	and	Search

In	CodeBlocks	there	are	different	ways	of	quick	navigation	between	files	and
functions.	Setting	bookmarks	is	a	typical	procedure.	Via	the	shortcut	Ctrl-B	a
bookmark	is	set	or	deleted	in	the	source	file.	Via	Alt-PgUp	you	can	jump	to	the
previous	bookmark,	and	via	Alt-PgDn	you	can	jump	to	the	next	bookmark.	
If	you	select	the	workspace	or	a	project	in	the	workspace	in	the	project	view	you
will	be	able	to	search	for	a	file	in	the	project.	Just	select	’Find	file’	from	the
context	menu,	then	type	the	name	of	the	file	and	the	file	will	be	selected.	If	you
hit	return	this	file	will	be	opened	in	the	editor	(see	Figure	1.4).	

Figure	1.4:
Searching
for	files

In	CodeBlocks	you	can	easily	navigate	between	header/source	files	like:	

1.	 Set	cursor	at	the	location	where	a	header	file	is	include	and	open
this	file	via	the	context	menu	’open	include	file’	(see	Figure	1.5)	

2.	 Swap	between	header	and	source	via	the	context	menu	’Swap
header/source’	

3.	 Select	e.g.	a	define	in	the	editor	and	choose	’Find	declaration’	from
the	context	menu	to	open	the	file	with	its	declaration.

Figure	1.5:
Opening
of	a
header	file

CodeBlocks	offeres	several	ways	of	searching	within	a	file	or	directory.	The
dialogue	box	for	searching	is	opened	via	’Search’	/’Find’	(Ctrl-F)	or	’Find	in
Files’	(Ctrl-Shift-F).	
Alt-G	and	Ctrl-Alt-G	are	another	useful	functions.	The	dialogue	which	will	open
on	using	this	shortcut,	lets	you	select	files/functions	and	then	jumps	to	the
implementation	of	the	selected	function	(see	Figure	1.6)	or	opens	the	selected
file	in	the	editor.	You	may	use	wildcards	like	*	or	?	etc.	for	an	incremental
search	in	the	dialog.	

Figure	1.6:
Search	for
functions

Note:
With	the	Ctrl-PgUp	shortcut	you	can	jump	to	the	previous	function,	and	via

Ctrl-PgDn	you	can	jump	to	the	next	function.	
In	the	editor,	you	can	open	a	new	Open	Files	dialog	via	Ctrl-Tab	and	you	can
switch	between	the	listed	entries.	If	the	Ctrl-key	is	pressed,	then	a	file	can	be
selected	in	different	ways:	

1.	 If	you	select	an	entry	with	the	left	mouse	button,	then	the	selected
file	will	be	opened.	

2.	 If	you	press	the	Tab-key	you	will	switch	between	the	listed	entries.
Releasing	the	Crtl-key	will	open	the	selected	file.	

3.	 If	you	move	the	mouse	over	the	listed	entries,	then	the	current
selection	will	be	highlighted.	Releasing	the	Crtl-key	will	open	the
selected	file.	

4.	 If	the	mouse	pointer	is	outside	the	highlighted	selection,	then	you
can	use	the	mouse-wheel	to	switch	between	the	entries.	Releasing
the	Crtl-key	will	open	the	selected	file.

A	common	procedure	when	developing	software	is	to	struggle	with	a	set	of
functions	which	are	implemented	in	different	files.	The	Browse	Tracker	plugin
will	help	you	solve	this	problem	by	showing	you	the	order	in	which	the	files
were	selected.	You	can	then	comfortably	navigate	the	function	calls	(see
section	2.8).	
The	display	of	line	numbers	in	CodeBlocks	can	be	activated	via	’Settings’
/’General	Settings’	in	the	field	’Show	line	numbers’.	The	shortcut	Ctrl-G	or	the
menu	command	’Search’	/’Goto	line’	will	help	you	jump	to	the	desired	line.	

Note:
If	you	hold	the	Ctrl	key	and	then	select	text	in	the	CodeBlocks	editor	you

can	perform	e.g.	a	Google	search	via	the	context	menu.	

	1.10.4		Configuration	Files
	1.10.6		Symbol	view

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.6	Symbol	view

The	CodeBlocks	Management	window	offers	a	tree	view	for	symbols	of	C/C++
sources	for	navigating	via	functions	or	variables.	As	the	scope	of	this	view,	you
can	set	the	current	file	or	project,	or	the	whole	workspace.	

Note:
Entering	a	search	term	or	symbol	names	in	the	’Search’	input	mask	of	the

Symbol	Browser	results	in	a	filtered	view	of	the	symbols	if	any	hits
occurred.	

The	following	categories	exist	for	the	symbols:	
Global	functions	

Lists	the	implementation	of	global	functions.	
Global	typedefs	

Lists	the	use	of	typedef	definitions.	
Global	variables	

Displays	the	symbols	of	global	variables.	
Preprocessor	symbols	

Lists	the	pre-processor	directives	created	by	#define.	
Global	macros	

Lists	macros	of	pre-processor	directives.

Figure	1.7:
Symbol
view

Structures	and	classes	are	displayed	in	the	’bottom	tree’	and	the	sort	sequence
can	be	modified	via	the	context	menu.	If	a	category	is	selected	by	mouse-click,
the	found	symbols	will	be	displayed	in	the	lower	part	of	the	window	(see
Figure	1.7).	Double-clicking	the	symbol	will	open	the	file	in	which	the	symbol
is	defined	or	the	function	implemented,	and	jumps	to	the	corresponding	line.	An
auto-refresh	of	the	symbol	browser	without	saving	a	file,	can	be	activated	via	the
menu	’Settings’	/’Editor’	/’Code	Completion’	(see	Figure	1.8).	For	projects	with
many	symbols	the	performance	within	CodeBlocks	will	be	affected.	

Figure	1.8:
Enable
real-time
parsing

Note:
In	the	editor,	a	list	of	the	classes	can	be	displayed	via	the	context	menus
’Insert	Class	method	declaration	implementation’	or	’All	class	methods

without	implementation’	.	

	1.10.5		Navigate	and	Search
	1.10.7		Including	external	help	files

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.7	Including	external	help	files

The	CodeBlocks	development	environment	supports	the	inclusion	of	external
help	files	via	the	menu	’Settings’	/’Environment’	.	Include	the	manual	of	your
choice	in	the	chm	format	in	’Help	Files’	select	’this	is	the	default	help	file’	(see
Figure	1.9).	The	entry	$(keyword)	is	a	placeholder	for	a	select	item	in	your
editor.	Now	you	can	select	a	function	in	an	opened	source	file	in	CodeBlocks	by
mouse-click,	and	the	corresponding	documentation	will	appear	while	pressing
F1.	
If	you	have	included	multiple	help	files,	you	can	select	a	term	in	the	editor	and
choose	a	help	file	from	the	context	menu	’Locate	in’	for	CodeBlocks	to	search
in.	

Figure	1.9:
Settings
for	help
files

In	CodeBlocks	you	can	add	even	support	for	man	pages.	Just	add	a	entry	’man’
and	specify	the	path	as	follows.	
		man:/usr/share/man	
CodeBlocks	provides	an	’Embedded	HTML	Viewer’,	which	can	be	used	to
display	simple	html	file	and	find	keywords	within	this	file.	Just	configure	the
path	to	the	html	file,	which	should	be	parsed	and	enable	the	checkbox	’Open	this
file	with	embedded	help	viewer’	via	the	menu	’Settings’	/’Environment’	/’Help
Files’	.	

Figure	1.10:
Embedded
HTML
Viewer

Note:
If	you	select	a	html	file	with	a	double-click	within	the	file	explorer	(see
section	2.7)	then	the	embedded	html	viewer	will	be	started,	as	long	as	no

association	for	html	files	is	made	in	file	extensions	handler.

	1.10.6		Symbol	view
	1.10.8		Including	external	tools

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.10.8	Including	external	tools

Including	external	tools	is	possible	in	CodeBlocks	via	’Tools’	/’Configure	Tools’
/’Add’	.	Built-in	variables	(see	section	3.2)	can	also	be	accessed	for	tool
parameters.	Furthermore	there	are	several	kinds	of	launching	options	for	starting
external	applications.	Depending	on	the	option,	the	externally	started
applications	are	stopped	when	CodeBlocks	is	quit.	If	the	applications	are	to
remain	open	after	quitting	CodeBlocks,	the	option	’Launch	tool	visible	detached’
must	be	set.	

	1.10.7		Including	external	help	files
	1.11		Tips	for	working	with	CodeBlocks

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11	Tips	for	working	with	CodeBlocks

In	this	chapter	we	will	present	some	useful	settings	in	CodeBlocks.	

	1.10.8		Including	external	tools
	1.11.1		Tracking	of	Modifications

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.1	Tracking	of	Modifications

CodeBlocks	provides	a	feature	to	track	modifications	within	a	source	file	and	to
show	a	bar	in	the	margin	for	the	changes.	Modifications	are	marked	with	a
yellow	changebar	and	modifications	that	are	already	saved	will	use	a	green
changebar	(see	Figure	1.11).	You	can	navigate	between	your	changes	via	the
menu	’Search’	/’Goto	next	changed	line’	or	’Search’	/’Goto	previous	changed
line’	.	The	same	functionality	is	also	accessible	via	the	shortcuts	Ctrl-F3	and
Ctrl-Shift-F3.	

Figure	1.11:
Tracking	of
modifications

This	feature	can	be	enabled	or	disabled	with	the	checkbox	’Use	Changebar’	in
the	menu	’Settings’	/’Editor’	/’Margins	and	caret’	.	

Note:
If	a	modified	file	is	closed,	then	the	changes	history	like	undo/redo	and
changebars	get	lost.	Via	the	menu	’Edit’	/’Clear	changes	history’	or	the

corresponding	context	menu	you	are	able	to	clear	the	changes	history	even
if	the	file	is	kept	open.	

	1.11		Tips	for	working	with	CodeBlocks
	1.11.2		Data	Exchange	with	other	applications

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.2	Data	Exchange	with	other	applications

Data	can	be	exchanged	between	CodeBlocks	and	other	applications.	For	this
interprocess	communication	DDE	(Dynamic	Data	Exchange)	is	used	for
windows	and	under	different	operating	systems	it	is	a	TCP	based
communication.	
With	this	interface	different	commands	with	the	following	syntax	can	be	sent	to
a	CodeBlocks	instance.	
		[<command>("<parameter>")]	
These	commands	are	currently	available:	

Open	
The	command	

		[Open("d:\temp\test.txt")]	
uses	the	parameter,	in	our	case	it	is	a	file	specified	with	an	absolute	path,
and	opens	it	in	an	existing	CodeBlocks	instance	or	starts	a	first	instance	if
required.	

OpenLine	
This	command	opens	a	file	at	a	given	line	number	in	a	CodeBlocks
instance.	The	line	number	is	specified	with	:line.	

		[OpenLine("d:\temp\test.txt:10")]	
Raise	

Set	the	focus	to	the	CodeBlocks	instance.	A	parameter	must	not	be	passed.

	1.11.1		Tracking	of	Modifications
	1.11.3		Configuring	environmental	variables

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH

Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.3	Configuring	environmental	variables

The	configuration	for	an	operating	system	is	specified	by	so-called
environmental	variables.	The	environmental	variable	PATH	for	example
contains	the	path	to	an	installed	compiler.	The	operating	system	will	process	this
environmental	variable	from	beginning	to	end,	i.e.	the	entries	at	the	end	will	be
searched	last.	If	different	versions	of	a	compiler	or	other	applications	are
installed,	the	following	situations	can	occur:	

An	incorrect	version	of	a	software	is	called	
Installed	software	packages	call	each	other

So	it	might	be	the	case	that	different	versions	of	a	compilers	or	other	tools	are
mandatory	for	different	projects.	One	possibility	in	such	a	case	is	to	change	the
environmental	variables	in	the	system	control	for	every	project.	However,	this
procedure	is	error-prone	and	not	flexible.	For	this	requirement,	CodeBlocks
offers	an	elegant	solution.	Different	configurations	of	environmental	variables
can	be	created	which	are	used	only	internally	in	CodeBlocks.	Additionally,	you
can	switch	between	these	configurations.	The	Figure	1.12	shows	the	dialogue
which	you	can	open	via	’Environment	Varibales’	under	’Settings’	/’Environment’
.	A	configuration	is	created	via	the	’Create’	button.	

Figure	1.12:
Environmental
variables

Access	and	scope	of	the	environmental	variables	created	here,	is	limited	to
CodeBlocks.	You	can	expand	these	environmental	variables	just	like	other
CodeBlocks	variables	via	$(NAME).	

Note:
A	configuration	for	the	environmental	variable	for	each	project	can	be
selected	in	the	context	menu	’Properties’	of	the	’EnvVars	options’	tab.	

Example	
You	can	write	the	used	environment	into	a	postbuild	Step	(see	section	1.6)	in	a
file	<project>.env	and	archive	it	within	your	project.	

		cmd	/c	echo	\%PATH\%		>	project.env	
or	under	Linux	

		echo	\$PATH	>	project.env	

	1.11.2		Data	Exchange	with	other	applications
	1.11.4		Switching	between	perspectives

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.4	Switching	between	perspectives

Depending	on	the	task	in	hand,	it	can	be	useful	to	have	different	configurations
or	views	in	CodeBlocks	and	to	save	these	configurations/views.	By	default,	the
settings	(e.	g.	show/hide	symbol	bars,	layout,	etc.)	are	stored	in	the
default.conf	configuration	file.	By	using	the	command	line	option	--
personality=ask	during	the	start	of	CodeBlocks,	different	settings	can	be
selected.	Apart	from	this	global	setting,	a	situation	might	occur	where	you	wish
to	switch	between	different	views	of	windows	and	symbol	bars	during	a	session.
Editing	files	and	debugging	projects	are	two	typical	examples	for	such
situations.	CodeBlocks	offers	a	mechanism	for	storing	and	selecting	different
perspectives	to	prevent	the	user	from	frequently	having	to	open	and	close
windows	and	symbol	bars	manually.	To	save	a	perspective,	select	the	menu
’View’	/’Perspectives’	/’Save	current’	and	enter	a	name	at	<name>.	The
command	’Settings’	/’Editor’	/’Keyboard	shortcuts’	/’View’	/’Perspectives’
/’<name>’	allows	a	keyboard	shortcut	to	be	defined	for	this	process.	This
mechanism	makes	it	possible	to	switch	between	different	views	by	simply	using
hot	keys.	

Note:
Another	example	is	editing	a	file	in	Full	Screen	mode	without	symbol	bars.
You	can	create	a	perspective	such	as	’Full’	and	assign	a	hot	key	for	this

purpose.	

	1.11.3		Configuring	environmental	variables
	1.11.5		Switching	between	projects

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.5	Switching	between	projects

If	several	projects	or	files	are	opened	at	the	same	time,	the	user	needs	a	way	to
switch	quickly	between	the	projects	or	files.	CodeBlocks	has	a	number	of
shortcuts	for	such	situations.	
Alt-F5	

Activates	the	previous	project	from	the	project	view.	
Alt-F6	

Activates	the	next	project	from	the	project	view.	
F11	

Switches	within	the	editor	between	a	source	file	<name>.cpp	and
the	corresponding	header	file	<name>.h

	1.11.4		Switching	between	perspectives
	1.11.6		Extended	settings	for	compilers

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.6	Extended	settings	for	compilers

During	the	build	process	of	a	project,	the	compiler	messages	are	displayed	in	the
Messages	window	in	the	Build	Log	tab.	If	you	wish	to	receive	detailed
information,	the	display	can	be	extended.	For	this	purpose	click	’Settings’
/’Compiler	and	Debugger’	and	select	’Other	Settings’	in	the	drop-down	field.	

Figure	1.13:
Setting
detail
information

Take	care	that	the	correct	compiler	is	selected.	The	’Full	command	line’	setting
in	the	Compiler	Logging	field	outputs	the	complete	information	in	the	Build
Log.	In	addition,	this	output	can	be	logged	in	a	HTML	file.	For	this	purpose
select	’Save	build	log	to	HTML	file	when	finished’.	Furthermore,	CodeBlocks
offers	a	progress	bar	for	the	build	process	in	the	Build	Log	window	which	can	be
activated	via	the	’Display	build	progress	bar’	setting.	

	1.11.5		Switching	between	projects
	1.11.7		Zooming	within	the	editor

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.7	Zooming	within	the	editor

CodeBlocks	offers	a	very	efficient	editor.	This	editor	allows	you	to	change	the
size	in	which	the	opened	text	is	displayed.	If	you	use	a	mouse	with	a	wheel,	you
only	need	to	press	the	Ctrl	key	and	scroll	via	the	mouse	wheel	to	zoom	in	and
out	of	the	text.	

Note:
With	the	shortcut	Ctrl-Numepad-/	or	with	the	menu	’Edit’	/’Special

commands’	/’Zoom’	/’Reset’	the	original	font	size	of	the	active	file	in	the
editor	is	restored.	

	1.11.6		Extended	settings	for	compilers
	1.11.8		Wrap	Mode

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.8	Wrap	Mode

When	editing	text	files,	e.	g.	*.txt,	within	CodeBlocks,	it	might	be	useful	to
have	the	text	wrapped,	meaning	long	lines	will	be	displayed	in	several	lines	on
the	screen	so	that	they	can	be	properly	edited.	The	’Word	wrap’	function	can	be
activated	via	’Settings’	/’Editor’	/’Other	Options’	or	by	setting	the	checkbox
’Word	wrap’	.	The	Home	and	End	keys	position	the	cursor	at	the	beginning	or
end	of	wrapped	lines	respectively.	When	setting	’Settings’	/’Editor’	/’Other
Options’	and	’Home	key	always	move	to	caret	to	first	column’	,	the	cursor	will
be	positioned	at	the	beginning	or	end	of	the	current	line	respectively,	if	the	Home
or	End	keys	are	pressed.	If	positioning	the	cursor	at	the	beginning	of	the	first	line
of	the	current	paragraph	is	desired,	the	key	combination	’Alt-Home’	is	to	be
used.	The	same	applies	analogously	for	’Alt-End’	for	positioning	the	cursor	at
the	end	of	the	last	line	of	the	current	paragraph.	

	1.11.7		Zooming	within	the	editor
	1.11.9		Select	modes	in	editor

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.9	Select	modes	in	editor

CodeBlocks	supports	different	modes	for	selecting	or	pasting	of	strings.	

1.	 With	the	left	mouse	button	a	text	in	the	active	editor	can	be	selected
and	then	the	mouse	button	can	be	released.	With	the	mouse	wheel
the	user	can	scroll	to	a	position.	If	the	middle	mouse	button	is
pressed	then	the	formerly	selected	text	will	be	inserted.	This	feature
is	available	per	file	and	can	be	seen	a	clipboard	per	file.	

2.	 Pressing	the	’ALT’	key	will	activate	the	so-called	block-select	mode
and	a	rectangle	selection	can	be	raised	with	the	left	mouse	button.	If
the	Alt	key	is	released	this	selection	can	be	copied	or	pasted.	This
feature	is	helpful	if	you	want	to	select	some	columns	e.g.	of	an	array
and	copy	and	paste	the	content.	

3.	 In	the	menu	’Settings’	/’Editor’	/’Margins	und	Caret’	so-called	’Virtual
Spaces’	can	be	activated.	This	option	enables	that	a	selection	in	the
block	select	mode	can	start	or	end	within	an	empty	line.	

4.	 In	the	menu	’Settings’	/’Editor’	/’Margins	und	Caret’	the	’Multiple
Selection’	can	be	activated.	While	holding	the	Ctrl-key	the	user	can
select	different	lines	in	the	active	editor	via	the	left	mouse	button.
The	selections	will	be	appended	in	the	clipboard	via	the	shortcut	Ctrl-
C	or	Ctrl-X.	Ctrl-V	will	insert	the	content	at	the	current	cursor
position.	An	additional	option	called	’Enable	typing	(and	deleting)’
can	be	activated	for	multiple	selections.	This	feature	is	useful	if	you
want	to	add	a	pre-processor	directive	like	#ifdef	at	different	source
lines	or	if	you	want	to	overwrite	or	replace	a	text	at	several	positions.

Note:
Most	Linux	window	managers	use	ALT-LeftClickDrag	to	move	a	window,
so	you	will	have	to	disable	this	window	manager	behavior	first	for	block

select	to	work.	

	1.11.8		Wrap	Mode
	1.11.10		Code	folding

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.10	Code	folding

CodeBlocks	supports	so	called	code	folding.	With	this	feature	you	can	fold	e.g.
functions	within	the	CodeBlocks	editor.	A	folding	point	is	marked	by	minus
symbol	in	the	left	margin	of	the	editor	view.	In	the	margin	the	beginning	and	the
end	of	a	folding	point	is	visible	as	vertical	line.	If	you	click	the	minus	symbol
with	the	left	mouse	button	the	code	snippet	will	be	folded	or	unfolded.	Via	the
menu	’Edit’	/’Folding’	you	can	select	the	folding.	In	the	editor	you	see	folded
code	as	continous	horizontal	line.	

Note:
The	folding	style	and	the	folding	depth	limit	can	be	configured	via	menu

’Settings’	/’Editor’	/’Folding’	.	
CodeBlocks	provides	the	folding	feature	also	for	preprocessor	directives.	To
enable	this	feature	select	’Fold	preprocessor	commands’	via	the	menu	’Settings’
/’Editor’	in	the	folding	entry.	
Another	possibility	is	to	set	user	defined	folding	points.	The	start	of	folding
point	is	entered	as	comment	with	a	opening	bracket	and	the	end	is	market	with	a
comment	with	a	closing	bracket.	

		//{	
		code	with	user	defined	folding	
		//}	

	1.11.9		Select	modes	in	editor
	1.11.11		Auto	complete

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.11	Auto	complete

If	you	open	a	project	in	CodeBlocks	the	’Search	directories’	of	your	compiler
and	the	project,	the	sources	and	headers	of	your	project	are	parsed.	In	addition
the	keyowrds	of	the	corresponding	lexer	file	are	parsed.	The	parse	information	is
used	for	the	auto	complete	feature	in	CodeBlocks.	Please	check	the	settings	for
the	editor	if	this	feature	is	enabled.	The	auto	completion	is	accessible	with	the
shortcut	Ctrl-Space.	Via	the	menu	’Settings’	/’Editor’	/’Syntax	highlighting’	you
can	add	user	defined	keywords	to	your	lexer.	

	1.11.10		Code	folding
	1.11.12		Find	broken	files

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.12	Find	broken	files

If	a	file	is	removed	from	disk,	but	is	still	included	in	the	project	file
<project>.cbp,	then	this	’broken	file’	will	be	shown	a	broken	symbol	in	the
project	view.	You	should	use	the	menu	’Remove	file	from	project’	instead	of
deleting	files.	
In	large	projects	with	a	lot	of	subdirectories	the	search	for	broken	files	can	be
time	consuming.	CodeBlocks	offers	with	the	plug-in	ThreadSearch	(see
section	2.6)	a	simple	solution	for	this	problem.	If	you	enter	a	search	expression
in	ThreadSearch	and	select	the	option	’Project	files’	or	’Workspace	files’	,	then
ThreadSearch	will	parse	all	files	that	are	included	in	a	project	or	workspace.	If	a
broken	file	is	found	ThreadSerch	will	issue	an	error	with	the	missing	file.	

	1.11.11		Auto	complete
	1.11.13		Including	libraries

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.13	Including	libraries

In	the	build	options	of	a	project,	you	can	add	the	used	libraries	via	the	’Add’
button	in	the	’Link	libraries’	entry	of	the	’Linker	Settings’.	In	doing	so,	you	can
either	use	the	absolute	path	to	the	library	or	just	give	the	name	without	the	lib
prefix	and	file	extension.	
Example	
For	a	library	called	<path>\libs\lib<name>.a,	just	write	<name>.	The
linker	with	the	corresponding	search	paths	will	then	include	the	libraries
correctly.	

Note:
Another	way	to	include	libraries	is	documented	in	section	2.10.	

	1.11.12		Find	broken	files
	1.11.14		Object	linking	order

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.14	Object	linking	order

During	compiling,	objects	name.o	are	created	from	the	sources
name.c/cpp.	The	linker	then	binds	the	individual	objects	into	an	application
name.exe	or	for	the	embedded	systems	name.elf.	In	some	cases,	it	might
be	desirable	to	predefine	the	order	in	which	the	objects	will	be	linked.	In
CodeBlocks,	this	can	be	achieved	by	assigning	priorities.	In	the	context	menu
’Properties’	,	you	can	define	the	priorities	of	a	file	in	the	Build	tab.	A	low
priority	will	cause	the	file	to	be	linked	earlier.	

	1.11.13		Including	libraries
	1.11.15		Autosave

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.15	Autosave

CodeBlocks	offers	ways	of	automatically	storing	projects	and	source	files,	or	of
creating	backup	copies.	This	feature	can	be	activated	in	the	menu	’Settings’
/’Environment’	/’Autosave’	.	In	doing	so,	’Save	to	.save	file’	should	be	specified
as	the	method	for	creating	the	backup	copy.	

	1.11.14		Object	linking	order
	1.11.16		Settings	for	file	extensions

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.11.16	Settings	for	file	extensions

In	CodeBlocks,	you	can	choose	between	several	ways	of	treating	file	extensions.
The	settings	dialogue	can	be	opened	via	’Settings’	/’Files	extension	handling’	.
You	can	either	use	the	applications	assigned	by	Windows	for	each	file	extension
(open	it	with	the	associated	application),	or	change	the	setting	for	each
extensions	in	such	a	way	that	either	a	user-defined	program	will	start	(launch	an
external	program),	or	the	file	will	be	opened	in	the	CodeBlocks	editor	(open	it
inside	Code::Blocks	editor).	

Note:
If	a	user-defined	program	is	assigned	to	a	certain	file	extension,	the	setting
’Disable	Code::Blocks	while	the	external	program	is	running’	should	be
deactivated	because	otherwise	CodeBlocks	will	be	closed	whenever	a	file

with	this	extension	is	opened.	

	1.11.15		Autosave
	1.12		CodeBlocks	at	the	command	line

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.12	CodeBlocks	at	the	command	line

IDE	CodeBlocks	can	be	executed	from	the	command	line	without	a	graphic
interface.	In	such	a	case,	there	are	several	switches	available	for	controlling	the
build	process	of	a	project.	Since	CodeBlocks	is	thus	scriptable,	the	creation	of
executables	can	be	integrated	into	your	own	work	processes.	
		codeblocks.exe	/na	/nd	--no-splash-screen	--built	<name>.cbp	--

target='Release'	
<filename>	

Specifies	the	project	*.cbp	filename	or	workspace	*.workspace
filename.	For	instance,	<filename>	may	be	project.cbp.	Place	this
argument	at	the	end	of	the	command	line,	just	before	the	output	redirection
if	there	is	any.	

--file=<filename>[:line]
Open	file	in	Code::Blocks	and	optionally	jump	to	a	specific	line.	

/h,	--help	
Shows	a	help	message	regarding	the	command	line	arguments.	

/na,	--no-check-associations

Don’t	perform	any	file	association	checks	(Windows	only).	
/nd,	--no-dde	

Don’t	start	a	DDE	server	(Windows	only).	
/ni,	--no-ipc	

Don’t	start	an	IPC	server	(Linux	and	Mac	only).	
/ns,	--no-splash-screen

Hides	the	splash	screen	while	the	application	is	loading.	
/d,	--debug-log

Display	the	debug	log	of	the	application.	

--prefix=<str>
Sets	the	shared	data	directory	prefix.	

/p,	--personality=<str>,	--profile=<str>
Sets	the	personality	to	use.	You	can	use	ask	as	the	parameter	to	list	all
available	personalities.	

--rebuild	
Clean	and	build	the	project	or	workspace.	

--build	
Build	the	project	or	workspace.	

--target=<str>
Sets	target	for	batch	build.	For	example	--target=’Release’.	

--no-batch-window-close

Keeps	the	batch	log	window	visible	after	the	batch	build	is	completed.	
--batch-build-notify

Shows	a	message	after	the	batch	build	is	completed.	
--safe-mode	

All	plugins	are	disabled	on	startup.	
>	<build	log	file>

Placed	in	the	very	last	position	of	the	command	line,	this	may	be	used	to
redirect	standard	output	to	log	file.	This	is	not	a	codeblock	option	as	such,
but	just	a	standard	DOS/*nix	shell	output	redirection.

	1.11.16		Settings	for	file	extensions
	1.13		Shortcuts

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13	Shortcuts

Even	if	an	IDE	such	as	CodeBlocks	is	mainly	handled	by	mouse,	keyboard
shortcuts	are	nevertheless	a	very	helpful	way	of	speeding	up	and	simplifying
work	processes.	In	the	below	table,	we	have	collected	some	of	the	available
keyboard	shortcuts.	

	1.12		CodeBlocks	at	the	command	line
	1.13.1		Editor

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13.1	Editor

This	is	a	list	of	shortcuts	provided	by	the	CodeBlocks	editor	component.	These
shortcuts	cannot	be	rebound.	

	1.13		Shortcuts
	1.13.2		Files

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13.2	Files

	1.13.1		Editor
	1.13.3		View

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13.3	View

	1.13.2		Files
	1.13.4		Search

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13.4	Search

	1.13.3		View
	1.13.5		Build

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

1.13.5	Build

	1.13.4		Search
	2		Plugins

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2	Plugins

2.1	Astyle

Artistic	Style	is	a	source	code	indenter,	source	code	formatter,	and	source	code
beautifier	for	the	C,	C++,	C#	programming	languages.	It	can	be	used	to	select
different	styles	of	coding	rules	within	CodeBlocks.	

Figure	2.1:
Formating
your
source
code

When	indenting	source	code,	we	as	programmers	have	a	tendency	to	use	both
spaces	and	tab	characters	to	create	the	wanted	indentation.	Moreover,	some
editors	by	default	insert	spaces	instead	of	tabs	when	pressing	the	tab	key,	and
other	editors	have	the	ability	to	prettify	lines	by	automatically	setting	up	the
white	space	before	the	code	on	the	line,	possibly	inserting	spaces	in	a	code	that
up	to	now	used	only	tabs	for	indentation.	
Since	the	number	of	space	characters	shown	on	screen	for	each	tab	character	in
the	source	code	changes	between	editors,	one	of	the	standard	problems
programmers	are	facing	when	moving	from	one	editor	to	another	is	that	code
containing	both	spaces	and	tabs	that	was	up	to	now	perfectly	indented,	suddenly
becomes	a	mess	to	look	at	when	changing	to	another	editor.	Even	if	you	as	a
programmer	take	care	to	ONLY	use	spaces	or	tabs,	looking	at	other	people’s
source	code	can	still	be	problematic.	
To	address	this	problem,	Artistic	Style	was	created	-	a	filter	written	in	C++	that
automatically	re-indents	and	re-formats	C	/	C++	/	C#	source	files.	

Note:
When	copying	code,	for	example	from	the	internet	or	a	manual,	this	code

will	automatically	be	adapted	to	the	coding	rules	in	CodeBlocks.

	1.13.5		Build
	2.2		CodeSnippets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.2	CodeSnippets

The	CodeSnippets	plug-in	makes	it	possible	to	structure	text	modules	and	links
to	files	according	to	categories	in	a	tree	view.	The	modules	are	used	for	storing
often	used	files	and	constructs	in	text	modules	and	managing	them	in	a	central
place.	Imagine	the	following	situation:	A	number	of	frequently	used	source	files
are	stored	in	different	directories	of	the	file	system.	The	CodeSnippets	window
provides	the	opportunity	to	create	categories,	and	below	the	categories,	links	to
the	required	files.	With	these	features,	you	can	control	the	access	to	the	files
independently	from	where	they	are	stored	within	the	file	system,	and	you	can
navigate	quickly	between	the	files	without	the	need	to	search	the	whole	system.	

Note:
You	can	use	CodeBlocks	variables	or	environment	variables	in	file	links	e.g.

$(VARNAME)/name.pdf	to	parametrise	a	link	in	the	CodeSnippets
browser.	

The	list	of	text	modules	and	links	can	be	stored	in	the	CodeSnippets	window	by
right-clicking	and	selecting	’Save	Index’	from	the	context	menu.	The	file
codesnippets.xml	which	will	be	created	by	this	procedure,	can	then	be
found	in	the	codeblocks	subdirectory	of	your	Documents	and
Settings\Application	data	directory.	Under	Linux,	this	information	is
stored	in	the	.codeblocks	subdirectory	of	your	HOME	directory.	The
CodeBlocks	configuration	files	will	be	loaded	during	the	next	start-up.	If	you
wish	to	save	the	content	of	CodeSnippets	at	a	different	location,	select	the	’Save
Index	As’	entry.	To	load	this	file,	select	’Load	Index	File’	during	the	next	start-
up	of	CodeBlocks	or	include	the	directory	in	the	’Settings’	context	menu	under
’Snippet	Folder’.	The	settings	are	saved	in	the	corresponding	file
codesnippets.ini	in	your	application	data.	
For	including	a	category,	use	the	’Add	SubCategory’	menu.	A	category	can
contain	Snippets	(text	modules)	or	File	Links.	A	text	module	is	created	via	the
’Add	Snippet’	command	in	the	context	menu.	The	content	is	integrated	into	the
text	module	as	’New	snippet’	by	selecting	the	text	passage	in	the	CodeBlocks

editor	and	dragging	and	dropping	it	onto	the	module	and	the	properties	dialog
pops	up.	Double-clicking	the	newly	included	entry	or	selecting	’Edit	Text’	will
open	an	editor	for	the	content.	

Figure	2.2:
Editing	a
text
module

Output	of	a	text	module	is	handled	in	CodeBlocks	via	the	context	menu
command	’Apply’	or	by	dragging	and	dropping	into	the	editor.	Under	Windows,
the	contents	of	a	Snippet	can	also	be	dragged	and	dropped	into	other
applications.	In	the	CodeSnippets	Browser	you	can	copy	a	selected	item	with
drag	and	drop	to	a	different	category.	
Beyond	this,	text	modules	can	be	parametrised	by	<name>	variables	which	can
be	accessed	via	$(name)	(see	Figure	2.2).	The	values	of	the	variables	can	be
retrieved	in	an	entry	field	if	the	text	module	is	called	via	the	context	menu
command	’Apply’.	
Besides	the	text	modules,	links	to	files	can	also	be	created.	If,	after	having
created	a	text	module,	you	click	the	context	menu	command	’Properties’,	then
you	can	select	the	link	target	by	clicking	the	’Link	target’	button.	This	procedure
will	automatically	convert	the	text	module	into	a	link	to	a	file.	In	CodeSnippets,
all	text	modules	will	be	marked	by	a	T	symbol,	links	to	a	file	by	an	F	symbol	and
urls	by	an	U	symbol.	If	you	want	to	open	a	selected	file	(link)	in	the
codesnippets	view	just	select	the	context	menu	’Open	File’	or	hold	the	’Alt’	key
and	make	a	double	click	on	the	file.	

Note:
You	can	add	even	url	(e.g.	 	http://www.codeblocks.org)	in	text	modules.
The	url	can	be	opened	using	the	context	menu	’Open	Url’	or	using	drag	and

drop	to	your	favorite	web	browser.	
With	this	setting,	if	open	a	link	to	a	pdf	file	from	the	codesnippets	view	a	pdf
viewer	will	be	started	automatically.	This	method	makes	it	possible	for	a	user	to

http://www.codeblocks.org

access	files	which	are	spread	over	the	whole	network,	such	as	cad	data,	layouts,
documentations	etc.,	with	the	common	applications,	simply	via	the	link.	The
content	of	the	codesnippets	is	stored	in	the	file	codesnippets.xml,	the
configuration	is	stored	in	the	file	codesnippets.ini	in	your
application	data	directory.	This	ini	file	will,	for	example,	contain	the
path	of	the	file	codesnippets.xml.	
CodeBlocks	supports	the	usage	of	different	profiles.	These	profiles	are	called
personalities.	Starting	CodeBlocks	with	the	command	line	option	--
personality=<profile>	will	create	a	new	or	use	an	existing	profile.
Then	the	settings	will	not	be	stored	in	the	file	default.conf,	but	in
<personality>.conf	in	your	application	data	directory	instead.
The	Codesnippets	plugin	will	then	store	its	settings	in	the	file
<personality>.codesnippets.ini.	Now,	if	you	load	a	new	content
<name.xml>	in	the	Codesnippets	settings	via	’Load	Index	File’,	this	content
will	be	stored	in	the	corresponding	ini	file.	The	advantage	of	this	method	lies	in
the	fact	that	in	case	of	different	profiles,	different	configurations	for	text
modules	and	links	can	be	managed.	
The	plug-in	offers	an	additional	search	function	for	navigating	between	the
categories	and	Snippets.	The	scope	for	searching	Snippets,	categories	or
Snippets	and	categories	can	be	adjusted.	By	entering	the	required	search
expression,	the	corresponding	entry	is	automatically	selected	in	the	view.
Figure	2.3	shows	a	typical	display	in	the	CodeSnippets	window.	

Figure	2.3:
CodeSnippets
View

Note:
When	using	voluminous	text	modules,	the	content	of	these	modules	should
be	saved	in	files	via	’Convert	to	File	Link’	in	order	to	reduce	memory	usage
within	the	system.	If	you	delete	a	codesnippet	or	file	link	it	will	be	moved	to
the	category	.trash;	if	you	hold	the	Shift	key	the	item	will	be	deleted.	

	2.1		Astyle
	2.3		Incremental	Search

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.3	Incremental	Search

For	an	efficient	search	in	open	files,	CodeBlocks	provides	the	so-called
Incremental	Search.	This	search	method	is	initiated	for	an	open	file	via	the	menu
’Search’	/’Incremental	Search’	or	by	the	keyboard	shortcut	Ctrl-I.	The	focus	is
then	automatically	set	to	the	search	mask	of	the	corresponding	toolbar.	As	soon
as	you	begin	entering	the	search	term,	the	background	of	the	search	mask	will	be
adjusted	in	accordance	with	the	occurrence	of	the	term.	If	a	hit	is	found	in	the
active	editor,	the	respective	position	in	the	text	is	marked	in	colour.	By	default
the	current	hit	will	be	highlighted	in	green.	This	setting	can	be	changed	via
’Settings’	/’	Editor’	/’	Incremental	Search’	(see	??).	Pressing	the	Return	key
induces	the	search	to	proceed	to	the	next	occurrence	of	the	search	string	within
the	file.	With	Shift-Return	the	previous	occurrence	can	be	selected.	This
functionality	is	not	supported	by	Scintilla	if	the	incremental	search	uses	regular
expressions.	

If	the	search	string	cannot	be	found	within	the	active	file,	this	fact	is	highlighted
by	the	background	of	the	search	mask	being	displayed	in	red.	
ESC	

Leave	the	Incremental	Search	modus.	
ALT-DELETE	

Clear	the	input	of	the	incremental	search	field.
The	icons	in	the	Incremental	Search	toolbar	have	the	following	meanings:	

Deleting	the	text	within	the	search	mask	of	the	Incremental	Search
toolbar.	

, 	
Navigating	between	the	occurrences	of	a	search	string.	

Clicking	this	button	results	in	all	the	occurrences	of	the	search	string
within	the	editor	being	highlighted	in	colour,	instead	of	only	the	initial
occurrence.	

Activating	this	option	restricts	the	search	to	the	text	passage
marked	within	the	editor.	

This	option	means	a	case	sensitive	search	is	performed.	

Regular	expression	can	be	used	in	the	input	field	of	incremental
search.

Note:
The	standard	settings	of	this	toolbar	can	be	configured	in	’Settings’	/’Editor’

/’Incremental	Search’	.	

	2.2		CodeSnippets
	2.4		ToDo	List

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.4	ToDo	List

In	complex	software	projects,	where	different	users	are	involved,	there	is	often
the	requirement	of	different	tasks	to	be	performed	by	different	users.	For	this
purpose,	CodeBlocks	offers	a	Todo	List.	This	list	can	be	opened	via	’View’	/’To-
Do	list’	,	and	contains	the	tasks	to	be	performed,	together	with	their	priorities,
types	and	the	responsible	users.	The	list	can	be	filtered	for	tasks,	users	and/or
source	files.	A	sorting	by	columns	can	be	achieved	by	clicking	the	caption	of	the
corresponding	column.	

Figure	2.4:
Displaying
the	ToDo
List

Note:
The	To-Do	list	can	be	docked	in	the	message	console.	Select	the	option
’Include	the	To-Do	list	in	the	message	pane’	via	the	menu	’Settings’

/’Environment’	.	
If	the	sources	are	opened	in	CodeBlocks,	a	Todo	can	be	added	to	the	list	via	the
context	menu	command	’Add	To-Do	item’.	A	comment	will	be	added	in	the
selected	line	of	the	source	code.	

		//	TODO	(user#1#):	add	new	dialog	for	next	release	
When	adding	a	To-Do,	a	dialogue	box	will	appear	where	the	following	settings

can	be	made	(see	Figure	2.5).	

Figure	2.5:
Dialogue
for	adding
a	ToDo

User	
User	name	<user>	in	the	operating	system.	Tasks	for	other	users	can	also
be	created	here.	In	doing	so,	the	corresponding	user	name	has	to	be	created
by	Add	new.	The	assignment	of	a	Todo	is	then	made	via	the	selection	of
entries	listed	for	the	User.	

Note:
Note	that	the	Users	have	nothing	to	do	with	the	Personalities	used	in

CodeBlocks.	
Type	

By	default,	type	is	set	to	Todo.	
Priority	

The	importance	of	tasks	can	be	expressed	by	priorities	(1	-	9)	in
CodeBlocks.	

Position	
This	setting	specifies	whether	the	comment	is	to	be	included	before,
after	or	at	the	exact	position	of	the	cursor.	

Comment	Style	
A	selection	of	formats	for	comments	(e.g.	doxygen).

	2.3		Incremental	Search
	2.5		Source	Code	Exporter

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.5	Source	Code	Exporter

The	necessity	occurs	frequently	of	transferring	source	code	to	other	applications
or	to	e-mails.	If	the	text	is	simply	copied,	formatting	will	be	lost,	thus	rendering
the	text	very	unclear.	The	CodeBlocks	export	function	serves	as	a	remedy	for
such	situations.	The	required	format	for	the	export	file	can	be	selected	via	’File’
/’Export’	.	The	program	will	then	adopt	the	file	name	and	target	directory	from
the	opened	source	file	and	propose	these	for	saving	the	export	file.	The
appropriate	file	extension	in	each	case	will	be	determined	by	the	export	format.
The	following	formats	are	available.	
html	

A	text-based	format	which	can	be	displayed	in	a	web	browser	or	in
word	processing	applications.	

rtf	
The	Rich	Text	format	is	a	text-based	format	which	can	be	opened	in
word	processing	applications	such	as	Word	or	OpenOffice.	

odt	
Open	Document	Text	format	is	a	standardised	format	which	was
specified	by	Sun	and	O’Reilly.	This	format	can	be	processed	by
Word,	OpenOffice	and	other	word	processing	applications.	

pdf	
The	Portable	Document	Format	can	be	opened	by	applications
such	as	the	Acrobat	Reader.

	2.4		ToDo	List
	2.6		Thread	Search

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6	Thread	Search

Via	the	’Search’	/’Thread	Search’	menu,	the	appropriate	plug-in	can	be	shown	or
hidden	as	a	tab	in	the	Messages	Console.	In	CodeBlocks,	a	preview	can	be
displayed	for	the	occurrence	of	a	character	string	in	a	file,	workspace	or
directory.	In	doing	so,	the	list	of	search	results	will	be	displayed	on	the	right-
hand	side	of	the	ThreadSearch	Console.	By	clicking	an	entry	in	the	list,	a
preview	is	displayed	on	the	left-hand	side.	By	double-clicking	in	the	list,	the
selected	file	is	opened	in	the	CodeBlocks	editor.	

Note:
The	scope	of	file	extensions	to	be	included	in	the	search,	is	preset	and	might

have	to	be	adjusted.	

	2.5		Source	Code	Exporter
	2.6.1		Features

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.1	Features

ThreadSearch	plugin	offers	the	following	features:	

Multi-threaded	’Search	in	files’	
Internal	read-only	editor	to	preview	the	results	
File	open	in	editors	notebook	
Contextual	menu	’Find	occurrences’	to	start	a	search	in	files	with	the
word	under	cursor

Figure	2.6:
Thread
Search
Panel

	2.6		Thread	Search
	2.6.2		Usage

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.2	Usage

1.	 	Configure	your	search	preferences	(see	Figure	2.7)	

Once	the	plugin	is	installed,	there	are	4	ways	to	run	a	search:	

a.	 Type/Select	a	word	in	the	search	combo	box	and	press	enter
or	click	on	Search	on	the	Thread	search	panel	of	the
Messages	notebook.	

b.	 Type/Select	a	word	in	the	toolbar	search	combo	box	and
press	enter	or	click	on	Search	button.	

c.	 Right	click	on	any	’word’	in	active	editor	and	click	on	’Find
occurrences’.	

d.	 Click	on	Search/Thread	search	to	find	the	current	word	in
active	editor.	

Note:
Items	1,	2	and	3	may	not	be	available	according	to	current

configuration.	

2.	 Click	again	on	the	search	button	to	cancel	current	search.	
3.	 A	single	click	on	a	result	item	displays	it	on	the	preview	editor	at	right

location.	
4.	 A	double	click	on	a	result	item	opens	or	set	an	editor	in	editors

notebook	at	right	location.

	2.6.1		Features
	2.6.3		Configuration

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH

Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.3	Configuration

To	access	ThreadSearch	plugin	configuration	panel	click	on	(see	Figure	2.7):	

Figure	2.7:
Configuration

of	Thread
Search

1.	 Options	button	on	Messages	notebook	Thread	search	panel.	
2.	 Options	button	on	Thread	search	toolbar.	
3.	 Settings/Environment	menu	item	and	then	on	the	Thread	search

item	on	the	left	columns.

Note:
Items	1,	2	and	3	may	not	be	available	according	to	current	configuration.	

Search	in	part	defines	the	set	of	files	that	will	be	analysed.	

Project	and	Workspace	checkboxes	are	mutually	exclusive.	
Directory	path	can	be	edited	or	set	with	Select	button.	
Mask	is	the	set	a	file	specifications	separated	by	’;’.	For	example:
.cpp;.c;*.h.

	2.6.2		Usage
	2.6.4		Options

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.4	Options

Whole	word
if	checked,	line	matches	search	expression	if	search	expression	is
found	with	no	alpha-numeric	+’_’	before	and	after.	

Start	word	
if	checked,	line	matches	search	expression	if	search	expression	is
found	at	the	beginning	of	a	word,	ie	no	alpha-numeric	+’_’	before
search	expression.	

Match	case	
if	checked,	the	search	is	case	sensitive.	

Regular	expression	
the	search	expression	is	a	regular	expression.

Note:
If	you	want	to	search	for	regular	expressions	like	n	you	will	have	to	set	the
option	’Use	Advanced	RegEx	searches’	via	the	menu	’Settings’	/’Editor’

/’General	Settings’	.	

	2.6.3		Configuration
	2.6.5		Thread	search	options

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.5	Thread	search	options

Enable	’Find	occurrences	contextual	menu	item’
If	checked,	the	Find	occurrences	of	’Focused	word’	entry	is	added
to	the	editor	contextual	menu.	

Use	default	options	when	running	’Find	occurrences’	
If	checked,	a	set	of	default	options	is	applied	to	the	searches
launched	with	the	’Find	occurrences’	contextual	menu	item.Per
defaut	option	’Whole	word’	and	’Match	case’	is	enabled.	

Delete	previous	results	at	search	begin	
If	ThreadSearch	is	configured	with	’Tree	View’	then	the	search
results	will	be	listet	hierarchically,	

the	first	node	contains	the	search	term	
above	the	files	which	contain	the	search	term	are	listed	
within	this	list	the	line	number	and	the	corresponding	content
of	the	occurence	is	displayed

If	you	search	different	terms	the	list	will	become	confusing,	therefore
previous	search	results	can	be	cleared	at	search	begin	using	this	option.	

Note:
In	the	list	of	occurences	single	items	or	all	items	can	be	deleted	via	the

context	menu	’Delete	item’	or	’Delete	all	items’	.	

	2.6.4		Options
	2.6.6		Layout

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.6	Layout

Display	header	in	log	window
if	checked,	the	header	are	displayed	in	the	results	list	control.	

Note:
If	unchecked,	the	columns	are	no	longer	resizeable	but	space	is

spared.
Draw	lines	between	columns	

Draws	lines	between	columns	in	list	mode.	
Show	ThreadSearch	toolbar	

Display	the	toolbar	of	Thread	Search	plugin.	
Show	search	widgets	in	ThreadSearch	Messages	panel	

If	checked,	only	the	results	list	control	and	the	preview	editor	are
displayed.	All	other	search	widgets	are	hidden	(spares	space).	

Show	code	preview	editor	
Code	preview	can	be	hidden	either	with	this	check	box	or	with	a
double	click	on	the	splitter	window	middle	border.	This	is	where	it
can	be	shown	again.

	2.6.5		Thread	search	options
	2.6.7		Panel	Management

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.7	Panel	Management

You	can	choose	different	modes	how	the	the	ThreadSearch	window	is	managed.
With	the	setting	’Message	Notebook’	the	ThreadSearch	window	will	be	a
dockable	window	in	the	message	panel.	If	you	choose	the	setting	’Layout’	you
will	be	able	to	undock	the	window	from	the	message	panel	and	put	it	somewhere
else.	

	2.6.6		Layout
	2.6.8		Logger	Type

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.8	Logger	Type

The	view	of	the	search	results	can	be	displayed	in	different	ways.	The	setting
’List’	displays	all	occurrences	as	list.	The	other	mode	’Tree’	gathers	all
occurrences	within	a	file	as	a	node.	

	2.6.7		Panel	Management
	2.6.9		Splitter	Window	Mode

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.9	Splitter	Window	Mode

The	user	can	configure	a	horizontal	or	vertical	splitting	of	the	preview	window
and	the	output	window	of	the	search	results.	

	2.6.8		Logger	Type
	2.6.10		Sort	Search	Results

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.6.10	Sort	Search	Results

The	view	of	the	search	results	may	be	sorted	by	path	or	file	name.	

	2.6.9		Splitter	Window	Mode
	2.7		FileManager	and	PowerShell	Plugin

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.7	FileManager	and	PowerShell	Plugin

The	File	Explorer	Figure	2.8	is	included	in	the	FileManager	plugin,	and	can	be
found	in	the	’Files’	tab.	The	composition	of	the	File	Explorer	is	shown	in
Figure	2.8.	
On	top	you	will	find	a	field	for	entering	the	path.	By	clicking	the	button	at	the
end	of	this	field,	the	drop-down	field	will	list	a	history	of	the	past	entries	which
can	be	navigated	via	a	scroll	bar.	The	up	arrow	key	on	the	right-hand	side	of	the
field	moves	up	the	directory	structure	one	directory.	
In	the	’Wildcard’	field	you	can	enter	a	filter	term	for	the	file	display.	Leaving	the
field	empty	or	entering	*	results	in	all	files	being	displayed.	Entering	*.c;*.h,	for
example	will	result	in	solely	C	sources	and	header	files	being	displayed.
Opneing	the	pull-down	field	will,	again,	list	a	history	of	the	last	entries.	

Figure	2.8:
The	file
manager

Pressing	the	Shift	key	and	clicking	selects	a	group	of	files	or	directories,
pressing	the	Ctrl	key	and	clicking	selects	multiple	separate	files	or	directories.	
The	following	operations	can	be	started	via	the	context	menu	if	one	or	multiple
directories	are	selected	in	the	File	Explorer:	
Make	Root	

defines	the	current	directory	as	the	root	directory.	
Add	to	Favorites	

sets	a	marker	for	the	directory	and	stores	it	as	a	favourite.	This
function	allows	you	to	navigate	quickly	between	frequently	used
directories,	also	on	different	network	drives.	

New	File	
creates	a	new	file	in	the	selected	directory.	

New	Directory	
creates	a	new	subdirectory	in	the	selected	directory.

The	following	operations	can	be	started	via	the	context	menu	if	one	or	multiple

files	or	directories	are	selected	in	the	File	Explorer:	
Duplicate	

copies	a	file/directory	and	renames	it.	
Copy	To	

opens	a	dialogue	for	entering	the	target	directory	in	which	the
copied	file/directory	is	to	be	stored.	

Move	To	
moves	the	selection	to	the	target	location.	

Delete	
deletes	the	selected	files/directories.	

Show	Hidden	Files	
activates/deactivates	the	display	of	hidden	system	files.	When
activated,	this	menu	entry	is	checkmarked.	

Refresh	
update	the	display	of	the	directory	tree.

The	following	operations	can	be	started	via	the	context	menu	if	one	or	multiple
files	are	selected	in	the	File	Explorer:	
Open	in	CB	Editor	

opens	the	selected	file	in	the	CodeBlocks	editor.	
Rename	

renames	the	selected	file.	
Add	to	active	project	

adds	the	file(s)	to	the	active	project.
Note:

The	files/directories	selected	in	the	File	Explorer	can	be	accessed	in	the
PowerShell	plugin	via	the	mpaths	variable.	

User-defined	functions	can	be	specified	via	the	menu	command	’Settings’
/’Environment’	/’PowerShell’	.	In	the	PowerShell	mask,	a	new	function	which
can	be	named	at	random,	is	created	via	the	’New’	button.	In	the	’ShellCommand
Executable’	field,	the	executable	program	is	stated,	and	in	the	field	at	the	bottom
of	the	window,	additional	parameters	can	be	passed	to	the	program.	By	clicking
the	function	in	the	context	menu	or	the	PowerShell	menu,	the	function	is	started
and	will	then	process	the	selected	files/directories.	The	output	is	redirected	to	a
separate	shell	window.	
For	example	a	menu	entry	in	’PowerShell’	/’SVN’	and	in	the	context	menu	is
created	for	’SVN’.	$file	in	this	context	means	the	file	selected	in	the	File
Explorer,	$mpath	the	selected	files	or	directories	(see	section	3.2).	

			Add;$interpreter	add	$mpaths;;;	
This	and	every	subsequent	command	will	create	a	submenu,	in	this	case	called
’Extensions’	/’SVN’	/’Add’	.	The	context	menu	is	extended	accordingly.
Clicking	the	command	in	the	context	menu	will	make	the	SVN	command	add
process	the	selected	files/directories.	
TortoiseSVN	is	a	widespread	SVN	program	with	integration	in	the	explorer.	The
program	TortoiseProc.exe	of	TortoiseSVN	can	be	started	in	the
command	line	and	dispalys	a	dialogue	to	collect	user	input.	So	you	can	perform
the	commands,	that	are	available	as	context	menu	in	the	explorer	also	in	the
command	line.	Therefore	you	can	integrate	it	also	a	shell	extension	in
CodeBlocks.	For	example	the	command	

		TortoiseProc.exe	/command:diff	/path:$file	
will	diff	a	selected	file	in	the	CodeBlocks	file	explorer	with	the	SVN	base.	See
Figure	2.9	how	to	integrate	this	command.	

Note:
For	files	that	are	under	SVN	control	the	file	explorer	shows	overlay	icons	if

they	are	actived	via	menu	’View’	/’SVN	Decorators’	.	

Figure	2.9:
Add	a
shell
extension
to	the
context
menu

Example	
You	can	use	the	file	explorer	to	diff	files	or	directories.	Follow	these	steps:	

1.	 Add	the	name	via	menu	’Settings’	/’Environment’	/’PowerShell’	.	This
is	shown	as	entry	in	the	interpreter	menu	and	the	context	menu.	

2.	 Select	the	absolute	path	of	Diff	executable	(e.g.	kdiff3).	The	program
is	accessed	with	the	variable	$interpreter.	

3.	 Add	parameters	of	the	interpreter	

		Diff;$interpreter	$mpaths;;;	
This	command	will	be	executed	using	the	selected	files	or	directories	as
parameter.	The	selection	is	accessed	via	the	variable	$mpaths.	This	is	an	easy
way	to	diff	files	or	directories.	

Note:
The	plug-in	supports	the	use	of	CodeBlocks	variables	within	the	shell

extension.	
$interpreter	

Call	this	executable.	

$fname	
Name	of	the	file	without	extension.	

$fext	
Extension	of	the	selected	file.	

$file	
Name	of	the	file.	

$relfile	
Name	of	the	file	without	path	info.	

$dir	
Name	of	the	selected	directory.	

$reldir	
Name	of	directory	without	path	info.	

$path	
Absolute	path.	

$relpath	
Relative	path	of	file	or	directory.	

$mpaths	
List	of	current	selected	files	or	directories.	

$inputstr{<msg>}	
String	that	is	entered	in	a	message	window.	

$parentdir	
Parent	directory	(../).

Note:
The	entries	of	shell	extension	are	also	available	as	context	menu	in	the

CodeBlocks	editor.	

	2.6.10		Sort	Search	Results
	2.8		Browse	Tracker

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.8	Browse	Tracker

Browse	Tracker	is	a	plug-in	that	helps	navigating	between	recently	opened	files
in	CodeBlocks.	The	list	of	recent	files	is	saved	in	a	history.	With	the	menu
’View’	/’Browse	Tracker’	/’Clear	All’	the	history	is	cleared.	
With	the	window	’Browsed	Tabs’	you	can	navigate	between	the	items	of	the
recently	opened	files	using	the	menu	entry	’View’	/’Browse	Tracker’	/’Backward
Ed/Forward	Ed’	or	the	shortcut	Alt-Left/Alt-Right.	The	Browse	Tracker	menu	is
also	accessible	as	context	menu.	The	markers	are	saved	in	the	layout	file
<projectName>.bmarks	
A	common	procedure	when	developing	software	is	to	struggle	with	a	set	of
functions	which	are	implemented	in	different	files.	The	BrowseTracks	plug-in
will	help	you	solve	this	problem	by	showing	you	the	order	in	which	the	files
were	selected.	You	can	then	comfortably	navigate	the	function	calls.	
The	plug-in	allows	even	browse	markers	within	each	file	in	the	CodeBlocks
editor.	The	cursor	position	is	memorized	for	every	file.	You	can	set	this	markers
using	the	menu	item	’View’	/’	Browse	Tracker’	/’	Set	BrowseMarks’	or	with
selecting	a	line	with	the	left	mouse	button.	A	marker	with	†	is	shown	in	the	left
margin.	With	the	menu	’View’	/’Browse	Tracker’	/’Prev	Mark/Next	Mark’	or	the
shortcut	Alt-up/Alt-down	you	can	navigate	through	the	markers	within	a	file.	If
you	want	to	navigate	in	a	file	between	markers	sorted	by	line	numbers	then	just
select	the	menu	’View’	/’Browse	Tracker’	/’Sort	BrowseMark’	.	
With	the	’Clear	BrowseMark’	the	marker	in	a	selected	line	is	removed.	If	a
marker	is	set	for	a	line,	holding	left-mouse	button	down	for	1/4	second	while
pressing	the	Ctrl	key	will	delete	the	marker	for	this	line.	Via	the	menu	’Clear	All
BrowseMarks’	or	with	a	Ctrl-left	click	on	any	unmarked	line	will	reset	the
markers	within	a	file.	
The	settings	of	the	plug-in	can	be	configure	via	the	menu	’Settings’	/’Editor’
/’Browse	Tracker’	.	
Mark	Style	

Browse	Marks	are	displayed	per	default	as	†	within	the	margin.	With

the	setting	’Book_Marks’	they	will	be	displayed	like	Bookmarks	as	blue
arrow	in	the	margin.	With	hide	the	display	of	Browse	Marks	is	suppressed.

Toggle	Browse	Mark	key	
Markers	can	be	set	or	removed	either	by	a	click	with	the	left	mouse
button	or	with	a	click	while	holding	the	crtl	key.	

Toggle	Delay	
The	duration	of	holding	the	left	mouse	button	to	enter	the	Browse
Marker	mode.	

Clear	All	BrowseMarks	
while	holding	Ctrl	key	either	by	a	simple	or	a	double	click	with	the
left	mouse	button.

The	configuration	of	the	plug-in	is	stored	in	your	application	data	directory	in
the	file	default.conf.	If	you	use	the	personality	feature	of	CodeBlocks	the
configuration	is	read	from	the	file	<personality>.conf.	

	2.7		FileManager	and	PowerShell	Plugin
	2.9		SVN	Support

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.9	SVN	Support

The	support	of	the	version	control	system	SVN	is	included	in	the	CodeBlocks
plugin	TortoiseSVN.	Via	the	menu	’TortoiseSVN’	/’Plugin	settings’	you	can
configure	the	accessible	svn	commands	in	the	tab	’Integration’	.	
Menu	integration	

Add	an	entry	TortoiseSVN	with	different	settings	in	the	menu	bar.	
Project	manger	

Activate	the	TortoiseSVN	commands	in	the	context	menu	of	the
project	manager.	

Editor	
Active	the	TortoiseSVN	commands	in	the	context	menu	of	the
editor.

In	the	plugin	settings	you	can	configure	which	svn	commands	are	accessible	via
the	menu	or	the	context	menu.	The	tab	integration	provides	the	entry	’Edit	main
menu’	and	’Edit	popup	menu’	to	configure	these	commands.	

Note:
The	File	Explorer	in	CodeBlocks	uses	different	icon	overlays	for	indicating
the	svn	status.	The	TortoiseSVN	commands	are	included	here	in	the	context

menu.	

	2.8		Browse	Tracker
	2.10		LibFinder

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.10	LibFinder

If	you	want	to	use	some	libraries	in	your	application,	you	have	to	configure	your
project	to	use	them.	Such	configuration	process	may	be	hard	and	annoying
because	each	library	can	use	custom	options	scheme.	Another	problem	is	that
configuration	differs	on	platforms	which	result	in	incompatibility	between	unix
and	windows	projects.	
LibFinder	provides	two	major	functionalities:	

Searching	for	libraries	installed	on	your	system	
Including	library	in	your	project	with	just	few	mouse	clicks	making
project	platform-independent

	2.9		SVN	Support
	2.10.1		Searching	for	libraries

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.10.1	Searching	for	libraries

Searching	for	libraries	is	available	under	’Plugins’	/’Library	finder’	menu.	It’s
purpose	is	to	detect	libraries	installed	on	your	system	and	store	the	results	inside
LibFinder’s	database	(note	that	these	results	are	not	written	into	CodeBlocks
project	files).	Searching	starts	with	dialogue	where	you	can	provide	set	of
directories	with	installed	libraries.	LibFinder	will	scan	them	recursively	so	if
you’re	not	sure	you	may	select	some	generic	directories.	You	may	even	enter
whole	disks	-	in	such	case	searching	process	will	take	more	time	but	it	may
detect	more	libraries	(see	Figure	2.10).	

Figure	2.10:
List	of
directories

When	LibFinder	scans	for	libraries,	it	uses	special	rules	to	detect	presence	of
library.	Each	set	of	rules	is	located	in	xml	file.	Currently	LibFinder	can	search
for	wxWidgets	2.6/2.8,	CodeBlocks	SDK	and	GLFW	-	the	list	will	be	extended
in	future.	

Note:
To	get	more	details	on	how	to	add	library	support	into	LibFinder,	read

src/plugins/contrib/lib_finder/lib_finder/readme.txt

in	CodeBlocks	sources.	
After	completing	the	scan,	LibFinder	shows	the	results	(see	Figure	2.11).	

Figure	2.11:
Search
results

In	the	list	you	check	libraries	which	should	be	stored	into	LibFinder’s	database.
Note	that	each	library	may	have	more	than	one	valid	configuration	and	settings
added	ealier	are	more	likely	to	be	used	while	building	projects.	
Below	the	list	you	can	select	what	to	do	with	results	of	previous	scans:	
Do	not	clear	previous	results	

This	option	works	like	an	update	to	existing	results	-	it	adds	new
ones	and	updates	those	which	already	exist.	This	option	is	not
recommended.	

Second	option	(Clear	previous	results	for	selected	libraries)	

will	clear	all	results	for	libraries	which	are	selected	before	adding
new	results.	This	is	the	recommended	option.	

Clear	all	previous	library	settings	
when	you	select	this	option,	LibFinder’s	database	will	be	cleared
before	adding	new	results.	It’s	useful	when	you	want	to	clean	some
invalid	LibFinder’s	database.

Another	option	in	this	dialogue	is	’Set	up	Global	Variables’	.	When	you	check
this	option,	LibFinder	will	try	automatically	configure	Global	Variables	which
are	also	used	to	help	dealing	with	libraries.	
If	you	have	pkg-config	installed	on	your	system	(it’s	installed	automatically	on
most	linux	versions)	LibFinder	will	also	provide	libraries	from	this	tool.	There	is
no	need	to	perform	scanning	for	them	-	they	are	automatically	loaded	when
CodeBlocks	starts.	

	2.10		LibFinder
	2.10.2		Including	libraries	in	projects

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.10.2	Including	libraries	in	projects

LibFinder	adds	extra	tab	in	Project	Properties	’Libraries’	-	this	tab	shows	libs
used	in	project	and	libs	known	in	LibFinder.	To	add	library	into	your	project,
select	it	in	right	pane	and	click	<	button.	To	remove	library	from	project,	select	it
on	the	left	pane	and	click	>	button	(see	Figure	2.12).	

Figure	2.12:
Project
configuration

You	can	filter	libraries	known	to	LibFinder	by	providing	search	filter.	The	’Show
as	Tree’	checkbox	allows	to	switch	between	categorized	and	uncategorized	view.
If	you	want	to	add	library	which	is	not	available	in	LibFinder’s	database,	you
may	use	’Unknown	Library’	field.	Note	that	you	should	enter	library’s	shortcode
(which	usually	matches	global	variable	name)	or	name	of	library	in	pkg-config.
List	of	suggested	shortcodes	can	be	found	at	 	Global	Variables.	Using	this
option	is	recommended	only	when	preparing	project	to	be	built	on	other
machines	where	such	library	exists	and	is	properly	detected	by	LibFinder.	You
can	access	a	global	variable	within	CodeBlocks	like:	
		$(#GLOBAL_VAR_NAME.include)	
Checking	the	’Don’t	setup	automatically’	option	will	notify	LibFinder	that	it
should	not	add	libraries	automatically	while	compiling	this	project.	In	such	case,
LibFinder	can	be	invoked	from	build	script.	Example	of	such	script	is	generated
and	added	to	project	by	pressing	’Add	manual	build	script’	.	

	2.10.1		Searching	for	libraries
	2.10.3		Using	LibFinder	and	projects	generated	from	wizards

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

http://wiki.codeblocks.org/index.php?title=Recommended_global_variables

	CodeBlocks	Manual			 	Search

2.10.3	Using	LibFinder	and	projects	generated	from	wizards

Wizards	will	create	projects	that	don’t	use	LibFinder.	To	integrate	them	with	this
plugin,	you	will	have	to	manually	update	project	build	options.	This	can	be
easily	achieved	by	removing	all	library-specific	settings	and	adding	library
through	’Libraries’	tab	in	project	properties.	
Such	project	becomes	cross-platform.	As	long	as	used	libs	are	defined	in
LibFinder’s	database,	project’s	build	options	will	be	automatically	updated	to
match	platform-specific	library	settings.	

	2.10.2		Including	libraries	in	projects
	2.11		AutoVersioning

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11	AutoVersioning

An	application	versioning	plug	in	that	increments	the	version	and	build	number
of	your	application	every	time	a	change	has	been	made	and	stores	it	in
version.h	with	easy	to	use	variable	declarations.	Also	have	a	feature	for
committing	changes	a	la	SVN	style,	a	version	scheme	editor,	a	change	log
generator	and	more	†	

	2.10.3		Using	LibFinder	and	projects	generated	from	wizards
	2.11.1		Introduction

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.1	Introduction

The	idea	of	the	AutoVersioning	plugin	was	made	during	the	development	of	a
pre-alpha	software	that	required	the	version	info	and	status.	Been	to	busy	coding,
without	time	to	maintain	the	version	number,	just	decided	to	develop	a	plugin
that	could	do	the	job	with	little	intervention	as	possible.	

	2.11		AutoVersioning
	2.11.2		Features

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.2	Features

Here	is	the	list	of	features	the	plugin	covers	summarized:	

Supports	C	and	C++.	
Generates	and	auto	increment	version	variables.	
Software	status	editor.	
Integrated	scheme	editor	for	changing	the	behavior	of	the	auto
incrementation	of	version	values.	
Date	declarations	as	month,	date	and	year.	
Ubuntu	style	version.	
Svn	revision	check.	
Change	log	generator.	
Works	on	Windows	and	Linux.

	2.11.1		Introduction
	2.11.3		Usage

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.3	Usage

Just	go	to	’Project’	/’Autoversioning’	menu.	A	pop	up	window	like	this	will
appear:	

Figure	2.13:
Configure
project	for
Autoversioning

When	hitting	yes	on	the	ask	to	configure	message	box,	the	main	auto	versioning
configuration	dialog	will	open,	to	let	you	configure	the	version	info	of	your
project.	
After	configuring	your	project	for	auto	versioning,	the	settings	that	you	entered
on	the	configuration	dialog	will	be	stored	on	the	project	file,	and	a	version.h
file	will	be	created.	For	now,	every	time	that	you	hit	the	’Project’
/’Autoversioning’	menu	the	configuration	dialog	will	popup	to	let	you	edit	your
project	version	and	versioning	related	settings,	unless	you	don’t	save	the	new
changes	made	by	the	plugin	to	the	project	file.	

	2.11.2		Features
	2.11.4		Dialog	notebook	tabs

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.4	Dialog	notebook	tabs

2.11.4.1	Version	Values

Here	you	just	enter	the	corresponding	version	values	or	let	the	auto	versioning
plugin	increment	them	for	you	(see	Figure	2.14).	
Major	

Increments	by	1	when	the	minor	version	reaches	its	maximum	
Minor	

Increments	by	1	when	the	build	number	pass	the	barrier	of	build
times,	the	value	is	reset	to	0	when	it	reach	its	maximum	value.	

Build	Number	
(also	equivalent	to	Release)	-	Increments	by	1	every	time	that	the
revision	number	is	incremented.	

Revision	
Increments	randomly	when	the	project	has	been	modified	and	then
compiled.

Figure	2.14:
Set	Version
Values

	2.11.3		Usage
	2.11.4.2	Status

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.4.2	Status

Some	fields	to	keep	track	of	your	software	status	with	a	list	of	predefined	values
for	convenience(see	Figure	2.15).	
Software	Status	

The	typical	example	should	be	v1.0	Alpha	
Abbreviation	

Same	as	software	status	but	like	this:	v1.0a

Figure	2.15:
Set	Status	of
Autoversioning

	2.11.4.1	Version	Values

	2.11.4.3	Scheme

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.4.3	Scheme

Lets	you	edit	how	the	plugin	will	increment	the	version	values	(see	Figure	2.16).

Figure	2.16:
Scheme	of
autoversioning

Minor	maximum	
The	maximum	number	that	the	Minor	value	can	reach,	after	this
value	is	reached	the	Major	is	incremented	by	1	and	next	time
project	is	compiled	the	Minor	is	set	to	0.	

Build	Number	maximum	
When	the	value	is	reached,	the	next	time	the	project	is	compiled	is
set	to	0.	Put	a	0	for	unlimited.	

Revision	maximum	
Same	as	Build	Number	maximum.	Put	a	0	for	unlimited	

Revision	random	maximum	
The	revision	increments	by	random	numbers	that	you	decide,	if	you
put	here	1,	the	revision	obviously	will	increment	by	1.	

Build	times	before	incrementing	Minor	
After	successful	changes	to	code	and	compilation	the	build	history
will	increment,	and	when	it	reaches	this	value	the	Minor	will
increment.

	2.11.4.2	Status
	2.11.4.4	Settings

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.4.4	Settings

Here	you	can	set	some	settings	of	the	auto	versioning	behavior	(see
Figure	2.17).	

Figure	2.17:
Settings	of
Autoversioning

Autoincrement	Major	and	Minor	
Lets	the	plugin	increments	this	values	by	you	using	the	scheme.	If
not	marked	only	the	Build	Number	and	Revision	will	increment.	

Create	date	declarations	
Create	entries	in	the	version.h	file	with	dates	and	ubuntu	style
version.	

Do	Auto	Increment	
This	tells	the	plugin	to	automatically	increment	the	changes	when	a
modification	is	made,	this	incrementation	will	occur	before
compilation.	

Header	language	
Select	the	language	output	of	version.h	

Ask	to	increment	
If	marked,	Do	Auto	Increment,	it	ask	you	before	compilation	(if
changes	has	been	made)	to	increment	the	version	values.	

svn	enabled	
Search	for	the	svn	revision	and	date	in	the	current	folder	and
generates	the	correct	entries	in	version.h

	2.11.4.3	Scheme
	2.11.4.5	Changes	Log

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.4.5	Changes	Log

This	lets	you	enter	every	change	made	to	the	project	to	generate	a
ChangesLog.txt	file	(see	Figure	2.18).	

Figure	2.18:
Changelog	of
Autoversioning

Show	changes	editor	when	incrementing	version	
Will	pop	up	the	changes	log	editor	when	incrementing	the	version.	

Title	Format	
A	format	able	title	with	a	list	of	predefined	values.

	2.11.4.4	Settings
	2.11.5		Including	in	your	code

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.5	Including	in	your	code

To	use	the	variables	generated	by	the	plugin	just	#include	<version.h>.	An
example	code	would	be	like	the	following:	

		#include	<iostream>	
		#include	"version.h"	
			
		void	main(){	
						std::cout<<AutoVersion::Major<<endl;	
		}	

	2.11.4.5	Changes	Log
	2.11.5.1	Output	of	version.h

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.5.1	Output	of	version.h

The	generated	header	file.	Here	is	a	sample	content	of	the	file	on	c++	mode:	

		#ifndef	VERSION_H	
		#define	VERSION_H	
			
		namespace	AutoVersion{	
			
			//Date	Version	Types	
			static	const	char	DATE[]	=	"15";	
			static	const	char	MONTH[]	=	"09";	
			static	const	char	YEAR[]	=	"2007";	
			static	const	double	UBUNTU_VERSION_STYLE	=	7.09;	
			
			//Software	Status	
			static	const	char	STATUS[]	=	"Pre-alpha";	
			static	const	char	STATUS_SHORT[]	=	"pa";	
			
			//Standard	Version	Type	
			static	const	long	MAJOR	=	0;	
			static	const	long	MINOR	=	10;	
			static	const	long	BUILD	=	1086;	
			static	const	long	REVISION	=	6349;	
			
			//Miscellaneous	Version	Types	
			static	const	long	BUILDS_COUNT	=	1984;	
			#define	RC_FILEVERSION	0,10,1086,6349	

			#define	RC_FILEVERSION_STRING	"0,	10,	1086,	6349\0"	
			static	const	char	FULLVERSION_STRING[]	=	"0.10.1086.6349";	
			
		}	
		#endif	//VERSION_h	
On	C	mode	is	the	same	as	C++	but	without	the	namespace:	
		#ifndef	VERSION_H	
		#define	VERSION_H	
			
			//Date	Version	Types	
			static	const	char	DATE[]	=	"15";	
			static	const	char	MONTH[]	=	"09";	
			static	const	char	YEAR[]	=	"2007";	
			static	const	double	UBUNTU_VERSION_STYLE	=	7.09;	
			
			//Software	Status	
			static	const	char	STATUS[]	=	"Pre-alpha";	
			static	const	char	STATUS_SHORT[]	=	"pa";	
			
			//Standard	Version	Type	
			static	const	long	MAJOR	=	0;	
			static	const	long	MINOR	=	10;	
			static	const	long	BUILD	=	1086;	
			static	const	long	REVISION	=	6349;	
			
			//Miscellaneous	Version	Types	
			static	const	long	BUILDS_COUNT	=	1984;	
			#define	RC_FILEVERSION	0,10,1086,6349	
			#define	RC_FILEVERSION_STRING	"0,	10,	1086,	6349\0"	
			static	const	char	FULLVERSION_STRING[]	=	"0.10.1086.6349";	
			
		#endif	//VERSION_h	

	2.11.5		Including	in	your	code
	2.11.6		Change	log	generator

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.6	Change	log	generator

This	dialog	is	accessible	from	the	menu	’Project’	/’Changes	Log’	.	Also	if
checked	Show	changes	editor	when	incrementing	version	on	the	changes	log
settings,	the	window	will	open	to	let	you	enter	the	list	of	changes	after	a
modification	to	the	project	sources	or	an	incrementation	event	(see	Figure	2.19).

Figure	2.19:
Changes
for	a	project

	2.11.5.1	Output	of	version.h
	2.11.6.1	Buttons	Summary

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.11.6.1	Buttons	Summary

Add
Appends	a	row	in	to	the	data	grid	

Edit	
Enables	the	modification	of	the	selected	cell	

Delete	
Removes	the	current	row	from	the	data	grid	

Save	
Stores	into	a	temporary	file	(changes.tmp)	the	actual	data	for	later
procesing	into	the	changes	log	file	

Write	
Process	the	data	grid	data	to	the	changes	log	file	

Cancel	
Just	closes	the	dialog	without	taking	any	action

Here	is	an	example	of	the	output	generated	by	the	plugin	to	the
ChangesLog.txt	file:	

		03	September	2007	
					released	version	0.7.34	of	AutoVersioning-Linux	
			
							Change	log:	
										-Fixed:	pointer	declaration	
										-Bug:	blah	blah	
			
		02	September	2007	
					released	version	0.7.32	of	AutoVersioning-Linux	
			
							Change	log:	
										-Documented	some	areas	of	the	code	

										-Reorganized	the	code	for	readability	
			
		01	September	2007	
					released	version	0.7.30	of	AutoVersioning-Linux	
			
							Change	log:	
										-Edited	the	change	log	window	
										-

If	the	change	log	windows	is	leave	blank	no	changes.txt	is	modified	

	2.11.6		Change	log	generator
	2.12		Code	statistics

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.12	Code	statistics

Figure	2.20:
Konfiguration
für	Code
Statistik

Based	on	the	entries	in	the	configuration	mask,	this	simple	plugin	detects	the
proportions	of	code,	commentaries	and	blank	lines	for	a	project.	The	evaluation
is	called	via	the	menu	command	’Plugins’	/’Code	statistics’	.	

	2.11.6.1	Buttons	Summary
	2.13		Searching	Available	Source	Code

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.13	Searching	Available	Source	Code

This	plugin	makes	it	possible	to	select	a	term	within	the	editor	and	to	search	for
this	term	via	the	context	menu	’Search	at	Koders’	in	the	[?]	database.	The
dialogue	offers	the	additional	possibilities	to	of	filtering	for	program	languages
and	licences.	
This	database	search	will	help	you	find	source	code	originating	from	other
world-wide	projects	of	universities,	consortiums	and	organisations	such	as
Apache,	Mozilla,	Novell	Forge,	SourceForge	and	many	others,	which	can	be	re-
used	without	having	to	reinvent	the	wheel	every	time.	Please	observe	the	licence
of	the	source	code	in	each	individual	case.	

	2.12		Code	statistics
	2.14		Code	profiler

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.14	Code	profiler

A	simple	graphical	interface	to	the	GNU	GProf	Profiler.	

	2.13		Searching	Available	Source	Code
	2.15		Symbol	Table	Plugin

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

2.15	Symbol	Table	Plugin

This	plugin	makes	it	possible	to	search	for	symbols	in	objects	and	libraries.	The
options	and	the	path	for	the	command	line	program	nm	are	defined	in	the
Options	tab.	

Figure	2.21:
Configuring
the	Symbol
Table

Clicking	the	’Search’	stats	the	search,	the	results	of	the	NM	program	are
displayed	in	a	separate	window	caleld	’SymTabs	Result’.	The	name	of	the
objects	or	libraries	containing	the	symbol	are	listed	under	the	title	’NM’s
Output’.	

	2.14		Code	profiler
	3		Variable	Expansion

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3	Variable	Expansion

CodeBlocks	differentiates	between	several	types	of	variables.	These	types	serve
the	purpose	of	configuring	the	environment	for	creating	a	program,	and	at	the
same	of	improving	the	maintainability	and	portability.	Access	to	the	CodeBlocks
variables	is	achieved	via	$<name>.	
Envrionment	Variable	

are	set	during	the	startup	of	CodeBlocks.	They	can	modify	system
environment	variables	such	as	PATH.	This	can	be	useful	in	cases
where	a	defined	environment	is	necessary	for	the	creation	of	projects.	The
settings	for	environment	variables	in	CodeBlocks	are	made	at	’Settings’
/’Environment’	/’Environment	Variables’	.	

Builtin	Variables	
are	predefined	in	CodeBlocks,	and	can	be	accessed	via	their
names	(see	section	3.2	for	details).	

Command	Macros	
This	type	of	variables	is	used	for	controlling	the	build	process.	For
further	information	please	refer	to	section	3.4.	

Custom	Variables	
are	user-defined	variables	which	can	be	specified	in	the	build
options	of	a	project.	Here	you	can,	for	example	define	your
derivative	as	a	variable	MCU	and	assign	a	corresponding	value	to	it.
Then	set	the	compiler	option	-mcpu=$(MCU),	and	CodeBlocks	will
automatically	replace	the	content.	By	this	method,	the	settings	for	a	project
can	be	further	parametrised.	

Global	Variables	
are	mainly	used	for	creating	CodeBlocks	from	the	sources	or
developments	of	wxWidgets	applications.	These	variables	have	a
very	special	meaning.	In	contrast	to	all	others	if	you	setup	such	a
variables	and	share	your	project	file	with	others	that	have	*not*
setup	this	GV	CodeBlocks	will	ask	the	user	to	setup	the	variable.
This	is	a	very	easy	way	to	ensure	the	’other	developer’	knows	what
to	setup	easily.	CodeBlocks	will	ask	for	all	path’s	usually	necessary.

	2.15		Symbol	Table	Plugin
	3.1		Syntax

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.1	Syntax

CodeBlocks	treats	the	following	functionally	identical	character	sequences
inside	pre-build,	post-build,	or	build	steps	as	variables:	

$VARIABLE	
$(VARIABLE)	
${VARIABLE}	
%VARIABLE%

Variable	names	must	consist	of	alphanumeric	characters	and	are	not	case-
sensitive.	Variables	starting	with	a	single	hash	sign	(#)	are	interpreted	as	global
user	variables	(see	section	3.7	for	details).	The	names	listed	below	are
interpreted	as	built-in	types.	
Variables	which	are	neither	global	user	variables	nor	built-in	types,	will	be
replaced	with	a	value	provided	in	the	project	file,	or	with	an	environment
variable	if	the	latter	should	fail.	

Note:
Per-target	definitions	have	precedence	over	per-project	definitions.	

	3		Variable	Expansion
	3.2		List	of	available	built-ins

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2	List	of	available	built-ins

The	variables	listed	here	are	built-in	variables	of	CodeBlocks.	They	cannot	be
used	within	source	files.	

	3.1		Syntax
	3.2.1		CodeBlocks	workspace

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.1	CodeBlocks	workspace

$(WORKSPACE_FILENAME),	$(WORKSPACE_FILE_NAME),	$(WORKSPACEFILE),
$(WORKSPACEFILENAME)

The	filename	of	the	current	workspace	project	(.workspace).	
$(WORKSPACENAME),	$(WORKSPACE_NAME)

The	name	of	the	workspace	that	is	displayed	in	tab	Projects	of	the
Management	panel.	

$(WORKSPACE_DIR),	$(WORKSPACE_DIRECTORY),	$(WORKSPACEDIR),
$(WORKSPACEDIRECTORY)

The	location	of	the	workspace	directory.

	3.2		List	of	available	built-ins
	3.2.2		Files	and	directories

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.2	Files	and	directories

$(PROJECT_FILENAME),	$(PROJECT_FILE_NAME),	$(PROJECT_FILE),	$(PROJECTFILE)

The	filename	of	the	currently	compiled	project.	
$(PROJECT_NAME)

The	name	of	the	currently	compiled	project.	
$(PROJECT_DIR),	$(PROJECTDIR),	$(PROJECT_DIRECTORY)

The	common	top-level	directory	of	the	currently	compiled	project.	
$(ACTIVE_EDITOR_FILENAME)

The	filename	of	the	file	opened	in	the	currently	active	editor.	
$(ACTIVE_EDITOR_LINE)

Return	the	current	line	in	the	active	editor.	
$(ACTIVE_EDITOR_COLUMN

Return	the	column	of	the	current	line	in	the	active	editor.	
$(ACTIVE_EDITOR_DIRNAME)

the	directory	containing	the	currently	active	file	(relative	to	the	common
top	level	path).	

$(ACTIVE_EDITOR_STEM)

The	base	name	(without	extension)	of	the	currently	active	file.	
$(ACTIVE_EDITOR_EXT)

The	extension	of	the	currently	active	file.	
$(ALL_PROJECT_FILES)

A	string	containing	the	names	of	all	files	in	the	current	project.	

$(MAKEFILE)	
The	filename	of	the	makefile.	

$(CODEBLOCKS),	$(APP_PATH),	$(APPPATH),	$(APP-PATH)

The	path	to	the	currently	running	instance	of	CodeBlocks.	
$(DATAPATH),	$(DATA_PATH),	$(DATA-PATH)

The	’shared’	directory	of	the	currently	running	instance	of	CodeBlocks.	

$(PLUGINS)	
The	plugins	directory	of	the	currently	running	instance	of	CodeBlocks.

$(TARGET_COMPILER_DIR)

The	compiler	installation	directory	so-called	master	path.

	3.2.1		CodeBlocks	workspace
	3.2.3		Build	targets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.3	Build	targets

$(FOOBAR_OUTPUT_FILE)

The	output	file	of	a	specific	target.	
$(FOOBAR_OUTPUT_DIR)

The	output	directory	of	a	specific	target.	
$(FOOBAR_OUTPUT_BASENAME)

The	output	file’s	base	name	(no	path,	no	extension)	of	a	specific	target.	
$(TARGET_OUTPUT_DIR)

The	output	directory	of	the	current	target.	
$(TARGET_OBJECT_DIR)

The	object	directory	of	the	current	target.	
$(TARGET_NAME)

The	name	of	the	current	target.	
$(TARGET_OUTPUT_FILE)

The	output	file	of	the	current	target.	
$(TARGET_OUTPUT_BASENAME)

The	output	file’s	base	name	(no	path,	no	extension)	of	the	current	target.	
$(TARGET_CC),	$(TARGET_CPP),	$(TARGET_LD),	$(TARGET_LIB)

The	build	tool	executable	(compiler,	linker,	etc)	of	the	current	target.

	3.2.2		Files	and	directories
	3.2.4		Language	and	encoding

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.4	Language	and	encoding

$(LANGUAGE)

The	system	language	in	plain	language.	
$(ENCODING)	

The	character	encoding	in	plain	language.

	3.2.3		Build	targets
	3.2.5		Time	and	date

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.5	Time	and	date

$(TDAY)

Current	date	in	the	form	YYYYMMDD	(for	example	20051228)	
$(TODAY)	

Current	date	in	the	form	YYYY-MM-DD	(for	example	2005-12-28)	

$(NOW)	
Timestamp	in	the	form	YYYY-MM-DD-hh.mm	(for	example	2005-12-28-
07.15)	

$(NOW_L)	
]	Timestamp	in	the	form	YYYY-MM-DD-hh.mm.ss	(for	example	2005-
12-28-07.15.45)	

$(WEEKDAY)	
Plain	language	day	of	the	week	(for	example	’Wednesday’)	

$(TDAY_UTC),	$(TODAY_UTC),	$(NOW_UTC),	$(NOW_L_UTC),	$(WEEKDAY_UTC)

These	are	identical	to	the	preceding	types,	but	are	expressed	relative	to
UTC.	

$(DAYCOUNT)	
The	number	of	the	days	passed	since	an	arbitrarily	chosen	day	zero
(January	1,	2009).	Useful	as	last	component	of	a	version/build	number.

	3.2.4		Language	and	encoding
	3.2.6		Random	values

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.6	Random	values

$(COIN)

This	variable	tosses	a	virtual	coin	(once	per	invocation)	and	returns	0	or	1.	
$(RANDOM)	

A	16-bit	positive	random	number	(0-65535)

	3.2.5		Time	and	date
	3.2.7		Operating	System	Commands

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.7	Operating	System	Commands

The	variable	are	substituted	through	the	command	of	the	operating	system.	

$(CMD_CP)	
Copy	command	for	files.	

$(CMD_RM)	
Remove	command	for	files.	

$(CMD_MV)	
Move	command	for	files.	

$(CMD_MKDIR)

Make	directory	command.	

$(CMD_RMDIR)	
Remove	directory	command.

	3.2.6		Random	values
	3.2.8		Conditional	Evaluation

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.2.8	Conditional	Evaluation

		$if(condition){true	clause}{false	clause}

Conditional	evaluation	will	resolve	to	its	true	clause	if	

condition	is	a	non-empty	character	sequence	other	than	0	or	false	
condition	is	a	non-empty	variable	that	does	not	resolve	to	0	or	false	
condition	is	a	variable	that	evaluates	to	true	(implicit	by	previous
condition)

Conditional	evaluation	will	resolve	to	its	false	clause	if	

condition	is	empty	
condition	is	0	or	false	
condition	is	a	variable	that	is	empty	or	evaluates	to	0	or	false

Note:
Please	do	note	that	neither	the	variable	syntax	variants	%if(...)	nor	$(if)(...)

are	supported	for	this	construct.	
Example	
For	example	if	you	are	using	several	platforms	and	you	want	to	set	different
parameters	depending	on	the	operating	system.	In	the	following	code	the	script
commands	of	[[]]	are	evaluated	and	the	<command>	will	be	executed.	This
could	be	useful	in	a	post-built	step.	
		[[if	(PLATFORM	==		PLATFORM_MSW)	{	print	(_T("cmd	/c"));	}	else	{	print	(_T("sh	"));	}]]	<command>

	3.2.7		Operating	System	Commands
	3.3		Script	expansion

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH

Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.3	Script	expansion

For	maximum	flexibility,	you	can	embed	scripts	using	the	[[]]	operator	as	a
special	case	of	variable	expansion.	Embedded	scripts	have	access	to	all	standard
functionalities	available	to	scrips	and	work	pretty	much	like	bash	backticks
(except	for	having	access	to	CodeBlocks	namespace).	As	such,	scripts	are	not
limited	to	producing	text	output,	but	can	also	manipulate	CodeBlocks	state
(projects,	targets,	etc.).	

Note:
Manipulating	CodeBlocks	state	should	be	implemented	rather	with	a	pre-

build	script	than	with	a	script.	
Example	with	Backticks	
		objdump	-D	‘find	.	-name	*.elf‘	>	name.dis	
The	expression	in	backticks	returns	a	list	of	all	executables	*.elf	in	any
subdirectories.	The	result	of	this	expression	can	be	used	directly	by	objdump.
Finally	the	output	is	piped	to	a	file	named	name.dis.	Thus,	processes	can	be
automatted	in	a	simple	way	without	having	to	program	any	loops.	
Example	using	Script	
The	script	text	is	replaced	by	any	output	generated	by	your	script,	or	discarded	in
case	of	a	syntax	error.	
Since	conditional	evaluation	runs	prior	to	expanding	scripts,	conditional
evaluation	can	be	used	for	preprocessor	functionalities.	Built-in	variables	(and
user	variables)	are	expanded	after	scripts,	so	it	is	possible	to	reference	variables
in	the	output	of	a	script.	
		[[print(GetProjectManager().GetActiveProject().GetTitle());]]	
inserts	the	title	of	the	active	project	into	the	command	line.	

	3.2.8		Conditional	Evaluation

	3.4		Command	Macros

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.4	Command	Macros

$compiler

Access	to	name	of	the	compiler	executable.	
$linker	

Access	to	name	of	the	linker	executable.	

$options	
Compiler	flags	

$link_options	
Linker	flags	

$includes	
Compiler	include	paths	

$c	
Linker	include	paths	

$libs	
Linker	libraries	

$file	
Source	file	(full	name)	

$file_dir	
Source	file	directory	without	file	name	and	file	name	extension.	

$file_name	
Source	file	name	without	path	info	and	file	name	extension.	

$exe_dir	
Directory	of	executable	without	file	name	and	file	name	extension.	

$exe_name	

File	name	of	executable	without	path	and	file	name	extension.	

$exe_ext	
File	name	extension	of	executable	without	path	and	file	name.	

$object	
Object	file	

$exe_output	
Executable	output	file	

$objects_output_dir

Object	Output	Directory

	3.3		Script	expansion
	3.5		Compile	single	file

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.5	Compile	single	file

		$compiler	$options	$includes	-c	$file	-o	$object

	3.4		Command	Macros
	3.6		Link	object	files	to	executable

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.6	Link	object	files	to	executable

		$linker	$libdirs	-

o	$exe_output	$link_objects	$link_resobjects	$link_options	$libs

	3.5		Compile	single	file
	3.7		Global	compiler	variables

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.7	Global	compiler	variables

3.8	Synopsis

Working	as	a	developer	on	a	project	which	relies	on	3rd	party	libraries	involves
a	lot	of	unnecessary	repetitive	tasks,	such	as	setting	up	build	variables	according
to	the	local	file	system	layout.	In	the	case	of	project	files,	care	must	be	taken	to
avoid	accidentially	committing	a	locally	modified	copy.	If	one	does	not	pay
attention,	this	can	happen	easily	for	example	after	changing	a	build	flag	to	make
a	release	build.	
The	concept	of	global	compiler	variables	is	a	unique	new	solution	for
CodeBlocks	which	addresses	this	problem.	Global	compiler	variables	allow	you
to	set	up	a	project	once,	with	any	number	of	developers	using	any	number	of
different	file	system	layouts	being	able	to	compile	and	develop	this	project.	No
local	layout	information	ever	needs	to	be	changed	more	than	once.	

	3.6		Link	object	files	to	executable
	3.9		Names	and	Members

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.9	Names	and	Members

Global	compiler	variables	in	CodeBlocks	are	discriminated	from	per-project
variables	by	a	leading	hash	sign.	Global	compiler	variables	are	structured;	every
variable	consists	of	a	name	and	an	optional	member.	Names	are	freely	definable,
while	some	of	the	members	are	built	into	the	IDE.	Although	you	can	choose
anything	for	a	variable	name	in	principle,	it	is	advisable	to	pick	a	known
identifier	for	common	packages.	Thus	the	amount	of	information	that	the	user
needs	to	provide	is	minimised.	The	CodeBlocks	team	provides	a	list	of
recommended	variables	for	known	packages.	
The	member	base	resolves	to	the	same	value	as	the	variable	name	uses	without	a
member	(alias).	
The	members	include	and	lib	are	by	default	aliases	for	base/include	and
base/lib,	respectively.	However,	a	user	can	redefine	them	if	another	setup	is
desired.	
It	is	generally	recommended	to	use	the	syntax	$(#variable.include)	instead	of
$(#variable)/include,	as	it	provides	additional	flexibility	and	is	otherwise
exactly	identical	in	functionality	(see	subsection	3.12.1	and	Figure	3.1	for
details).	
The	members	cflags	and	lflags	are	empty	by	default	and	can	be	used	to	provide
the	ability	to	feed	the	same	consistent	set	of	compiler/linker	flags	to	all	builds	on
one	machine.	CodeBlocks	allows	you	to	define	custom	variable	members	in
addition	to	the	built-in	ones.	

Figure	3.1:
Global
Variable
Environment

	3.8		Synopsis
	3.10		Constraints

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.10	Constraints

	Both	set	and	global	compiler	variable	names	may	not	be	empty,
they	must	not	contain	white	space,	must	start	with	a	letter	and	must
consist	of	alphanumeric	characters.	Cyrillic	or	Chinese	letters	are	not
alphanumeric	characters.	If	CodeBlocks	is	given	invalid	character
sequences	as	names,	it	might	replace	them	without	asking.	
Every	variable	requires	its	base	to	be	defined.	Everything	else	is
optional,	but	the	base	is	absolutely	mandatory.	If	you	don’t	define	a
the	base	of	a	variable,	it	will	not	be	saved	(no	matter	what	other
fields	you	have	defined).	
You	may	not	define	a	custom	member	that	has	the	same	name	as	a
built-in	member.	Currently,	the	custom	member	will	overwrite	the
built-in	member,	but	in	general,	the	behaviour	for	this	case	is
undefined.	
Variable	and	member	values	may	contain	arbitrary	character
sequences,	subject	to	the	following	three	constraints:	

You	may	not	define	a	variable	by	a	value	that	references	the
same	variable	or	any	of	its	members	
You	may	not	define	a	member	by	a	value	that	references	the
same	member	
You	may	not	define	a	member	or	variable	by	a	value	that
references	the	same	variable	or	member	through	a	cyclic
dependency.

CodeBlocks	will	detect	the	most	obvious	cases	of	recursive	definitions	(which
may	happen	by	accident),	but	it	will	not	perform	an	in-depth	analysis	of	every
possible	abuse.	If	you	enter	crap,	then	crap	is	what	you	will	get;	you	are	warned
now.	
Examples	

Defining	wx.include	as	$(#wx)/include	is	redundant,	but	perfectly	legal
Defining	wx.include	as	$(#wx.include)	is	illegal	and	will	be	detected	by
CodeBlocks	Defining	wx.include	as	$(#cb.lib)	which	again	is	defined	as
$(#wx.include)	will	create	an	infinite	loop	

	3.9		Names	and	Members
	3.11		Using	Global	Compiler	Variables

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.11	Using	Global	Compiler	Variables

All	you	need	to	do	for	using	global	compiler	variables	is	to	put	them	in	your
project!	Yes,	it’s	that	easy.	
When	the	IDE	detects	the	presence	of	an	unknown	global	variable,	it	will	prompt
you	to	enter	its	value.	The	value	will	be	saved	in	your	settings,	so	you	never
need	to	enter	the	information	twice.	
If	you	need	to	modify	or	delete	a	variable	at	a	later	time,	you	can	do	so	from	the
settings	menu.	
Example	

Figure	3.2:
Global
Variables

The	above	image	shows	both	per-project	and	global	variables.	WX_SUFFIX	is
defined	in	the	project,	but	WX	is	a	global	user	variable.	

	3.10		Constraints
	3.12		Variable	Sets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.12	Variable	Sets

Sometimes,	you	want	to	use	different	versions	of	the	same	library,	or	you
develop	two	branches	of	the	same	program.	Although	it	is	possible	to	get	along
with	a	global	compiler	variable,	this	can	become	tedious.	For	such	a	purpose,
CodeBlocks	supports	variable	sets.	A	variable	set	is	an	independent	collection	of
variables	identified	by	a	name	(set	names	have	the	same	constraints	as	variable
names).	
If	you	wish	to	switch	to	a	different	set	of	variables,	you	simply	select	a	different
set	from	the	menu.	Different	sets	are	not	required	to	have	the	same	variables,	and
identical	variables	in	different	sets	are	not	required	to	have	the	same	values,	or
even	the	same	custom	members.	
Another	positive	thing	about	sets	is	that	if	you	have	a	dozen	variables	and	you
want	to	have	a	new	set	with	one	of	these	variables	pointing	to	a	different
location,	you	are	not	required	to	re-enter	all	the	data	again.	You	can	simply
create	a	clone	of	your	current	set,	which	will	then	duplicate	all	of	your	variables.
Deleting	a	set	also	deletes	all	variables	in	that	set	(but	not	in	another	set).	The
default	set	is	always	present	and	cannot	be	deleted.	

	3.11		Using	Global	Compiler	Variables
	3.12.1		Custom	Members	Mini-Tutorial

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

3.12.1	Custom	Members	Mini-Tutorial

As	stated	above,	writing	$(#var.include)	and	$(#var)/include	is	exactly	the
same	thing	by	default.	So	why	would	you	want	to	write	something	as	unintuitive
as	$(#var.include)?	
Let’s	take	a	standard	Boost	installation	under	Windows	for	an	example.
Generally,	you	would	expect	a	fictional	package	ACME	to	have	its	include	files
under	ACME/include	and	its	libraries	under	ACME/lib.	Optionally,	it	might
place	its	headers	into	yet	another	subfolder	called	acme.	So	after	adding	the
correct	paths	to	the	compiler	and	linker	options,	you	would	expect	to
#include	<acme/acme.h>	and	link	to	libacme.a	(or	whatever	it	happens	to
be).	

	3.12		Variable	Sets

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual

Search

Stichwort:			 			 	Suchen	

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	Table	of	contents			 	Search

CodeBlocks	Manual	Version	1.1	

	1		CodeBlocks	Project	Management

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	CodeBlocks	Manual			 	Search

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	R	S	T	U	V	W	Y	Z

A

Abbreviation
2.11.4.2	Status

Access
1.11.3	Configuring	environmental	variables
3	Variable	Expansion
3.4	Command	Macros

ACME
3.12.1	Custom	Members	Mini-Tutorial

ACME/include
3.12.1	Custom	Members	Mini-Tutorial

ACME/lib
3.12.1	Custom	Members	Mini-Tutorial

Acrobat
2.5	Source	Code	Exporter

Activate
2.9	SVN	Support

Activates
1.11.5	Switching	between	projects

Activating
2.3	Incremental	Search

Active
2.9	SVN	Support

Add;$interpreter
2.7	FileManager	and	PowerShell	Plugin

Additionally
1.11.3	Configuring	environmental	variables

Advanced
1.9	Including	Assembler	files
2.6.4	Options

After
1.6	Pre-	and	Postbuild	steps
2.10.1	Searching	for	libraries
2.11.3	Usage
2.11.4.3	Scheme

Alpha
2.11.4.2	Status

ALT-DELETE
2.3	Incremental	Search

Alt-End
1.11.8	Wrap	Mode

Alt-F5
1.11.5	Switching	between	projects

Alt-F6
1.11.5	Switching	between	projects

Alt-G
1.10.5	Navigate	and	Search

Alt-Home
1.11.8	Wrap	Mode

Although
3.9	Names	and	Members
3.12	Variable	Sets

Alt-Left/Alt-Right
2.8	Browse	Tracker

ALT-LeftClickDrag
1.11.9	Select	modes	in	editor

Alt-PgDn
1.10.5	Navigate	and	Search

Alt-PgUp
1.10.5	Navigate	and	Search

Alt-up/Alt-down
2.8	Browse	Tracker

Another
1.11.4	Switching	between	perspectives
1.11.10	Code	folding
1.11.13	Including	libraries
2.10	LibFinder
2.10.1	Searching	for	libraries
3.12	Variable	Sets

Apache
2.13	Searching	Available	Source	Code

Apart
1.11.4	Switching	between	perspectives

Appends
2.11.6.1	Buttons	Summary

Application
1.3	Project	Templates
1.10.4	Configuration	Files
2.2	CodeSnippets

Apply
2.2	CodeSnippets

Archive
1.6	Pre-	and	Postbuild	steps

Archiving
1.6	Pre-	and	Postbuild	steps

Artistic
2.1	Astyle

As
1.10.6	Symbol	view
2.2	CodeSnippets
2.3	Incremental	Search
2.10.3	Using	LibFinder	and	projects	generated	from	wizards
3.3	Script	expansion
3.12.1	Custom	Members	Mini-Tutorial

Ask
2.11.4.4	Settings

ASM
1.1	Project	View
1.9	Including	Assembler	files

Assembler
1.9	Including	Assembler	files

Auto
2.11.4.4	Settings

Autoincrement
2.11.4.4	Settings

Autosave
1.11.15	Autosave

AutoVersion{
2.11.5.1	Output	of	version.h

AutoVersioning

2.11.1	Introduction
2.11.3	Usage
2.11.4.2	Status
2.11.4.4	Settings
2.11.4.5	Changes	Log

AutoVersioning-Linux
2.11.6.1	Buttons	Summary

B

Backticks
3.3	Script	expansion

Backward
2.8	Browse	Tracker

Based
2.12	Code	statistics

Been
2.11.1	Introduction

Below
2.10.1	Searching	for	libraries

Besides
2.2	CodeSnippets

Beyond
2.2	CodeSnippets

Blocks
1.11.16	Settings	for	file	extensions
1.12	CodeBlocks	at	the	command	line

Book_Marks
2.8	Browse	Tracker

Bookmarks

2.8	Browse	Tracker

Boost
3.12.1	Custom	Members	Mini-Tutorial

Both
3.10	Constraints

Browse
1.10.5	Navigate	and	Search
2.8	Browse	Tracker

Browsed
2.8	Browse	Tracker

BrowseMark
2.8	Browse	Tracker

BrowseMarks
2.8	Browse	Tracker

Browser
1.10.6	Symbol	view
2.2	CodeSnippets

BrowseTracks
2.8	Browse	Tracker

Bug
2.11.6.1	Buttons	Summary

Build
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets
1.6	Pre-	and	Postbuild	steps
1.7	Adding	Scripts	in	Build	Targets
1.9	Including	Assembler	files
1.11.6	Extended	settings	for	compilers
1.11.14	Object	linking	order
1.12	CodeBlocks	at	the	command	line

2.11.4.1	Version	Values
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.5.1	Output	of	version.h

BUILDS_COUNT
2.11.5.1	Output	of	version.h

Built-in
1.6	Pre-	and	Postbuild	steps
1.10.8	Including	external	tools
3	Variable	Expansion
3.3	Script	expansion

By
1.2	Notes	for	Projects
1.5	Virtual	Targets
1.8	Workspace	and	Project	Dependencies
1.10.3	Personalities
1.11.4	Switching	between	perspectives
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.6	Thread	Search
2.7	FileManager	and	PowerShell	Plugin
3	Variable	Expansion

C

C#
2.1	Astyle

C/C++
1.1	Project	View
1.10.1	Default	Code
1.10.6	Symbol	view

C++
1.1	Project	View

1.10.1	Default	Code
1.10.6	Symbol	view
2.1	Astyle
2.11.2	Features
2.11.5.1	Output	of	version.h

Call
2.7	FileManager	and	PowerShell	Plugin

Cancel
2.11.6.1	Buttons	Summary

Caret
1.11.9	Select	modes	in	editor

Categorize
1.1	Project	View

CB
2.7	FileManager	and	PowerShell	Plugin

CC
1.9	Including	Assembler	files

Change
2.11.2	Features
2.11.6.1	Buttons	Summary

Changebar
1.11.1	Tracking	of	Modifications

Changelog
2.11.4.5	Changes	Log

Changes
2.11.6	Change	log	generator

ChangesLog.txt
2.11.4.5	Changes	Log
2.11.6.1	Buttons	Summary

Checking
2.10.2	Including	libraries	in	projects

Chinese
3.10	Constraints

Class
1.10.6	Symbol	view

Clean
1.12	CodeBlocks	at	the	command	line

Clear
1.11.1	Tracking	of	Modifications
2.3	Incremental	Search
2.8	Browse	Tracker
2.10.1	Searching	for	libraries

Click
2.6.2	Usage

Clicking
2.3	Incremental	Search
2.7	FileManager	and	PowerShell	Plugin
2.15	Symbol	Table	Plugin

Code
1.10.1	Default	Code
1.10.6	Symbol	view
2.6.6	Layout
2.12	Code	statistics

CodeBlocks
1	CodeBlocks	Project	Management
1.1	Project	View
1.2	Notes	for	Projects
1.3	Project	Templates
1.5	Virtual	Targets
1.6	Pre-	and	Postbuild	steps
1.7	Adding	Scripts	in	Build	Targets

1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.10.1	Default	Code
1.10.2	Abbreviation
1.10.3	Personalities
1.10.4	Configuration	Files
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.10.8	Including	external	tools
1.11	Tips	for	working	with	CodeBlocks
1.11.1	Tracking	of	Modifications
1.11.2	Data	Exchange	with	other	applications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.5	Switching	between	projects
1.11.6	Extended	settings	for	compilers
1.11.7	Zooming	within	the	editor
1.11.8	Wrap	Mode
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.11	Auto	complete
1.11.12	Find	broken	files
1.11.14	Object	linking	order
1.11.15	Autosave
1.11.16	Settings	for	file	extensions
1.12	CodeBlocks	at	the	command	line
1.13	Shortcuts
1.13.1	Editor
2.1	Astyle
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.5	Source	Code	Exporter
2.6	Thread	Search
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.9	SVN	Support
2.10.1	Searching	for	libraries

2.10.2	Including	libraries	in	projects
3	Variable	Expansion
3.1	Syntax
3.2	List	of	available	built-ins
3.2.2	Files	and	directories
3.3	Script	expansion
3.8	Synopsis
3.9	Names	and	Members
3.10	Constraints
3.12	Variable	Sets

CodeSnippets
1	CodeBlocks	Project	Management
2.2	CodeSnippets

Coding
1.10.1	Default	Code

Command
3	Variable	Expansion

Comment
2.4	ToDo	List

Compile
1.9	Including	Assembler	files

Compiler
1.9	Including	Assembler	files
1.11.6	Extended	settings	for	compilers
3.4	Command	Macros

Completion
1.10.6	Symbol	view

Complex
1.8	Workspace	and	Project	Dependencies

Conditional
3.2.8	Conditional	Evaluation

Configuration
2.6.3	Configuration

Configure
1.10.8	Including	external	tools
2.6.2	Usage
2.11.3	Usage

Configuring
2.15	Symbol	Table	Plugin

Console
2.6	Thread	Search

Contextual
2.6.1	Features

Convert
2.2	CodeSnippets

Copy
1.10.4	Configuration	Files
2.7	FileManager	and	PowerShell	Plugin
3.2.7	Operating	System	Commands

Copyright
1.10.1	Default	Code

Create
1.4	Create	Projects	from	Build	Targets
1.11.3	Configuring	environmental	variables
2.11.4.4	Settings

Creating
1.6	Pre-	and	Postbuild	steps

Crtl-key
1.10.5	Navigate	and	Search

Ctrl

1.10.5	Navigate	and	Search
1.11.7	Zooming	within	the	editor
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker

Ctrl-Alt-G
1.10.5	Navigate	and	Search

Ctrl-B
1.10.5	Navigate	and	Search

Ctrl-C
1.11.9	Select	modes	in	editor

Ctrl-F
1.10.5	Navigate	and	Search

Ctrl-F3
1.11.1	Tracking	of	Modifications

Ctrl-G
1.10.5	Navigate	and	Search

Ctrl-I
2.3	Incremental	Search

Ctrl-J
1.10.2	Abbreviation

Ctrl-key
1.10.5	Navigate	and	Search
1.11.9	Select	modes	in	editor

Ctrl-left
2.8	Browse	Tracker

Ctrl-Numepad-/
1.11.7	Zooming	within	the	editor

Ctrl-PgDn

1.10.5	Navigate	and	Search

Ctrl-PgUp
1.10.5	Navigate	and	Search

Ctrl-Shift-F
1.10.5	Navigate	and	Search

Ctrl-Shift-F3
1.11.1	Tracking	of	Modifications

Ctrl-Space
1.11.11	Auto	complete

Ctrl-Tab
1.10.5	Navigate	and	Search

Ctrl-V
1.11.9	Select	modes	in	editor

Ctrl-X
1.11.9	Select	modes	in	editor

Current
1	CodeBlocks	Project	Management
3.2.5	Time	and	date

Currently
2.10.1	Searching	for	libraries
3.10	Constraints

Custom
3	Variable	Expansion

Cyrillic
3.10	Constraints

D

Data

1.3	Project	Templates
1.10.4	Configuration	Files
1.11.2	Data	Exchange	with	other	applications

Date
2.11.2	Features
2.11.5.1	Output	of	version.h

DATE[]
2.11.5.1	Output	of	version.h

DDE
1.11.2	Data	Exchange	with	other	applications
1.12	CodeBlocks	at	the	command	line

Debug
1.5	Virtual	Targets

Debugger
1.11.6	Extended	settings	for	compilers

Decorators
2.7	FileManager	and	PowerShell	Plugin

Default
1.10.1	Default	Code
1.10.4	Configuration	Files

Defining
1.10.2	Abbreviation
3.10	Constraints

Delay
2.8	Browse	Tracker

Delete
2.6.5	Thread	search	options
2.7	FileManager	and	PowerShell	Plugin
2.11.6.1	Buttons	Summary

Deleting
2.3	Incremental	Search
3.12	Variable	Sets

Depending
1.10.8	Including	external	tools
1.11.4	Switching	between	perspectives

Dialogue
2.4	ToDo	List

Diff
2.7	FileManager	and	PowerShell	Plugin

Diff;$interpreter
2.7	FileManager	and	PowerShell	Plugin

Different
1.11.3	Configuring	environmental	variables
3.12	Variable	Sets

Directory
2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin
3.4	Command	Macros

Disable
1.11.16	Settings	for	file	extensions

Disassembly
1.6	Pre-	and	Postbuild	steps

Display
1.11.6	Extended	settings	for	compilers
1.12	CodeBlocks	at	the	command	line
2.6.6	Layout

Displaying
2.4	ToDo	List

Displays
1.10.6	Symbol	view

Do
2.4	ToDo	List
2.10.1	Searching	for	libraries
2.11.4.4	Settings

Document
2.5	Source	Code	Exporter

Documented
2.11.6.1	Buttons	Summary

Documents
1.3	Project	Templates
1.10.4	Configuration	Files
2.2	CodeSnippets

Don
1.12	CodeBlocks	at	the	command	line
2.10.2	Including	libraries	in	projects

DOS/*nix
1.12	CodeBlocks	at	the	command	line

Double-clicking
1.10.6	Symbol	view
2.2	CodeSnippets

Draw
2.6.6	Layout

Draws
2.6.6	Layout

Duplicate
2.7	FileManager	and	PowerShell	Plugin

During

1.10.4	Configuration	Files
1.11.6	Extended	settings	for	compilers
1.11.14	Object	linking	order

Dynamic
1.11.2	Data	Exchange	with	other	applications

E

Each
2.10.1	Searching	for	libraries

Ed
2.8	Browse	Tracker

Ed/Forward
2.8	Browse	Tracker

Edit
1.1	Project	View
1.11.1	Tracking	of	Modifications
1.11.7	Zooming	within	the	editor
1.11.10	Code	folding
2.2	CodeSnippets
2.9	SVN	Support
2.11.6.1	Buttons	Summary

Edited
2.11.6.1	Buttons	Summary

Editing
1.11.4	Switching	between	perspectives
2.2	CodeSnippets

Editor
1	CodeBlocks	Project	Management
1.10.1	Default	Code
1.10.2	Abbreviation
1.10.6	Symbol	view
1.11.1	Tracking	of	Modifications

1.11.4	Switching	between	perspectives
1.11.8	Wrap	Mode
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.11	Auto	complete
2.3	Incremental	Search
2.6.4	Options
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.9	SVN	Support

Embedded
1.10.7	Including	external	help	files
3.3	Script	expansion

Enable
1.10.6	Symbol	view
1.11.9	Select	modes	in	editor
2.6.5	Thread	search	options

Enables
2.11.6.1	Buttons	Summary

Entering
1.10.6	Symbol	view
2.7	FileManager	and	PowerShell	Plugin

Environment
1.10.7	Including	external	help	files
1.11.3	Configuring	environmental	variables
1.11.15	Autosave
2.4	ToDo	List
2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin
3	Variable	Expansion
3.9	Names	and	Members

Environmental
1.11.3	Configuring	environmental	variables

Envrionment
3	Variable	Expansion

EnvVars
1.11.3	Configuring	environmental	variables

ESC
2.3	Incremental	Search

Even
1.13	Shortcuts
2.1	Astyle

Every
3.10	Constraints

Everything
3.10	Constraints

Example
1.6	Pre-	and	Postbuild	steps
1.8	Workspace	and	Project	Dependencies
1.10.1	Default	Code
1.11.3	Configuring	environmental	variables
1.11.13	Including	libraries
2.7	FileManager	and	PowerShell	Plugin
2.10.2	Including	libraries	in	projects
3.2.8	Conditional	Evaluation
3.3	Script	expansion
3.11	Using	Global	Compiler	Variables

Examples
3.10	Constraints

Exchange
1.11.2	Data	Exchange	with	other	applications

Executable
2.7	FileManager	and	PowerShell	Plugin
3.4	Command	Macros

Explorer
2.7	FileManager	and	PowerShell	Plugin
2.9	SVN	Support

Export
2.5	Source	Code	Exporter

Extension
2.7	FileManager	and	PowerShell	Plugin

Extensions
2.7	FileManager	and	PowerShell	Plugin

F

F1
1.10.7	Including	external	help	files

F11
1.11.5	Switching	between	projects

Favorites
2.7	FileManager	and	PowerShell	Plugin

Figure
1	CodeBlocks	Project	Management
1.4	Create	Projects	from	Build	Targets
1.10.2	Abbreviation
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.11.1	Tracking	of	Modifications
1.11.3	Configuring	environmental	variables
1.11.6	Extended	settings	for	compilers
2.1	Astyle
2.2	CodeSnippets
2.4	ToDo	List
2.6.1	Features
2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin

2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
2.11.3	Usage
2.11.4.1	Version	Values
2.11.4.2	Status
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.4.5	Changes	Log
2.11.6	Change	log	generator
2.12	Code	statistics
2.15	Symbol	Table	Plugin
3.9	Names	and	Members
3.11	Using	Global	Compiler	Variables

Figure	1.11
1.11.1	Tracking	of	Modifications

Figure	1.12
1.11.3	Configuring	environmental	variables

Figure	1.2
1.4	Create	Projects	from	Build	Targets

Figure	1.3
1.10.2	Abbreviation

Figure	1.4
1.10.5	Navigate	and	Search

Figure	1.5
1.10.5	Navigate	and	Search

Figure	1.6
1.10.5	Navigate	and	Search

Figure	1.7
1.10.6	Symbol	view

Figure	1.8
1.10.6	Symbol	view

Figure	1.9
1.10.7	Including	external	help	files

Figure	2.10
2.10.1	Searching	for	libraries

Figure	2.11
2.10.1	Searching	for	libraries

Figure	2.12
2.10.2	Including	libraries	in	projects

Figure	2.14
2.11.4.1	Version	Values

Figure	2.15
2.11.4.2	Status

Figure	2.16
2.11.4.3	Scheme

Figure	2.17
2.11.4.4	Settings

Figure	2.18
2.11.4.5	Changes	Log

Figure	2.19
2.11.6	Change	log	generator

Figure	2.2
2.2	CodeSnippets

Figure	2.3
2.2	CodeSnippets

Figure	2.5
2.4	ToDo	List

Figure	2.7

2.6.2	Usage
2.6.3	Configuration

Figure	2.8
2.7	FileManager	and	PowerShell	Plugin

Figure	2.9
2.7	FileManager	and	PowerShell	Plugin

Figure	3.1
3.9	Names	and	Members

File
1	CodeBlocks	Project	Management
1.1	Project	View
1.8	Workspace	and	Project	Dependencies
1.10.1	Default	Code
2.2	CodeSnippets
2.5	Source	Code	Exporter
2.6.1	Features
2.7	FileManager	and	PowerShell	Plugin
2.9	SVN	Support
3.4	Command	Macros

FileManager
2.7	FileManager	and	PowerShell	Plugin

Files
1.10.5	Navigate	and	Search
1.10.7	Including	external	help	files
1.11.16	Settings	for	file	extensions
2.7	FileManager	and	PowerShell	Plugin

Finally
3.3	Script	expansion

Find
1.10.5	Navigate	and	Search
2.6.1	Features
2.6.2	Usage

2.6.5	Thread	search	options

Focused
2.6.5	Thread	search	options

Fold
1.11.10	Code	folding

Folder
2.2	CodeSnippets

Folding
1.11.10	Code	folding

Follow
2.7	FileManager	and	PowerShell	Plugin

For
1.1	Project	View
1.5	Virtual	Targets
1.6	Pre-	and	Postbuild	steps
1.9	Including	Assembler	files
1.10.6	Symbol	view
1.11.2	Data	Exchange	with	other	applications
1.11.3	Configuring	environmental	variables
1.11.6	Extended	settings	for	compilers
1.11.13	Including	libraries
1.12	CodeBlocks	at	the	command	line
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin
2.11.3	Usage
3	Variable	Expansion
3.2.8	Conditional	Evaluation
3.3	Script	expansion
3.12	Variable	Sets

Forge

2.13	Searching	Available	Source	Code

Format
2.5	Source	Code	Exporter
2.11.4.5	Changes	Log

Formating
2.1	Astyle

Full
1.11.4	Switching	between	perspectives
1.11.6	Extended	settings	for	compilers

FULLVERSION_STRING[]
2.11.5.1	Output	of	version.h

Function
1.10.1	Default	Code

Furthermore
1.8	Workspace	and	Project	Dependencies
1.10.8	Including	external	tools
1.11.6	Extended	settings	for	compilers

G

General
1	CodeBlocks	Project	Management
1.10.5	Navigate	and	Search
2.6.4	Options

Generally
3.12.1	Custom	Members	Mini-Tutorial

Generates
2.11.2	Features

Generating
1.6	Pre-	and	Postbuild	steps

GLFW
2.10.1	Searching	for	libraries

Global	Variables
2.10.2	Including	libraries	in	projects

GNU
2.14	Code	profiler

Google
1.10.5	Navigate	and	Search

Goto
1.10.5	Navigate	and	Search
1.11.1	Tracking	of	Modifications

GProf
2.14	Code	profiler

GV
3	Variable	Expansion

H

Header
2.11.4.4	Settings

Headers
1.1	Project	View

Help
1.10.7	Including	external	help	files

Here
1	CodeBlocks	Project	Management
1.1	Project	View
2.11.2	Features
2.11.4.1	Version	Values
2.11.4.4	Settings
2.11.5.1	Output	of	version.h

2.11.6.1	Buttons	Summary
3	Variable	Expansion

Hexformat
1.6	Pre-	and	Postbuild	steps

Hidden
2.7	FileManager	and	PowerShell	Plugin

Hides
1.12	CodeBlocks	at	the	command	line

Home
1.11.8	Wrap	Mode
2.2	CodeSnippets

However
1.3	Project	Templates
1.11.3	Configuring	environmental	variables
3.9	Names	and	Members

HTML
1.10.7	Including	external	help	files
1.11.6	Extended	settings	for	compilers

I

IDE
1	CodeBlocks	Project	Management
1.12	CodeBlocks	at	the	command	line
1.13	Shortcuts
3.9	Names	and	Members
3.11	Using	Global	Compiler	Variables

Imagine
2.2	CodeSnippets

Include
1.10.7	Including	external	help	files
2.4	ToDo	List

Including
1.10.8	Including	external	tools
2.10	LibFinder

Increment
2.11.4.4	Settings

Incremental
2.3	Incremental	Search

Increments
2.11.4.1	Version	Values

Index
2.2	CodeSnippets

Insert
1	CodeBlocks	Project	Management
1.10.6	Symbol	view

Installed
1.11.3	Configuring	environmental	variables

Integrated
2.11.2	Features

Integration
2.9	SVN	Support

Intel
1.6	Pre-	and	Postbuild	steps

Internal
2.6.1	Features

IPC
1.12	CodeBlocks	at	the	command	line

It
2.1	Astyle

2.10.1	Searching	for	libraries
3.9	Names	and	Members

Items
2.6.2	Usage
2.6.3	Configuration

J

January
3.2.5	Time	and	date

K

Keeps
1.12	CodeBlocks	at	the	command	line

Keyboard
1.11.4	Switching	between	perspectives

Koders
2.13	Searching	Available	Source	Code

Konfiguration
2.12	Code	statistics

L

Launch
1.10.8	Including	external	tools

Layout
2.6.7	Panel	Management

Leave
2.3	Incremental	Search

Leaving
2.7	FileManager	and	PowerShell	Plugin

Let
3.12.1	Custom	Members	Mini-Tutorial

Lets
2.11.4.3	Scheme
2.11.4.4	Settings

LibFinder
2.10	LibFinder
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
2.10.3	Using	LibFinder	and	projects	generated	from	wizards

Libraries
2.10.2	Including	libraries	in	projects
2.10.3	Using	LibFinder	and	projects	generated	from	wizards

Library
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects

Link
1.9	Including	Assembler	files
1.11.13	Including	libraries
2.2	CodeSnippets

Linux
1.11.3	Configuring	environmental	variables
1.11.9	Select	modes	in	editor
1.12	CodeBlocks	at	the	command	line
2.2	CodeSnippets
2.11.2	Features
2.11.6.1	Buttons	Summary

List
2.4	ToDo	List
2.6.8	Logger	Type
2.7	FileManager	and	PowerShell	Plugin
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects

Lists
1.10.6	Symbol	view

Load
2.2	CodeSnippets

Locate
1.10.7	Including	external	help	files

Log
1.11.6	Extended	settings	for	compilers
2.11.6	Change	log	generator

Logging
1.11.6	Extended	settings	for	compilers

Logs
1	CodeBlocks	Project	Management

M

Mac
1.12	CodeBlocks	at	the	command	line

Macros
3	Variable	Expansion

Major
2.11.4.1	Version	Values
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.5	Including	in	your	code
2.11.5.1	Output	of	version.h

Make
2.7	FileManager	and	PowerShell	Plugin
3.2.7	Operating	System	Commands

Management
1	CodeBlocks	Project	Management

1.1	Project	View
1.9	Including	Assembler	files
1.10.6	Symbol	view
3.2.1	CodeBlocks	workspace

Manangement
1.1	Project	View

Manipulating
1.6	Pre-	and	Postbuild	steps
3.3	Script	expansion

Manual
CodeBlocks	Manual

Margins
1.11.1	Tracking	of	Modifications
1.11.9	Select	modes	in	editor

Mark
2.8	Browse	Tracker

Mark/Next
2.8	Browse	Tracker

Marker
2.8	Browse	Tracker

Markers
2.8	Browse	Tracker

Marks
2.8	Browse	Tracker

Mask
2.6.3	Configuration

Match
2.6.4	Options
2.6.5	Thread	search	options

MCU
3	Variable	Expansion

Menu
2.9	SVN	Support

Message
2.6.7	Panel	Management

Messages
1.11.6	Extended	settings	for	compilers
2.6	Thread	Search
2.6.2	Usage
2.6.3	Configuration
2.6.6	Layout

Minor
2.11.4.1	Version	Values
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.5.1	Output	of	version.h

Modifications
1.11.1	Tracking	of	Modifications

Modified
1	CodeBlocks	Project	Management

MONTH[]
2.11.5.1	Output	of	version.h

Moreover
2.1	Astyle

Most
1.11.9	Select	modes	in	editor

Move
2.7	FileManager	and	PowerShell	Plugin
3.2.7	Operating	System	Commands

Mozilla
2.13	Searching	Available	Source	Code

Multiple
1.11.9	Select	modes	in	editor

Multi-threaded
2.6.1	Features

N

Name
1.10.1	Default	Code
2.7	FileManager	and	PowerShell	Plugin

Names
3.9	Names	and	Members

Navigating
2.3	Incremental	Search

NM
2.15	Symbol	Table	Plugin

No
3.8	Synopsis

Note
1	CodeBlocks	Project	Management
1.1	Project	View
1.3	Project	Templates
1.7	Adding	Scripts	in	Build	Targets
1.10.3	Personalities
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.11.1	Tracking	of	Modifications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.7	Zooming	within	the	editor

1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.13	Including	libraries
1.11.16	Settings	for	file	extensions
2.1	Astyle
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.6	Thread	Search
2.6.2	Usage
2.6.3	Configuration
2.6.4	Options
2.6.5	Thread	search	options
2.6.6	Layout
2.7	FileManager	and	PowerShell	Plugin
2.9	SVN	Support
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
3.1	Syntax
3.2.8	Conditional	Evaluation
3.3	Script	expansion

Notebook
2.6.7	Panel	Management

Notes
1.2	Notes	for	Projects

Novell
2.13	Searching	Available	Source	Code

Now
1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.10.7	Including	external	help	files
2.2	CodeSnippets

Number
2.11.4.1	Version	Values

2.11.4.3	Scheme
2.11.4.4	Settings

O

Object
3.4	Command	Macros

Once
2.6.2	Usage

One
1.11.3	Configuring	environmental	variables

ONLY
2.1	Astyle

Open
1	CodeBlocks	Project	Management
1.10.5	Navigate	and	Search
1.10.7	Including	external	help	files
1.11.2	Data	Exchange	with	other	applications
1.12	CodeBlocks	at	the	command	line
2.2	CodeSnippets
2.5	Source	Code	Exporter
2.7	FileManager	and	PowerShell	Plugin

Opening
1.10.5	Navigate	and	Search

OpenLine
1.11.2	Data	Exchange	with	other	applications

OpenOffice
2.5	Source	Code	Exporter

Opneing
2.7	FileManager	and	PowerShell	Plugin

Options

1.11.8	Wrap	Mode
2.6.3	Configuration
2.15	Symbol	Table	Plugin

Other
1.11.6	Extended	settings	for	compilers
1.11.8	Wrap	Mode

Output
2.2	CodeSnippets
2.15	Symbol	Table	Plugin
3.4	Command	Macros

Overwrite
1	CodeBlocks	Project	Management

P

Panel
2.6.1	Features

Parametrisation
1.10.2	Abbreviation

Parent
2.7	FileManager	and	PowerShell	Plugin

PATH
1.11.3	Configuring	environmental	variables
3	Variable	Expansion
3.2.2	Files	and	directories

Personalities
2.4	ToDo	List

Perspectives
1.11.4	Switching	between	perspectives

Per-target
3.1	Syntax

Piping
1.6	Pre-	and	Postbuild	steps

Place
1.12	CodeBlocks	at	the	command	line

Placed
1.12	CodeBlocks	at	the	command	line

Plain
3.2.5	Time	and	date

PLATFORM
3.2.8	Conditional	Evaluation

PLATFORM_MSW
3.2.8	Conditional	Evaluation

Please
1.10.4	Configuration	Files
1.11.11	Auto	complete
2.13	Searching	Available	Source	Code
3.2.8	Conditional	Evaluation

Plugin
2.9	SVN	Support

Plugins
2.10.1	Searching	for	libraries
2.12	Code	statistics

Portable
2.5	Source	Code	Exporter

Position
2.4	ToDo	List

Postbuilt
1.6	Pre-	and	Postbuild	steps

PowerShell
2.7	FileManager	and	PowerShell	Plugin

Pre-alpha
2.11.5.1	Output	of	version.h

Prebuilt
1.6	Pre-	and	Postbuild	steps

Preprocessor
1.10.6	Symbol	view

Pressing
1.11.9	Select	modes	in	editor
2.3	Incremental	Search
2.7	FileManager	and	PowerShell	Plugin

Prev
2.8	Browse	Tracker

Priority
2.4	ToDo	List

Process
2.11.6.1	Buttons	Summary

Profiler
2.14	Code	profiler

Project
1.1	Project	View
1.3	Project	Templates
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets
1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.10.1	Default	Code
1.11.12	Find	broken	files
2.6.3	Configuration
2.9	SVN	Support

2.10.2	Including	libraries	in	projects
2.11.3	Usage
2.11.6	Change	log	generator

Projects
1	CodeBlocks	Project	Management
1.5	Virtual	Targets
3.2.1	CodeBlocks	workspace

Properties
1.2	Notes	for	Projects
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets
1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.11.3	Configuring	environmental	variables
1.11.14	Object	linking	order
2.2	CodeSnippets
2.10.2	Including	libraries	in	projects

Put
2.11.4.3	Scheme

R

Raise
1.11.2	Data	Exchange	with	other	applications

RC_FILEVERSION
2.11.5.1	Output	of	version.h

RC_FILEVERSION_STRING
2.11.5.1	Output	of	version.h

Read
1	CodeBlocks	Project	Management

Reader
2.5	Source	Code	Exporter

Refresh
2.7	FileManager	and	PowerShell	Plugin

RegEx
2.6.4	Options

Regular
2.3	Incremental	Search
2.6.4	Options

Reilly
2.5	Source	Code	Exporter

Release
1.5	Virtual	Targets
1.12	CodeBlocks	at	the	command	line
2.11.4.1	Version	Values

Releasing
1.10.5	Navigate	and	Search

Remove
1.11.12	Find	broken	files
3.2.7	Operating	System	Commands

Removes
2.11.6.1	Buttons	Summary

Rename
2.7	FileManager	and	PowerShell	Plugin

Reorganized
2.11.6.1	Buttons	Summary

Reset
1.11.7	Zooming	within	the	editor

Resources
1.1	Project	View

Result
2.15	Symbol	Table	Plugin

Revision
2.11.4.1	Version	Values
2.11.4.3	Scheme
2.11.4.4	Settings
2.11.5.1	Output	of	version.h

Rich
2.5	Source	Code	Exporter

Right
2.6.2	Usage
2.8	Browse	Tracker

Right-clicking
1.9	Including	Assembler	files

Root
2.7	FileManager	and	PowerShell	Plugin

Row
1	CodeBlocks	Project	Management

Rules
1.10.1	Default	Code

S

Same
2.11.4.2	Status
2.11.4.3	Scheme

Save
1.8	Workspace	and	Project	Dependencies
1.11.4	Switching	between	perspectives
1.11.6	Extended	settings	for	compilers
1.11.15	Autosave
2.2	CodeSnippets

2.11.6.1	Buttons	Summary

Scheme
2.11.4.3	Scheme

Scintilla
2.3	Incremental	Search

Screen
1.11.4	Switching	between	perspectives

Script
3.3	Script	expansion

Scripting
1.6	Pre-	and	Postbuild	steps

SDK
2.10.1	Searching	for	libraries

Search
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.11.1	Tracking	of	Modifications
1.11.11	Auto	complete
2.3	Incremental	Search
2.6	Thread	Search
2.6.1	Features
2.6.2	Usage
2.6.3	Configuration
2.6.6	Layout
2.10.1	Searching	for	libraries
2.11.4.4	Settings
2.13	Searching	Available	Source	Code
2.15	Symbol	Table	Plugin

Search/Thread
2.6.2	Usage

Searching

1.10.5	Navigate	and	Search
2.10	LibFinder
2.10.1	Searching	for	libraries

Second
2.10.1	Searching	for	libraries

See
2.7	FileManager	and	PowerShell	Plugin

Select
1.9	Including	Assembler	files
1.10.5	Navigate	and	Search
2.4	ToDo	List
2.6.2	Usage
2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin
2.11.4.4	Settings

Selection
1.11.9	Select	modes	in	editor

September
2.11.6.1	Buttons	Summary

Set
1.9	Including	Assembler	files
1.10.5	Navigate	and	Search
1.11.2	Data	Exchange	with	other	applications
2.8	Browse	Tracker
2.10.1	Searching	for	libraries
2.11.4.1	Version	Values
2.11.4.2	Status

Sets
1.12	CodeBlocks	at	the	command	line

Setting
1.10.5	Navigate	and	Search
1.11.6	Extended	settings	for	compilers

Settings
1.3	Project	Templates
1.6	Pre-	and	Postbuild	steps
1.10.1	Default	Code
1.10.2	Abbreviation
1.10.4	Configuration	Files
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.11.1	Tracking	of	Modifications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.6	Extended	settings	for	compilers
1.11.8	Wrap	Mode
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.11	Auto	complete
1.11.13	Including	libraries
1.11.15	Autosave
1.11.16	Settings	for	file	extensions
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.6.4	Options
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.11.4.4	Settings
3	Variable	Expansion

Settings/Environment
2.6.3	Configuration

ShellCommand
2.7	FileManager	and	PowerShell	Plugin

Shift-Return
2.3	Incremental	Search

Show

1.10.5	Navigate	and	Search
2.6.6	Layout
2.7	FileManager	and	PowerShell	Plugin
2.10.2	Including	libraries	in	projects
2.11.4.5	Changes	Log
2.11.6	Change	log	generator

Shows
1.12	CodeBlocks	at	the	command	line

Since
1.12	CodeBlocks	at	the	command	line
2.1	Astyle
3.3	Script	expansion

Snippet
2.2	CodeSnippets

Snippets
2.2	CodeSnippets

Software
2.11.2	Features
2.11.4.2	Status
2.11.5.1	Output	of	version.h

Some
2.11.4.2	Status

Sometimes
3.12	Variable	Sets

Sort
2.8	Browse	Tracker

Source
3.4	Command	Macros

SourceForge
2.13	Searching	Available	Source	Code

Sources
1.1	Project	View
1.9	Including	Assembler	files

Spaces
1.11.9	Select	modes	in	editor

Special
1.11.7	Zooming	within	the	editor

Specifies
1.12	CodeBlocks	at	the	command	line

Start
2.6.4	Options

Starting
2.2	CodeSnippets

Statistik
2.12	Code	statistics

Status
2.11.4.2	Status
2.11.5.1	Output	of	version.h

STATUS[]
2.11.5.1	Output	of	version.h

STATUS_SHORT[]
2.11.5.1	Output	of	version.h

Step
1.6	Pre-	and	Postbuild	steps
1.11.3	Configuring	environmental	variables

Steps
1.6	Pre-	and	Postbuild	steps

Stettings

1.10.1	Default	Code

Stores
2.11.6.1	Buttons	Summary

String
2.7	FileManager	and	PowerShell	Plugin

Structures
1.10.6	Symbol	view

Style
2.1	Astyle
2.4	ToDo	List
2.8	Browse	Tracker

SubCategory
2.2	CodeSnippets

Such
2.10	LibFinder
2.10.3	Using	LibFinder	and	projects	generated	from	wizards

Sun
2.5	Source	Code	Exporter

Supports
2.11.2	Features

SVN
2.7	FileManager	and	PowerShell	Plugin
2.9	SVN	Support
2.11	AutoVersioning
2.11.2	Features

Swap
1.10.5	Navigate	and	Search

Switches
1.11.5	Switching	between	projects

Symbol
1.10.6	Symbol	view
2.15	Symbol	Table	Plugin

Symbols
1	CodeBlocks	Project	Management

SymTabs
2.15	Symbol	Table	Plugin

Syntax
1.11.11	Auto	complete

T

Tab-key
1.10.5	Navigate	and	Search

Table
2.15	Symbol	Table	Plugin

Tabs
2.8	Browse	Tracker

Take
1.11.6	Extended	settings	for	compilers

Target
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets
1.6	Pre-	and	Postbuild	steps
1.7	Adding	Scripts	in	Build	Targets

Targets
1.4	Create	Projects	from	Build	Targets
1.5	Virtual	Targets

Tasks
2.4	ToDo	List

TCP
1.11.2	Data	Exchange	with	other	applications

Text
2.2	CodeSnippets
2.5	Source	Code	Exporter

The
1	CodeBlocks	Project	Management
1.1	Project	View
1.2	Notes	for	Projects
1.3	Project	Templates
1.7	Adding	Scripts	in	Build	Targets
1.8	Workspace	and	Project	Dependencies
1.9	Including	Assembler	files
1.10.1	Default	Code
1.10.3	Personalities
1.10.4	Configuration	Files
1.10.5	Navigate	and	Search
1.10.6	Symbol	view
1.10.7	Including	external	help	files
1.11.1	Tracking	of	Modifications
1.11.2	Data	Exchange	with	other	applications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.6	Extended	settings	for	compilers
1.11.8	Wrap	Mode
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
1.11.11	Auto	complete
1.11.13	Including	libraries
1.11.14	Object	linking	order
1.11.16	Settings	for	file	extensions
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.5	Source	Code	Exporter
2.6	Thread	Search
2.6.8	Logger	Type

2.6.9	Splitter	Window	Mode
2.6.10	Sort	Search	Results
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.9	SVN	Support
2.10.2	Including	libraries	in	projects
2.11.1	Introduction
2.11.4.2	Status
2.11.4.3	Scheme
2.11.5.1	Output	of	version.h
2.12	Code	statistics
2.13	Searching	Available	Source	Code
2.15	Symbol	Table	Plugin
3	Variable	Expansion
3.1	Syntax
3.2	List	of	available	built-ins
3.2.1	CodeBlocks	workspace
3.2.2	Files	and	directories
3.2.3	Build	targets
3.2.4	Language	and	encoding
3.2.5	Time	and	date
3.2.7	Operating	System	Commands
3.3	Script	expansion
3.8	Synopsis
3.9	Names	and	Members
3.11	Using	Global	Compiler	Variables
3.12	Variable	Sets

There
2.10.1	Searching	for	libraries

Therefore
2.7	FileManager	and	PowerShell	Plugin

These
1.1	Project	View
1.2	Notes	for	Projects
1.3	Project	Templates
1.6	Pre-	and	Postbuild	steps

1.11.2	Data	Exchange	with	other	applications
1.13.1	Editor
2.2	CodeSnippets
3	Variable	Expansion
3.2.5	Time	and	date

They
1.4	Create	Projects	from	Build	Targets
1.9	Including	Assembler	files
3	Variable	Expansion
3.2	List	of	available	built-ins

This
1	CodeBlocks	Project	Management
1.10.1	Default	Code
1.10.2	Abbreviation
1.10.3	Personalities
1.11.1	Tracking	of	Modifications
1.11.2	Data	Exchange	with	other	applications
1.11.4	Switching	between	perspectives
1.11.7	Zooming	within	the	editor
1.11.9	Select	modes	in	editor
1.11.15	Autosave
1.12	CodeBlocks	at	the	command	line
1.13.1	Editor
2.2	CodeSnippets
2.3	Incremental	Search
2.4	ToDo	List
2.5	Source	Code	Exporter
2.6.6	Layout
2.7	FileManager	and	PowerShell	Plugin
2.10.1	Searching	for	libraries
2.10.3	Using	LibFinder	and	projects	generated	from	wizards
2.11.4.4	Settings
2.11.4.5	Changes	Log
2.11.6	Change	log	generator
2.13	Searching	Available	Source	Code
2.15	Symbol	Table	Plugin
3	Variable	Expansion

3.2.6	Random	values
3.2.8	Conditional	Evaluation

Thread
2.6	Thread	Search
2.6.1	Features
2.6.2	Usage
2.6.3	Configuration
2.6.6	Layout

ThreadSearch
1.11.12	Find	broken	files
2.6	Thread	Search
2.6.1	Features
2.6.3	Configuration
2.6.5	Thread	search	options
2.6.6	Layout
2.6.7	Panel	Management

ThreadSerch
1.11.12	Find	broken	files

Thus
3.3	Script	expansion
3.9	Names	and	Members

Timestamp
3.2.5	Time	and	date

Title
2.11.4.5	Changes	Log

To
1.4	Create	Projects	from	Build	Targets
1.8	Workspace	and	Project	Dependencies
1.10.4	Configuration	Files
1.11.4	Switching	between	perspectives
1.11.10	Code	folding
2.1	Astyle
2.2	CodeSnippets

2.6.3	Configuration
2.7	FileManager	and	PowerShell	Plugin
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
2.10.3	Using	LibFinder	and	projects	generated	from	wizards
2.11.5	Including	in	your	code

Todo
2.4	ToDo	List

Toggle
2.8	Browse	Tracker

Tools
1.10.8	Including	external	tools

TortoiseProc.exe
2.7	FileManager	and	PowerShell	Plugin

TortoiseSVN
2.7	FileManager	and	PowerShell	Plugin
2.9	SVN	Support

Tracker
1.10.5	Navigate	and	Search
2.8	Browse	Tracker

Tracking
1.11.1	Tracking	of	Modifications

Tree
2.6.5	Thread	search	options
2.6.8	Logger	Type
2.10.2	Including	libraries	in	projects

Type
2.4	ToDo	List
2.11.5.1	Output	of	version.h

Type/Select

2.6.2	Usage

Types
2.11.5.1	Output	of	version.h

Typical
1.6	Pre-	and	Postbuild	steps

U

Ubuntu
2.11.2	Features

UBUNTU_VERSION_STYLE
2.11.5.1	Output	of	version.h

Under
2.2	CodeSnippets

Unknown
2.10.2	Including	libraries	in	projects

Url
2.2	CodeSnippets

USB
1.10.4	Configuration	Files

Use
1.9	Including	Assembler	files
1.11.1	Tracking	of	Modifications
2.6.4	Options
2.6.5	Thread	search	options

Useful
3.2.5	Time	and	date

User
1.3	Project	Templates
1.10.4	Configuration	Files

2.4	ToDo	List

User-defined
2.7	FileManager	and	PowerShell	Plugin

Users
2.4	ToDo	List

UserTemplates
1.3	Project	Templates

Using
2.10.2	Including	libraries	in	projects

UTC
3.2.5	Time	and	date

V

Values
2.11.4.1	Version	Values

Variants
1.4	Create	Projects	from	Build	Targets

Varibales
1.11.3	Configuring	environmental	variables

Version
CodeBlocks	Manual
2.11.4.1	Version	Values
2.11.5.1	Output	of	version.h

VERSION_H
2.11.5.1	Output	of	version.h

View
1	CodeBlocks	Project	Management
1.9	Including	Assembler	files
1.11.4	Switching	between	perspectives

2.2	CodeSnippets
2.4	ToDo	List
2.6.5	Thread	search	options
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker

Viewer
1.10.7	Including	external	help	files

Virtual
1.5	Virtual	Targets
1.11.9	Select	modes	in	editor

W

Wednesday
3.2.5	Time	and	date

When
1.10.2	Abbreviation
1.10.4	Configuration	Files
1.11.8	Wrap	Mode
2.1	Astyle
2.2	CodeSnippets
2.4	ToDo	List
2.7	FileManager	and	PowerShell	Plugin
2.10.1	Searching	for	libraries
2.11.3	Usage
2.11.4.3	Scheme
3.11	Using	Global	Compiler	Variables

While
1.11.9	Select	modes	in	editor

Whole
2.6.4	Options
2.6.5	Thread	search	options

Wiki
1	CodeBlocks	Project	Management

Wildcard
2.7	FileManager	and	PowerShell	Plugin

Windows
1.6	Pre-	and	Postbuild	steps
1.11.16	Settings	for	file	extensions
1.12	CodeBlocks	at	the	command	line
2.2	CodeSnippets
2.11.2	Features
3.12.1	Custom	Members	Mini-Tutorial

With
1.6	Pre-	and	Postbuild	steps
1.10.5	Navigate	and	Search
1.11.2	Data	Exchange	with	other	applications
1.11.7	Zooming	within	the	editor
1.11.9	Select	modes	in	editor
1.11.10	Code	folding
2.2	CodeSnippets
2.3	Incremental	Search
2.6.7	Panel	Management
2.8	Browse	Tracker

Wizard
1.3	Project	Templates

Wizards
2.10.3	Using	LibFinder	and	projects	generated	from	wizards

Word
1.11.8	Wrap	Mode
2.5	Source	Code	Exporter

Working
3.8	Synopsis

Works
2.11.2	Features

Workspace
1.11.12	Find	broken	files
2.6.3	Configuration

Write
2.11.6.1	Buttons	Summary

WX
3.11	Using	Global	Compiler	Variables

WX_SUFFIX
3.11	Using	Global	Compiler	Variables

Y

YEAR[]
2.11.5.1	Output	of	version.h

Yes
3.11	Using	Global	Compiler	Variables

You
1.6	Pre-	and	Postbuild	steps
1.10.5	Navigate	and	Search
1.11.1	Tracking	of	Modifications
1.11.3	Configuring	environmental	variables
1.11.4	Switching	between	perspectives
1.11.12	Find	broken	files
1.11.16	Settings	for	file	extensions
1.12	CodeBlocks	at	the	command	line
2.2	CodeSnippets
2.6.7	Panel	Management
2.7	FileManager	and	PowerShell	Plugin
2.8	Browse	Tracker
2.10.1	Searching	for	libraries
2.10.2	Including	libraries	in	projects
3.10	Constraints
3.12	Variable	Sets

YYYYMMDD

3.2.5	Time	and	date

YYYY-MM-DD-hh.mm
3.2.5	Time	and	date

YYYY-MM-DD-hh.mm.ss
3.2.5	Time	and	date

Z

Zoom
1.11.7	Zooming	within	the	editor

Created:	2010/25/05	11:52			Updated:	2010/25/05	11:52
Author:	HighTec	EDV-Systeme	GmbH
Copyright	©	2010	HighTec	EDV-Systeme	GmbH

	Table of contents

