
Overview
	
	
	

Topics	in	this	section

Introduction
Using	the	API	Reference
Setting	Up	Visual	Studio
AutoCAD

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Introduction
	
	
	

The	AutoCAD®	Map	3D	2008	.NET	API	provides	access	to	AutoCAD	Map	3D
functionality	so	you	can	modify	and	extend	it	for	your	own	purposes.	The	API
can	be	used	by	any	.NET	language.

The	snippets	in	this	guide	are	mainly	in	VB.NET,	but	most	samples	are	available
in	VB.NET,	C#,	and	C++.

Some	of	the	short	snippets	in	this	guide	write	to	the	AutoCAD	Map	3D	console.
Ensure	that	the	console	is	visible.	Press	CTRL+9	to	display	the	or	hide	console.

Namespaces

The	Autodesk.Gis.Map	namespace	contains	the	.NET	classes	for	AutoCAD
Map	3D.	Some	of	the	general-purpose	classes	are	defined	directly	within	the
top-level	Autodesk.Gis.Map	namespace,	but	most	are	grouped	into	lower-
level	namespaces	below	Autodesk.Gis.Map.

For	the	sake	of	cleaner	code,	all	examples	within	this	guide	will	assume	the
following	Imports:

Imports	Autodesk.Gis.Map

Imports	Autodesk.AutoCAD.DatabaseServices

Imports	Autodesk.AutoCAD.ApplicationServices

In	this	guide,	objects	from	namespaces	within	Autodesk.Gis.Map	are
partially	qualified.	For	example,	the	Table	class	in	the
Autodesk.Gis.Map.ObjectData	namespace	is	generally	given	as
ObjectData.Table.	This	makes	it	simple	to	find	the	class	details	in	the	API
Reference.

Certain	chapters	may	define	additional	imports.	For	example,	the	chapter	about
Object	Data	defines



Imports	Autodesk.Gis.Map.ObjectData

Related	Documentation

AutoCAD	Map	3D	2009	includes	the	new	Geospatial	Platform	API	for	working
with	geospatial	data.	See	the	Geospatial	Platform	Developer’s	Guide	for	details.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Using	the	API	Reference
	
	
	

The	API	reference	applies	to	multiple	languages.	Because	of	differences	between
languages,	the	terms	and	syntax	used	in	the	reference	may	not	match	a	given
language.	Some	differences	are:

API	Ref VB.NET C#

__abstract MustInherit abstract

__sealed NotInheritable sealed

__gc 	 	

:: . .

NULL Nothing Null

This	guide	uses	VB.NET	for	most	examples.	The	sample	applications	are
available	in	VB.NET,	C#,	and	C++;

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Setting	Up	Visual	Studio
	
	
	

The	AutoCAD	Map	3D	SDK	requires	Microsoft	Visual	Studio	2005.	To	set	up	a
project	for	a	custom	application,	open	the	project	properties.

Note These	instructions	apply	to	VB.NET.	Setting	up	a	project	for	C#	is	slightly
different.

On	the	Application	tab,	set	the	application	type	to	Class	library.

Add	the	following	references.	The	DLLs	are	in	the	AutoCAD	Map	3D
installation	folder:

acdbmgd.dll

acmgd.dll

ManagedMapApi.dll

acdbmgd.dll	contains	the	following	AutoCAD	namespaces:

Autodesk.AutoCAD.Colors

Autodesk.AutoCAD.ComponentModel

Autodesk.AutoCAD.DatabaseServices

Autodesk.AutoCAD.DatabaseServices.Filters

Autodesk.AutoCAD.Geometry

Autodesk.AutoCAD.GraphicsInterface

Autodesk.AutoCAD.GraphicsSystem

Autodesk.AutoCAD.LayerManager

Autodesk.AutoCAD.Runtime

acmgd.dll	contains	the	following	AutoCAD	namespaces:



Autodesk.AutoCAD.ApplicationServices

Autodesk.AutoCAD.EditorInput

Autodesk.AutoCAD.GraphicsSystem

Autodesk.AutoCAD.PlottingServices

Autodesk.AutoCAD.Publishing

Autodesk.AutoCAD.Runtime

Autodesk.AutoCAD.Windows

Autodesk.AutoCAD.Windows.ToolPalette

ManagedMapApi.dll	contains	the	following	AutoCAD	Map	3D
namespaces:

Autodesk.Gis.Map

Autodesk.Gis.Map.Annotation

Autodesk.Gis.Map.Classification

Autodesk.Gis.Map.Constants

Autodesk.Gis.Map.DisplayManagement

Autodesk.Gis.Map.Filters

Autodesk.Gis.Map.ImportExport

Autodesk.Gis.Map.MapBook

Autodesk.Gis.Map.ObjectData

Autodesk.Gis.Map.Project

Autodesk.Gis.Map.Query

Autodesk.Gis.Map.Topology

Autodesk.Gis.Map.Utilities

For	each	of	the	references,	set	the	Copy	Local	property	to	False.	Double-click
the	reference	to	open	the	properties.



Set	the	reference	path	to	the	AutoCAD	Map	3D	installation	directory.

On	the	Debug	tab,	set:

Start	external	program:	InstallDir\acad.exe,	where	InstallDir	is
the	installation	directory	for	AutoCAD	Map	3D.

Working	directory:	InstallDir\UserDataCache\

Running	AutoCAD	Map	3D	Custom	Applications

Every	custom	application	requires	at	least	one	subroutine	that	can	be	called	from
AutoCAD	Map	3D.	Identify	this	using	the	CommandMethod	attribute.	For
example,	using	VB.NET	the	syntax	is:

<CommandMethod("CustomCommand")>	_

Public	Sub	CommandSub()

Using	C#	the	syntax	is:

[CommandMethod("CustomCommand")]	

public	void	CommandSub();

To	run	a	custom	application,	type	the	NETLOAD	command	at	the	AutoCAD	Map
3D	command	prompt.	Browse	to	the	DLL	containing	the	custom	application
assembly.	Open	the	assembly.	This	makes	any	custom	commands	defined	using
the	CommandMethod	attribute	available	to	the	AutoCAD	Map	3D	session.

To	execute	a	command,	type	the	command	method	at	the	command	prompt.	In
the	example	above,	this	would	be

CustomCommand

For	more	details,	refer	to	the	AutoCAD	documentation.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


AutoCAD
	
	
	

AutoCAD	Map	3D	relies	on	AutoCAD	for	much	of	its	functionality.	It	is
important	to	understand	some	basic	AutoCAD	concepts	before	writing
AutoCAD	Map	3D	applications.	For	complete	details,	refer	to	the	AutoCAD
developer	documentation.

In	particular,	managing	objects	in	the	AutoCAD	database	is	important.

Transactions

The	AutoCAD	database	uses	a	transaction	model	for	access	to	all	objects.

To	use	any	object	in	the	database,	start	a	transaction	and	use	the	transaction	to
open	the	database	object	in	either	read-only	or	read-write	mode.
Transaction.Open()	returns	a	generic	reference.	Cast	that	to	the	type	of
object	being	returned.	For	example,	given	a	database	object	id	for	a	MapBook
object,	the	following	will	return	a	reference	to	the	object:

Dim	bookObj	As	MapBook.Book

bookObj	=	CType(trans.GetObject(mapBookId,	OpenMode.ForWrite),

			MapBook.Book)

Short	examples	in	this	guide	may	not	include	all	the	transaction	processing,	so
they	can	highlight	the	concepts	being	discussed.	In	all	cases,	though,	if	any
changes	are	being	made	to	the	drawing,	it	should	be	assumed	that	the	following
general	structure	is	in	place:

Dim	trans	As	Transaction	=	Nothing

Dim	docs	As	DocumentCollection	=	Application.DocumentManager

Dim	activeDoc	As	Document	=	docs.MdiActiveDocument

Try

			trans	=	activeDoc.TransactionManager.StartTransaction()

			'	

			'	Open	object(s)

			'	



			Dim	bookObj	As	MapBook.Book

			bookObj	=	CType(trans.GetObject(mapBookId,	OpenMode.ForWrite),

						MapBook.Book)

			'

			'	Insert	code	to	process	transaction

			'

			'	Commit	transaction

			'

			trans.Commit()

Catch

			'

			'	Handle	exception,	and	cancel	transaction

			'

Finally

			trans.Dispose()

End	Try

Although	transactions	can	be	nested,	this	is	not	recommended.	One	complication
is	that	adding	an	entity	takes	place	immediately,	but	removing	an	entity	does	not
take	effect	until	the	transaction	has	been	committed.

Note Many	examples	in	this	guide	assume	that	activeDoc	refers	to	the	active
document.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Session	and	Project
	
	
	

Topics	in	this	section

Overview
Drawing	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

An	AutoCAD	Map	3D	session	represents	the	active	state	of	the	Map	3D
application.

Most	of	the	classes	for	working	with	the	session	are	defined	in	the
Autodesk.Gis.Map	namespace.

There	is	a	single	instance	of	the	Map	application,	available	through	the
Application	property	of	the	abstract	class

Autodesk.Gis.Map.HostMapApplicationServices

This	returns	a	MapApplication	object	that	represents	the	entire	application.
It	has	some	read-only	properties	that	provide	access	to	objects	in	the	session.
One	of	the	main	properties	is	Projects.

Projects	returns	a	collection	of	all	open	projects,	a	ProjectCollection
object	in	the	Autodesk.Gis.Map.Project	namespace.	A	project	is
represented	by	a	ProjectModel	object.	A	project	is	the	container	for	a	Map
3D	drawing	and	all	its	associated	objects.	Nearly	all	interaction	with	a	drawing
begins	with	a	project.

ActiveProject	returns	the	ProjectModel	for	the	currently	active	project.

Note For	historical	reasons,	the	API	uses	the	term	project	where	the	user	interface
will	normally	use	map	or	drawing.

For	example,	the	following	gets	the	current	project:

Dim	mapApp	As	MapApplication

mapApp	=	HostMapApplicationServices.Application

Dim	activeProj	As	Project.ProjectModel

activeProj	=	mapApp.ActiveProject

The	following	processes	all	open	projects:



Dim	mapApp	As	MapApplication

mapApp	=	HostMapApplicationServices.Application

Dim	projList	As	Project.ProjectCollection

projList	=	mapApp.Projects

For	Each	project	As	Project.ProjectModel	In	projList

				'	Process	projects

Next

Note Many	of	the	examples	in	this	guide	assume	that	mapApp	and
activeProj	have	already	been	defined	as	in	the	example	above.

A	project	is	closely	related	to	an	AutoCAD	drawing.	In	AutoCAD	Map	3D,
opening	a	drawing	automatically	creates	a	new	project.	You	cannot	instantiate	a
new	project	directly.

MapApplication.GetDocument()	returns	the	AutoCAD	document
associated	with	a	project.	Conversely,
Project.ProjectCollection.GetProject()	returns	the
ProjectModel	for	an	AutoCAD	document.

For	example,	the	following	diagram	shows	a	session	that	has	three	open	projects.
The	first	project	refers	to	external	drawings	in	its	drawing	set.	Any	one	of	the
projects	could	be	active	at	one	time.	Each	project	has	a	corresponding	AutoCAD
drawing.



Additional	Project	Properties

ProjectModel	objects	have	many	properties	that	provide	access	to	different
aspects	of	the	drawing.	For	example,	the	DrawingSet	property	gets	the
drawing	set	for	the	project.

Some	of	the	important	project	properties	are:

Annotations

Database

DrawingSet

ODTables

Topologies

For	more	details	about	the	various	properties,	refer	to	the	appropriate	chapters	in
this	guide.

AutoCAD	Database

The	ProjectModel.Database	property	returns	a	reference	to	the



AutoCAD	database.	This	is	necessary	for	many	AutoCAD	operations.

Project	Options

The	ProjectModel.Options	property	returns	a	reference	to	the	project’s
options.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Drawing	Objects
	
	
	

Drawing	objects	are	the	visible	items	in	an	AutoCAD	drawing.

Note The	AutoCAD	developer	documentation	generally	uses	the	term	entity	or
AcDb	entity	when	discussing	drawing	objects.

In	the	AutoCAD	API,	an
Autodesk.AutoCAD.DatabaseServices.DBObject	object	represents
any	object	in	the	drawing	database,	including	drawing	objects.	A	DBObject
can	be	referred	to	by	either:

Autodesk.AutoCAD.DatabaseServices.Handle

Autodesk.AutoCAD.DatabaseServices.ObjectID

A	Handle	is	a	persistent	identifier	that	is	stored	with	the	AutoCAD	database
when	it	is	saved.	Each	handle	is	unique	within	a	single	drawing,	but	different
drawings	are	likely	to	have	duplicate	handles	referring	to	separate	objects.

An	ObjectID	is	used	for	quick	access	to	drawing	objects	within	an	AutoCAD
session.	They	are	not	persistent,	though.	They	expire	when	the	drawing	is	closed.

Map	Objects

Because	a	single	AutoCAD	Map	3D	project	can	include	more	than	one
AutoCAD	drawing,	an	AutoCAD	handle	is	not	sufficient	to	uniquely	identify	an
object.

A	MapObjectId,	defined	in	the	namespace
Autodesk.Gis.Map.Utilities,	identifies	an	object	by	its	AutoCAD
handle	and	by	its	drawing	identifier.	The	MapObjectId.ObjectHandle
property	is	the	AutoCAD	handle,	and	MapObjectId.DrawingId	is	the
drawing	identifier,	an	object	of	type	Utilities.MapId.



Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Object	Data
	
	
	

Topics	in	this	section

Introduction
Creating	a	Table
Attaching	Object	Data
Getting	Object	Data
Updating	and	Deleting	Records

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Introduction
	
	
	

Object	data	provides	a	way	of	attaching	additional	information	to	drawing
objects.	It	is	more	powerful	and	flexible	than	AutoCAD	block	attributes	because
object	data	can	be	attached	to	any	object	in	a	drawing.

Note Object	data	can	only	be	attached	to	drawing	objects.	FDO	feature	sources
have	a	different	way	to	handle	feature	properties.

The	classes	for	handling	object	data	are	mostly	within	the	ObjectData
namespace.	Code	in	this	chapter	assumes	the	following:

Imports	Autodesk.Gis.Map.ObjectData

Tables

Internally,	object	data	is	stored	in	tables.	Each	drawing	has	its	own	set	of	tables,
available	from	the	ProjectModel.ODTables	property.	This	returns	an
object	of	type	ObjectData.Tables.

For	example,	if	mapApp	is	the	Map	application,	the	following	will	get	the	object
data	tables	for	the	active	drawing:

Dim	activeProject	As	Project.ProjectModel	=	mapApp.ActiveProject

Dim	tableList	As	ObjectData.Tables	=	activeProject.ODTables

ObjectData.Tables.GetTableNames()	returns	a	list	of	the	table
names	that	have	been	defined	for	the	drawing.

To	get	a	single	table	from	the	set	of	tables,	use	the
ObjectData.Tables.Item	property.	Note	that	this	requires	a	table	name
as	a	parameter,	not	a	table	number.	For	example:

Dim	table	As	ObjectData.Table	=	tableList.Item("table1")



or

Dim	table	As	ObjectData.Table	=	tableList("table1")

Use	Tables.IsTableDefined()	to	see	if	a	table	name	exists.	An	attempt
to	get	a	table	that	does	not	exist	throws	an	exception.

Field	Definitions

Columns	in	a	table	are	defined	by	ObjectData.FieldDefinition
objects,	which	describe	the	data	type	and	default	value.	The	data	types	are
defined	in	the	Constants.DataType	enum:

UnknownType

Integer

Real

Character

Point

Records

Each	row	in	the	table	is	of	type	ObjectData.Record.	Every	record	in	the
table	is	associated	with	a	drawing	object.

The	Item	property	of	an	ObjectData.Record	contains	the	values	for	the
record,	one	for	each	field	definition	in	the	table.	Each	item	is	of	type
Utilities.MapValue,	which	is	a	general-purpose	class	for	storing	data.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Creating	a	Table
	
	
	

Creating	a	table	requires:

Creating	an	ObjectData.FieldDefinitions	object

Adding	field	definitions	for	every	column	in	the	table

Creating	the	table	by	adding	the	field	definitions	to	the	ODTables
object	for	the	drawing

Create	an	ObjectData.FieldDefinitions	object	using	the
ProjectModel.MapUtility.NewODFieldDefinitions()	method.
Add	fields	using	the	FieldDefinitions.Add()	method.	For	example,	if
mapApp	is	the	Map	application,	the	following	creates	field	definitions	for	2
columns:

Dim	fieldDefs	As	ObjectData.FieldDefinitions

fieldDefs	=	_

		mapApp.ActiveProject.MapUtility.NewODFieldDefinitions()

Dim	def1	As	ObjectData.FieldDefinition

def1	=	fieldDefs.Add("FIRST_FIELD",	"Owner	name",	_

		Autodesk.Gis.Map.Constants.DataType.Character,	0)

def1.SetDefaultValue("A")

	

Dim	def2	As	ObjectData.FieldDefinition

def2	=	fieldDefs.Add("SECOND_FIELD",	"Assessment	year",	_

		Autodesk.Gis.Map.Constants.DataType.Integer,	1)

def2.SetDefaultValue(0)

	

Get	a	reference	to	the	ODTables	property	for	the	drawing,	and	add	the	field
defintions	to	create	a	new	table.

Dim	tables	As	ObjectData.Tables

tables	=	mapApp.ActiveProject.ODTables

tables.Add("NewTable",	fieldDefs,	"Description",	True)



Get	a	reference	to	the	table	using	Tables.Item().	This	expects	a	string
parameter.

Dim	table	As	ObjectData.Table

table	=	tables("NewTable")

Removing	a	Table

To	remove	a	table,	get	a	reference	to	the	ODTables	property	for	the	drawing,
and	call	Tables.RemoveTable().

Dim	tables	As	ObjectData.Tables

tables	=	mapApp.ActiveProject.ODTables

tables.RemoveTable("NewTable")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Attaching	Object	Data
	
	
	

Adding	object	data	to	a	drawing	object	requires:

Creating	an	empty	record

Initializing	the	record	with	correct	types	for	the	table

Setting	values	for	each	column

Attaching	the	object	data	by	adding	the	record	to	the	table

Create	an	empty	record	using	the	static	method
ObjectData.Record.Create().	This	does	not	define	any	fields	for	the
record.	Initialize	the	record,	which	creates	fields	of	the	correct	type,	using
Table.InitRecord().

Dim	rec	As	ObjectData.Record

rec	=	ObjectData.Record.Create()

table.InitRecord(rec)

Each	Item	property	in	the	record	is	of	type	Utilities.MapValue,	which	is
a	general-purpose	class	for	storing	data	of	variant	types.	To	set	any	field,	get	a
reference	to	the	field	from	the	Record	object	using	the	Item	property.	Assign
the	value	with	MapValue.Assign().	For	example,	if	rec	is	a	record	in	a
table	where	the	second	field	is	of	type	integer,	the	following	will	assign	a	value
of	10	to	the	field.

Dim	val	As	Utilities.MapValue

val	=	rec(1)

val.Assign(10)

Add	the	record	to	the	table	with	Table.AddRecord()	and	associate	it	with
an	object.	This	requires	a	Record	and	either	an	AutoCAD	DBObject	or
ObjectId	as	parameters.



newTable.AddRecord(rec,	objId)

A	single	drawing	object	may	have	more	than	one	object	data	record	in	a	given
table.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Getting	Object	Data
	
	
	

To	get	all	object	data	records	from	a	single	table	for	a	drawing	object:

Get	the	ObjectData.Tables	object	for	the	drawing.

Get	the	individual	table.

Get	the	ObjectData.Records	collection	for	the	object,	using	one	of
the	GetObjectTableRecords()	methods.

Iterate	through	the	records	in	the	collection.

Process	the	fields	in	each	record.

The	following	example	writes	the	values	from	table	for	objId	to	the	console.

Dim	fieldDefs	As	ObjectData.FieldDefinitions	=	_

		table.FieldDefinitions

Dim	recs	As	ObjectData.Records

recs	=	table.GetObjectTableRecords(0,	objId,	_

		Constants.OpenMode.OpenForRead,	True)

	

If	(recs.Count()	>	0)	Then

			For	Each	rec	As	ObjectData.Record	In	recs

						For	i	As	Integer	=	0	To	rec.Count()	-	1

									Dim	val	As	Autodesk.Gis.Map.Utilities.MapValue

									val	=	rec(i)

									Dim	fieldDef	As	ObjectData.FieldDefinition

									fieldDef	=	fieldDefs(i)

									acEditor.WriteMessage(

											vbNewLine	+	fieldDef.Name	+	":	")

									Select	Case	val.Type

												Case	Constants.DataType.Character

															acEditor.WriteMessage(val.StrValue)

												Case	Constants.DataType.Integer

															acEditor.WriteMessage(val.Int32Value.ToString)

												Case	Constants.DataType.Point

															acEditor.WriteMessage("point")

												Case	Constants.DataType.Real

															acEditor.WriteMessage(val.DoubleValue.ToString)



												Case	Else

															acEditor.WriteMessage("undefined")

									End	Select

						Next

			Next

End	If

recs.Dispose()

Processing	all	tables	for	an	object	is	similar.	Instead	of	calling
Table.GetObjectTableRecords()	for	an	individual	table,	call
Tables.GetObjectRecords()	for	all	tables.	When	processing	the	fields,
be	sure	to	to	get	the	field	definitions	from	the	correct	table	for	the	current	record.

Get	the	ObjectData.Tables	object	for	the	drawing.

Get	the	ObjectData.Records	collection	for	the	object,	using	one	of
the	GetObjectRecords()	methods.

Iterate	through	the	records	in	the	collection.

Get	the	table	name	for	the	current	record.

Get	the	fields	definitions	for	the	table.

Process	the	fields	in	each	record.

Note When	you	have	finished	processing	the	records,	release	any	of	the
disposable	objects	with	their	Dispose()	methods.	This	applies	to	any	classes
inheriting	Autodesk.AutoCAD.Runtime.DisposableWrapper,	like
ObjectData.Table,	ObjectData.Records,	or
Utilities.MapValue.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Updating	and	Deleting	Records
	
	
	

To	update	or	delete	records,	they	must	be	opened	for	write	access	in	the	call	to
Table.GetObjectTableRecords()	or
Tables.GetObjectRecords().

Fields	in	a	record	are	of	type	Utilities.MapValue.	To	update	a	field,	get	a
reference	to	the	value	from	the	Record	object.	Assign	a	new	value	using
MapValue.Assign()	and	update	the	record	using
Records.UpdateRecord().	The	following	example	sets	the	value	of	the
first	field	in	a	record:

Dim	val	As	Utilities.MapValue	=	rec(0)

val.Assign(19)

recs.UpdateRecord(rec)

To	delete	a	record,	get	an	IEnumerator	using
Records.GetEnumerator().	Advance	the	enumerator	to	the	record	to	be
deleted	and	call	Records.RemoveRecord().	The	following	example
deletes	the	first	record	for	an	object.

Dim	recs	As	ObjectData.Records

recs	=	table.GetObjectTableRecords(0,	objId,	_

		Constants.OpenMode.OpenForWrite,	True)

	

Dim	ie	As	IEnumerator

ie	=	recs.GetEnumerator()

ie.MoveNext()

recs.RemoveRecord()

recs.Dispose()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Data	Connect
	
	
	

Topics	in	this	section

Overview
Setting	Up	Visual	Studio
Creating	the	Plugin

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

The	Data	Connect	API	can	be	used	to	create	plugins	for	the	Data	Connect
dialog.	Use	this	to	create	new	connection	forms	for	FDO	providers,	either
providers	that	are	installed	with	AutoCAD	Map	3D	or	additional	providers.

Note The	Data	Connect	API	is	not	part	of	the	Geospatial	Platform	API.	It	is,
however,	included	in	the	technical	preview	for	this	release	of	AutoCAD	Map
3D.	For	that	reason	it	is	documented	in	this	guide	instead	of	the	.NET
Developer’s	Guide.

If	a	custom	plugin	works	with	a	provider	installed	with	AutoCAD	Map	3D,	it
replaces	the	existing	form	for	the	provider.	For	example,	a	custom	form	for	the
Autodesk	Oracle	provider	could	look	like	the	following.	The	outlined	area	is	the
custom	form,	embedded	in	the	Data	Connect	dialog.



To	add	a	new	option	to	the	Data	Connect	dialog,	complete	the	following	steps:

Ensure	the	FDO	provider	DLL	is	installed	with	AutoCAD	Map	3D.

Ensure	the	FDO	provider	is	listed	in	providers.xml.

Create	the	plugin	to	use	the	provider.

Save	the	plugin	DLL	in	the	Plugins\DataConnect	folder	of	the
AutoCAD	Map	3D	installation.	If	the	folder	does	not	exist,	create	it.

providers.xml	is	located	in	the	FDO\bin	folder	of	the	AutoCAD	Map	3D
installation.	It	contains	entries	for	each	available	FDO	provider.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Setting	Up	Visual	Studio
	
	
	

To	create	a	project	using	the	Data	Connect	API,	follow	the	instructions	in	the
AutoCAD	Map	3D	.NET	Developer’s	Guide.	Add	the	following	references	to
the	project:

Autodesk.Gis.Plugins.dll

AcMapDataConnectPlugins.dll

The	assemblies	are	located	in	the	AutoCAD	Map	3D	installation	folder.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Creating	the	Plugin
	
	
	

Note To	ensure	the	plugin	is	loaded,	place	the	DLL	in	the	Plugins\DataConnect
folder	under	the	AutoCAD	Map	3D	installation	folder.	Plugins	in	this	folder	that
follow	the	proper	structure	are	loaded	on	demand.	There	is	no	need	to	run	the
netload	command.

Using	Visual	Studio,	create	a	new	project.	Add	a	UserControl	to	the	project.
The	control	will	be	embedded	in	the	Data	Connect	dialog.

The	plugin	class	must	implement	the	IDataConnectConnectionPlugin
interface.	It	also	requires	a	DataConnectPluginAttribute	with	the	FDO
provider	name.	The	provider	name	must	match	the	name	in	providers.xml.	For
example:

[DataConnectPluginAttribute("Autodesk.Oracle.3.1")]

public	partial	class	SampleProviderConnectUIPlugin

				:	UserControl

				,	IDataConnectConnectionPlugin

{

IDataConnectConnectionPlugin	provides	the	necessary	methods	for
AutoCAD	Map	3D	to	interact	with	the	control.	It	inherits	2	other	interfaces:
IDataConnectPlugin	and	IPlugin.

The	implementation	for	IDataConnectPlugin	can	be	simple,	as	follows.
The	IDataConnectPluginHost	interface	contains	a	single	property,
HostApplication,	of	type	object.	When	attached,	it	contains	a	reference
to	the	host	application	object,
Autodesk.AutoCAD.ApplicationServices.Application.AcadApplication

//	IDataConnectPlugin	implementation

	

protected	IDataConnectPluginHost	_host;

protected	string	_providerName;

	



public	void	Attach(IDataConnectPluginHost	host)

{

				_host	=	host;

}

	

public	void	Detach()	{	_host	=	null;	}

	

public	IDataConnectPluginHost	Host

{

				get	{	return	_host;	}

}

	

public	UserControl	ClientControl

{

				get	{	return	this;	}

}

Similarly,	the	implementation	for	IPlugin	needs	methods	to	get	and	set
properties.	The	properties	are	used	to	describe	the	plugin.	They	may	be
displayed	to	the	user	and	should	be	localized.	The	Dependencies	property	is
not	currently	used.

//	IPlugin	implementation

	

protected	string	title	=	"title";

protected	string	description	=	"description";

protected	string	company	=	"company";

protected	string	version	=	"3.0.0";

protected	Type[]	dependencies;

	

public	string	Title

{

		get	{	return	title;	}

		set	{	title	=	value;	}

}

	

public	string	Description

{

		get	{	return	description;	}

		set	{	description	=	value;	}

}

	

public	string	Company

{

		get	{	return	company;	}

		set	{	company	=	value;	}

}

	



public	string	Version

{

		get	{	return	version;	}

		set	{	version	=	value;	}

}

	

public	Type[]	Dependencies

{

		get	{	return	dependencies;	}

}

IDataConnectConnectionPlugin	contains	methods	to	get	and	set	the
connection	parameters	for	the	FDO	provider,	so	the	implementation	depends	on
the	requirements	of	the	provider.	For	complete	details	about	the	methods,	refer	to
the	AutoCAD	Map	3D	.NET	API	Reference	Supplement.	Generally	these
methods	will	work	with	fields	on	the	custom	form.

The	properties	of	IDataConnectConnectionPlugin	return	information
about	the	connection	parameters	for	the	provider.	These	are	used	to	open	the
FDO	connection.

Property Description

ConnectionParameterNames A	list	of	parameters	for
the	provider.

ConnectionParametersValid Boolean.	True	if	the
current	parameters	are
valid	for	the	provider.

ProviderName The	provider	name.

The	methods	of	IDataConnectConnectionPlugin	get	and	set	parameter
values:

Method	name Description

GetConnectionParameter() Returns	the	current
value	of	a	connection
parameter.



SetConnectionParameter() Sets	the	value	of	a
connection	parameter.
This	should	update	the
form	field	for	the
parameter.

Initialize() Called	when	the	plugin
first	loads.

SetConnectionParametersToDefaults() Sets	all	connection
parameters	to	default
values.

There	is	also	an	event,	ParameterValueChanged,	which	should	fire	when	a
parameter	value	changes.	This	event	is	required	so	the	containing	form	is	able	to
update	the	Connect	button	state	based	on	the	validity	of	the	current	parameter
values.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Annotation
	
	
	

Topics	in	this	section

Overview
Annotation	Templates
Expressions	in	Annotations
Inserting	Annotations
Updating	and	Refreshing	Annotations
Annotation	Overrides

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Annotations	provide	a	way	to	label	drawing	objects,	based	on	data	associated
with	the	objects.	The	associated	data	can	come	from	various	places,	such	as
object	data,	linked	databases,	or	object	properties.	For	example,	if	a	drawing
contains	parcels,	and	the	parcels	have	object	data	with	the	name	of	the	parcel
owner	or	the	most	recent	sale	price	of	the	parcel,	then	these	values	could	be
added	to	the	map	as	part	of	an	annotation.

Each	annotation	is	based	on	an	annotation	template,	which	is	a	special	block	in
the	drawing.	The	template	describes	the	annotation,	and	usually	contains
annotation	text	defining	the	variable	content.

A	new	annotation	is	created	by	inserting	a	reference	to	the	annotation	template.
This	creates	a	reference	to	the	annotation	block,	substituting	the	proper	values	in
the	expression	fields.

The	classes	for	handling	annotations	are	mostly	within	the	Annotation
namespace.	Code	in	this	chapter	assumes	the	following:

Imports	Autodesk.Gis.Map.Annotation

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Annotation	Templates
	
	
	

An	annotation	template	is	a	special	block	in	the	drawing.	It	defines	the	fixed	and
variable	parts	of	the	annotation.

Note For	more	information	about	blocks,	refer	to	the	AutoCAD	developer
documentation.

Internally,	annotation	templates	use	a	special	naming	convention.	The	names	of
all	blocks	containing	annotation	templates	begin	with
ACMAP_ANN_TEMPLATE_.	This	prefix	is	defined	in	the
Annotations.TemplateNameBlockTableRecordPrefix	property.

Annotation	API	calls,	though,	use	the	annotation	name	as	it	appears	in	the	UI.
For	example,	an	annotation	template	named	ParcelName	would	be	stored	in	a
block	named	ACMAP_ANN_TEMPLATE_ParcelName,	but	it	would	be	created
with	a	call	to
Annotations.CreateAnnotationTemplate("ParcelName").

The	ProjectModel.Annotations	property	returns	an	Annotations
object	that	can	be	used	for	managing	the	annotations	and	annotation	templates.

Attributes

An	AutoCAD	block	can	contain	attribute	definitions,	which	are	text	entities	that
can	define	informational	text	for	each	block	reference.

In	an	annotation	template,	attribute	definitions	are	used	to	define	the	variable
parts	of	the	annotation.	For	example,	if	the	annotations	include	object	data,	then
attribute	definitions	in	the	block	template	define	what	object	data	should	appear
and	how	it	will	be	displayed.

The	AttributeDefinition	class	inherits	the	DBText	class,	which	inherits
the	Entity	class.	These	have	properties	such	as	Color	and	Height	that
define	how	the	annotation	will	appear	in	the	drawing.	For	example,	to	set	the



text	height	for	an	annotation,	set	the	Height	property	of	the	attribute	definition
used	for	the	annotation.

Note The	properties	used	for	the	attribute	definition	can	also	be	modified	using
expression	strings.	See	Expressions	in	Annotations	for	details.

Creating	an	Annotation	Template

Although	an	annotation	template	is	a	form	of	AutoCAD	block,	it	must	be	created
using	the	Map	API	or	it	will	not	be	recognized	properly.

Start	a	transaction.

Create	the	annotation	template	using
Annotations.CreateAnnotationTemplate().

Get	a	reference	to	the	annotation	template	using
Annotations.Item().

If	required,	set	block	properties	for	the	annotation	template	using
AnnotationTemplate.SetExpressionString().	For
example,	this	can	be	used	to	rotate	the	block	reference	to	match	the
rotation	of	the	object	being	annotated.

If	required,	add	fixed	drawing	objects	to	the	annotation	template.	Get	the
AutoCAD	block	id	using	the
AnnotationTemplate.BlockDefinitionId	property	and	add
drawing	objects	to	the	template	using	standard	AutoCAD	API	calls.

Add	variable	annotation	text	to	the	template	using
AnnotationTemplate.CreateAnnotationText().	This
creates	an	attribute	definition	in	the	block.

Set	the	display	properties	of	the	annotation	text	by	setting	properties	for
the	attribute	definition.

Set	the	expression	string	for	the	annotation	text	using
Annotations.SetExpressionString().

Commit	the	transaction.

Annotations.CreateAnnotationTemplate()	creates	an	empty
template.	It	returns	an	AutoCAD	ObjectID	that	is	the	id	of	the	block	table



record.	Get	a	reference	to	the	annotation	template	object	using
Annotations.Item().

Dim	annotations	As	Annotation.Annotations	=	_

			activeProj.Annotations

	

Dim	trans	As	Transaction	=	Nothing

trans	=	activeDoc.TransactionManager.StartTransaction()

Dim	newTemplateId	As	ObjectId	=	_

			annotations.CreateAnnotationTemplate("templateName")

	

Dim	newTemplate	As	Annotation.AnnotationTemplate	=	_

			annotations(newTemplateId)

If	required,	set	block	properties	for	the	annotation	template.	See	Expressions	in
Annotations	for	details.

newTemplate.SetExpressionString(_

			Annotation.AnnotationExpressionFields.BlockRotation,	".ANGLE")

Add	objects	to	the	template.	They	can	be	normal	drawing	objects	or	annotation
text.

To	add	normal	drawing	objects,	use	standard	AutoCAD	methods.

Dim	line	As	New	Line

line.StartPoint	=	New	Geometry.Point3d(0.0,	-0.6,	0.0)

line.EndPoint	=	New	Geometry.Point3d(2.0,	-0.6,	0.0)

Dim	blockTableRec	As	BlockTableRecord

blockTableRec	=	newTemplateId.GetObject(OpenMode.ForWrite)

blockTableRec.AppendEntity(line)

trans.AddNewlyCreatedDBObject(line,	True)

To	add	annotation	text,	create	an	annotation	text	object.	This	is	a	special	type	of
AutoCAD	attribute	definition.
AnnotationTemplate.CreateAnnotationText()	returns	the
AutoCAD	ObjectId	of	the	attribute	definition.	Open	this	object	for	writing	and
cast	to	an	AttributeDefinition	object:

Dim	expressionTextId	As	ObjectId

expressionTextId	=	newTemplate.CreateAnnotationText()

Dim	attDef	As	AttributeDefinition

attDef	=	_

		CType(trans.GetObject(expressionTextId,	OpenMode.ForWrite),	_

		AttributeDefinition)



Most	of	the	properties	for	the	annotation	template	can	be	set	using	the
AttributeDefinition	properties.	For	example:

attDef.Position	=	_

		New	Autodesk.AutoCAD.Geometry.Point3d(0.0,	0.0,	0.0)

attDef.Tag	=	"testTag"

attDef.Height	=	0.5

attDef.VerticalMode	=	TextVerticalMode.TextVerticalMid

attDef.HorizontalMode	=	TextHorizontalMode.TextCenter

attDef.AlignmentPoint	=	

		New	Autodesk.AutoCAD.Geometry.Point3d(0.0,	0.0,	0.0)

The	annotation	text	must	be	set	using
Annotations.SetExpressionString().	See	Expressions	in
Annotations	for	details.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Expressions	in	Annotations
	
	
	

Use	expressions	to	set	the	text	or	the	display	properties	of	the	annotation.	Some
of	the	items	that	can	use	expressions	are:

Annotation	text

Text	color

Text	size

Rotation	angle

Position	relative	to	the	drawing	object	being	annotated

Note Properties	in	an	attribute	definition	can	be	overridden	by	annotation
expressions.	For	example,	if	the	attribute	definition	defines	the	location	of	the
text,	the	annotation	expression	could	override	it.

AnnotationTemplate.SetExpressionString()	sets	properties	for
the	entire	template.	Annotations.SetExpressionString()	sets
properties	for	annotation	text	within	the	block.

Expressions	are	evaluated	by	the	AutoLISP	interpreter,	and	return	a	single	value.
Depending	on	the	property	being	set,	the	value	can	be	numeric	or	string.	If	the
expression	cannot	be	evaluated	properly	it	displays	the	attribute	tag	name
instead.

Note For	more	details	about	expressions,	including	a	list	of	functions	and
variables,	see	the	Map	3D	Help.	In	the	Reference	Guide	section	there	is	a
chapter	about	the	Expression	Evaluator.

The	enum	Annotation.AnnotationExpressionFields	contains	the
complete	list	of	fields	that	can	use	expressions.

In	most	cases,	expressions	are	used	to	define	the	text	of	the	annotation,	but	they
can	also	be	used	to	define	things	like	color,	size,	or	position.



Example

To	set	the	annotation	text	based	on	object	data,	use	the	syntax
:fieldname@tablename.	For	example:

Imports	Autodesk.Gis.Map.Annotation

annotations.SetExpressionString(attDef,	_

AnnotationExpressionFields.AttributeDefinitionAnnotationString,	_

		":PARCEL_OWNER@ParcelData")

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Inserting	Annotations
	
	
	

To	insert	an	annotation,	call	one	of	the
AnnotationTemplate.InsertReference()	methods.	They	all	require
an	ObjectId	or	ObjectIdCollection	as	parameter,	to	identify	the
drawing	objects	to	be	annotated.

This	creates	a	block	reference	in	the	drawing.	It	evaluates	the	annotation
expressions	and	uses	the	results	to	set	the	text	or	other	properties	of	the
reference.

An	inserted	annotation	reference	can	also	have	overrides	that	change	the	display
properties.	See	Annotation	Overrides	for	details.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Updating	and	Refreshing	Annotations
	
	
	

Once	inserted,	annotation	references	do	not	change	unless	they	are	explicitly
changed.	For	example,	if	the	object	data	for	a	drawing	object	changes,	any
anotations	that	use	the	object	data	will	still	display	the	original	value.

There	are	two	operations	for	revising	existing	annotation	references:

Updating

Refreshing

Updating	removes	and	recreates	all	the	annotations	that	use	a	template.
Refreshing	re-evaluates	the	annotation	expressions,	but	does	not	remove	out-of-
date	annotations.

To	update	annotations,	call
AnnotationTemplate.UpdateReferences().

newTemplate.UpdateReferences(True)

To	refresh	annotations,	call
AnnotationTemplate.RefreshReferences().

newTemplate.RefreshReferences(True)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Annotation	Overrides
	
	
	

An	annotation	override	can	be	applied	when	an	annotation	reference	is	created.
It	changes	selected	properties	of	the	annotation	template.	For	example,	an
annotation	override	can	change	the	color	or	text	size	of	the	annotation.

Annotation	overrides	can	apply	to	the	static	properties	of	the	annotation,	which
are	set	using	the	AttributeDefinition	properties,	or	the	dynamic
properties,	which	are	set	using	expressions.

Annotation	overrides	correspond	to	the	Insert	Options	and	Insert	Properties	of
the	Insert	Annotation	dialog	in	the	UI.

For	example,	to	override	the	static	color,	set	the	ColorOverride	property	of
the	annotation	override.	To	override	a	color	set	using	an	expression,	set	the
ColorExpressionOverride	property.

To	apply	an	annotation	override,	insert	the	annotation	using
AnnotationTemplate(ObjectId,	AnnotationOverrides).	For
example:

Dim	annOverrides	As	New	Annotation.AnnotationOverrides

annOverrides.Clear()

Dim	greenClr	As	Autodesk.AutoCAD.Colors.Color	=	_

		Autodesk.AutoCAD.Colors.Color.FromColorIndex(	_

		Autodesk.AutoCAD.Colors.ColorMethod.None,	3)

annOverrides.ColorOverride	=	greenClr

	

annTemplate.InsertReference(objId,	annOverrides)

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Events
	
	
	

Topics	in	this	section

Overview
Events	in	the	API	Reference
List	of	Events

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Events	and	event	handlers	provide	a	way	for	applications	to	respond	to	changes
in	the	Map	application.	For	example,	opening	a	new	project	can	fire	an	event
handler	to	perform	additional	processing.

The	API	uses	standard	.NET	mechanisms	for	handling	events.	Applications
wanting	to	handle	events	subscribe	to	the	events.	When	the	event	is	fired	all
handlers	subscribed	to	that	event	are	called.

Event	handlers	accept	two	parameters:

A	reference	to	the	object	raising	the	event

Event	arguments

The	class	definition	for	the	event	arguments	is	usually	specific	to	the	event	being
handled.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Events	in	the	API	Reference
	
	
	

For	every	event,	the	AutoCAD	Map	3D	API	Reference	contains	the	following:

Class	definition	for	the	event	arguments.	The	names	of	these	classes
usually	begin	with	the	event	name	and	end	with	“EventArgs”.	In	some
cases	the	event	uses	System.EventArgs	instead	of	defining	a	new
class.

Methods	for	adding	and	removing	event	handlers.	The	names	of	these
methods	begin	with	“add_”	or	“remove_”.	Do	not	call	these	methods
directly.	Instead	use	the	correct	syntax	for	the	language.

Type	definition	for	the	event	handler.
Note Some	events,	such	as	ProjectModel.BeginClose,	use
System.EventHandler	and	System.EventArgs	instead	of
objects	derived	from	them.	For	details	refer	to	the	API	reference	or	the
Visual	Studio	Object	Browser.

For	example,	the	ProjectOpened	event	in	the	Autodesk.Gis.Map
namespace	consists	of	the	following:

ProjectOpenedEventArgs	class

add_ProjectOpened	method	in	the	MapApplication	class

remove_ProjectOpened	method	in	the	MapApplication	class

ProjectOpenedEventHandler	type

Note The	actual	event	name	is	not	used	in	the	API	reference.	It	can	always	be
inferred	from	the	corresponding	add_	or	remove_	methods.

Example:	VB.NET

To	define	an	event	handler	for	the	ProjectOpened	event,	create	a	subroutine:



Sub	handleProjectOpened(ByVal	pSender	As	Object,	_

ByVal	pArgs	As	ProjectOpenedEventArgs)

			'	Insert	code	to	handle	event

End	Sub

To	subscribe	to	the	event:

AddHandler	mapApp.ProjectOpened,	AddressOf	handleProjectOpened

To	unsubscribe	from	the	event:

RemoveHandler	mapApp.ProjectOpened,	AddressOf	handleProjectOpened

Example:	C#

To	define	an	event	handler	for	the	ProjectOpened	event,	create	a	subroutine:

void	handleProjectOpened(Object	sender,

ProjectOpenedEventArgs	args)

{

			//	Insert	code	to	handle	event

}

To	subscribe	to	the	event:

mapApp.ProjectOpened	+=	new	ProjectOpenedEventHandler(

			handleProjectOpened);

To	unsubscribe	from	the	event:

mapApp.ProjectOpened	-=	new	ProjectOpenedEventHandler(

			handleProjectOpened);

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


List	of	Events
	
	
	

Namespace	Autodesk.Gis.Map

Aliases	class

Event	name Description

AlliasAdded Fired	when	a	new	alias	is	added	to	the
application.	The	event	args	pass	the	alias
name.

AliasDeleted Fired	when	an	alias	is	deleted	from	the
application.	The	event	args	pass	the	alias
name	and	path	of	the	deleted	alias.

MapApplication	class

Event	name Description

IntOptionModified Fired	when	one	of	the
application	options	is
modified.	The	event	args
pass	the	option	name	and
the	new	and	old	values	of
the	option.

ProjectBeginClose Fired	when	a	project	begins
the	close	operation,	but
before	the	project	has	been
closed.	The	event	args	pass



the	project	model.

ProjectCreated Fired	after	a	new	project
has	been	created.	The	event
args	pass	the	project	model.

ProjectOpened Fired	when	an	existing
project	has	been	opened.
The	event	args	pass	the
project	model.

StringOptionModified Fired	when	one	of	the
application	options	is
modified.	The	event	args
pass	the	option	name	and
the	new	and	old	values	of
the	option.

UnloadApp Not	used	for	.NET
applications.

Namespace	Autodesk.Gis.Map.Classification

ClassificationManager	class

Event	name Description

FeatureClassDefinitionCreated Fired	when	a	new	feature
class	definition	has	been
created.	The	event	args	pass
the	class	name	and	the
name	of	the	XML	file
containing	the	class
definition.

FeatureClassDefinitionDeleted Fired	when	a	feature	class
definition	has	been	deleted.
The	event	args	pass	the
class	name	and	the	name	of



the	XML	file	containing	the
class	definition.

FeatureClassDefinitionModified Fired	when	a	feature	class
definition	has	been
modified.	The	event	args
pass	the	class	name	and	the
name	of	the	XML	file
containing	the	class
definition.

FeatureClassDefinitionRenamed Fired	when	a	feature	class
definition	has	been
renamed.	The	event	args
pass	the	new	and	old	class
names	and	the	name	of	the
XML	file	containing	the
class	definition.

FeatureDefinitionFileAttached Fired	when	a	new	definition
file	is	attached.	The	event
args	pass	the	filename.

FeatureDefinitionFileModified Fired	when	a	definition	file
is	modified.	The	event	args
pass	the	filename.

Namespace	Autodesk.Gis.Map.DisplayManagement

DisplayManager	class

Event	name Description

CategoryAppended	 	

CategoryModified	 	

CategoryUnappended	 	



MapAppended	 	

MapGoodBye	 	

MapSetCurrentBegin	 Fired	when	changing	the
current	display	manager
map,	before	the	change	is
made.	Returns

MapSetCurrentEnd	 	

MapSetCurrentFails	 	

MapUnappended	 	

StyleAppendedToCategory	 	

StyleModified	 	

StyleUnappended	 	

Map	class

Event	name Description

CurrentScaleModified	 	

DismissStylizationBegin	 	

DismissStylizationCancel	 	

DismissStylizationEnd	 	

ItemAppended	 	

ItemErased	 	

ItemModified	 	

ScaleAdded	 	

ScaleErased	 	



ScaleModified	 	

StyleAppended	 	

StyleErased	 	

StyleReferenceAppended	 	

StyleReferenceErased	 	

StyleReferenceModified	 	

UpdateStylizationBegin	 	

UpdateStylizationCancel	 	

UpdateStylizationEnd	 	

Namespace	Autodesk.Gis.Map.ImportExport

Exporter	class

Event	name Description

ExportRecordError	 	

RecordExported	 	

RecordReadyForExport	 	

Importer	class

Event	name Description

ImportRecordError	 	

RecordImported	 	

RecordReadyForImport 	



Namespace	Autodesk.Gis.Map.MapBook

BookManager	class

Event	name Description

MapBookAppended	 	

MapBookErased	 	

MapBookModified	 	

MapBookSetCurrent	 	

MapBookTileModified	 	

MapBookTileWillBeErased	 	

MapBookTreeNodeModified	 	

MapBookWillBeErased 	

Namespace	Autodesk.Gis.Map.Project

DrawingSet	class

Event	name Description

DrawingActivated	 	

DrawingActivationCancelled	 	

DrawingAttachCancelled	 	

DrawingAttached	 	

DrawingDeactivated	 	

DrawingDetached	 	

DrawingSettingsModified	 	



DrawingToBeActivated	 	

DrawingToBeAttached	 	

ProjectModel	class

Event	name Description

AbortCSChange	 	

AbortSwapId	 	

BeginClose	 	

BeginCSChange	 	

BeginDestroy	 	

BeginOpen	 	

BeginQuery	 	

BeginSave	 	

BeginSaveBack	 	

BeginSwapId	 	

BeginTransform	 	

EndClose	 	

EndCSChange	 	

EndOpen	 	

EndQuery	 	

EndSave	 	

EndSaveBack	 	

EndSwapId	 	



EndTransform	 	

IntOptionModified	 	

StringOptionModified 	

Namespace	Autodesk.Gis.Map.Query

QueryLibrary	class

Event	name Description

QueryAdded	 	

QueryCategoryAdded	 	

QueryCategoryDeleted	 	

QueryCategoryRenamed	 	

QueryDeleted	 	

QueryModified	 	

QueryRenamed 	

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Drawing	Sets
	
	
	

Topics	in	this	section

Overview
Drive	Aliases
Attaching	and	Detaching	Drawings

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Drawing	sets	provide	a	way	for	a	single	map	to	combine	objects	from	multiple
drawings.	One	drawing,	the	project	drawing,	can	attach	multiple	source
drawings.	The	source	drawings,	in	turn,	can	attach	other	source	drawings	to	form
a	tree	of	attached	drawings.

Running	a	query	on	the	attached	drawings	copies	selected	objects	into	the
project	drawing,	where	they	can	be	displayed	and	edited.	Unless	an	object	from
an	attached	drawing	has	been	“queried	in”	it	does	not	appear	in	the	project
drawing.	See	Queries	and	Save	Sets	for	more	details.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Drive	Aliases
	
	
	

Attached	drawings	are	often	shared	between	different	users	on	different
computers.	Because	of	this,	the	paths	to	the	attached	drawings	can	be	different
for	each	user.	Aliases	help	manage	these	files.

Each	alias	maps	an	alias	name	to	a	directory	path.	Each	AutoCAD	Map	3D	user
can	define	different	paths	for	the	aliases.	The	locations	of	attached	drawings	are
always	identified	using	the	aliases,	so	users	can	have	different	paths	to	the
atttached	drawings,	as	long	as	the	aliases	are	the	same.

The	DriveAlias	class	in	the	Autodesk.Gis.Map	namespace	represents	an
individual	alias.	It	has	two	properties:	Name	and	Path.

The	Aliases	property	of	the	map	application	returns	an	Aliases	object	for
managing	the	aliases	in	the	session.	Aliases.Item()	returns	an	individual
drive	alias,	either	by	alias	name	or	index	number.

Dim	aliasList	As	Aliases

aliasList	=	mapApp.Aliases

Aliases	objects	have	methods	for	adding	and	removing	aliases,	and	event
handlers	for	detecting	when	aliases	have	been	added	or	removed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Attaching	and	Detaching	Drawings
	
	
	

Attaching	a	drawing	adds	it	to	the	drawing	set	for	a	project.	Detaching	a	drawing
removes	it	from	the	drawing	set.

To	attach	a	drawing,	use	DrawingSet.AttachDrawing().	Pass	a	single
string	argument	that	contains	the	alias	and	the	path	to	the	drawing	to	attach.	The
form	is:

alias:\filename

This	returns	a	reference	to	the	attached	drawing,	an	AttachedDrawing
object.

When	an	attached	drawing	is	activated,	the	file	is	locked	against	editing	by	other
applications.	To	remove	the	lock,	but	keep	the	drawing	attached,	call
AttachedDrawing.Deactivate().	To	reactivate	the	drawing,	call
AttachedDrawing.Activate().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Queries	and	Save	Sets
	
	
	

Topics	in	this	section

Overview
Queries
Query	Libraries
Save	Sets

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Queries	and	save	sets	work	on	attached	drawings.	A	query	copies	drawing
objects	from	attached	drawings	into	the	project	drawing.	Once	in	the	project
drawing,	the	objects	can	be	edited	like	any	other	drawing	object.

A	save	set	is	a	list	of	objects	in	the	project	drawing	that	are	to	be	updated	in
attached	drawings.	The	save	set	can	contain:

objects	that	have	been	modified	in	the	project	drawing	that	should	also
be	modified	in	the	attached	drawings

objects	that	have	been	deleted	from	the	project	drawing	and	should	be
deleted	from	the	attached	drawings

new	objects	that	have	been	added	to	the	project	drawing	that	should	also
be	added	to	an	attached	drawing

Objects	that	have	been	queried	into	the	project	drawing	are	not	added	to	the	save
set	automatically.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Queries
	
	
	

A	query	is	a	tree	structure	containing	branches	(QueryBranch	objects)	and
conditions	(DataCondition,	LocationCondition,
PropertyCondition,	and	SqlCondition	objects).	All	of	these	objects
are	subclassed	from	QueryUnit.

To	create	a	query,	call	ProjectModel.CreateQuery().

query	=	activeProj.CreateQuery()

This	returns	an	empty	QueryModel	object.

A	simple	query	can	have	a	root	branch	with	a	single	condition.	More	complex
queries	combine	branches	and	conditions.

The	criteria	that	the	query	uses	to	select	objects	are	expressed	in	query
conditions.	There	are	four	types	of	query	conditions.

	 Description
Location	Conditions Based	on	the	location

of	objects	relative	to	a
boundary.	There	are
several	boundary
types.	See	Location
Boundaries	below.

Property	Conditions Based	on	a	particular
AutoCAD	property.

Data	Conditions Based	on	object	data.
To	query	object	data
set	the	query	type	to
DataIrd.	To	query
object	classes	set	the



query	type	to
DataFeature.

SQL	Conditions Based	on	data	about
drawing	objects	that	is
stored	in	external
database	tables	and	is
specified	by	the
WHERE	clause	of	a
SQL	query.

Location	Boundaries

There	are	several	types	of	location	boundaries.	They	are	all	represented	by
descendents	of	the	LocationBoundary	class,	as	illustrated	in	the	following
diagram.



Executing	Queries

To	build	a	query

1.	 Create	the	query	using	ProjectModel.CreateQuery().

2.	 Create	one	or	more	query	conditions	using	the	constructors	for
DataCondition,	LocationCondition,
PropertyCondition,	and	SqlCondition.

3.	 Create	one	or	more	query	branches	using	the	constructor	for
QueryBranch.

4.	 Build	the	query	tree	by	appending	query	conditions	and	branches	using
QueryBranch.AppendOperand().

5.	 Create	the	query	definition	by	passing	the	root	query	branch	to
QueryModel.Define().

6.	 Optionally,	save	the	query	definition	in	an	external	file	or	query	library.

To	execute	a	query

1.	 You	may	want	to	set	the	mode,	enable	or	disable	property	alteration,	or
create	a	report	template	for	the	query.

2.	 Call	QueryModel.Run()	to	execute	the	query	against	all	attached
drawings.	Call	QueryModel.Execute()	to	execute	the	query	for	a
particular	drawing	set.

The	query	mode	determines	if	the	objects	from	the	attached	drawings	are
displayed	as	a	preview	or	cloned	into	the	project	drawing.
QueryModel.Execute()	returns	a	list	of	objects	that	have	been	queried	in.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Query	Libraries
	
	
	

Query	libraries	provide	a	way	to	save	and	re-use	queries.	The	queries	can	be
saved	internally	in	the	project	file	or	externally.	Each	project	has	its	own	library,
available	with	ProjectModel.QueryCategories.

Libraries	are	divided	into	categories,	where	each	category	is	a	container	for
saved	queries.	The	saved	queries	are	represented	by	QueryAttribute
objects.

To	add	a	query	to	the	library,	first	add	a	category	then	add	the	query.

Dim	queryLib	As	Query.QueryLibrary	=	activeProject.QueryCategories

Dim	queryCat	As	Query.QueryCategory

queryCat	=	queryLib.AddCategory("catName")

queryCat.AddQuery("queryName",	"query	description",	queryObj)

To	save	a	query	to	an	external	file,	call	QueryModel.Save().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Save	Sets
	
	
	

Each	project	has	a	save	set,	which	manages	a	list	of	object	ids	to	be	updated	in
attached	drawings.

Objects	are	not	added	to	the	save	set	automatically.	It	is	up	to	the	application	to
add	objects	using	SaveSet.AddObjects().

To	save	objects	back	to	an	attached	drawing,	call
AttachedDrawing.CloneBack(),
AttachedDrawing.CloneBackArea(),	or
AttachedDrawing.CloneBackLayer().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Classification
	
	
	

Topics	in	this	section

Overview
Managing	Feature	Definition	Files
Creating	Feature	Class	Definitions
Classifying	Objects

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Object	classification	is	a	way	of	tagging	drawing	objects	with	an	object	class
name.	This	can	help	organize	the	objects	in	the	drawing,	and	enforce	drawing
standards.

Note For	historical	reasons,	the	API	uses	the	terms	feature	and	feature	class	for
object	classification.	These	are	different	from	FDO	features	and	feature	classes.
It	is	important	not	to	confuse	the	two.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Managing	Feature	Definition	Files
	
	
	

Feature	class	definitions	are	stored	in	XML	files,	external	to	the	drawing	file.
Before	definitions	from	a	file	can	be	used,	the	file	must	be	attached	to	a	drawing.
There	can	only	be	one	attached	feature	definition	file	active	at	one	time	for	a
given	project.

Note In	the	UI,	feature	definition	files	are	called	object	class	definition	files.

Creating	Feature	Definition	Files

To	create	a	feature	definition	file:

Get	the	classification	manager	object	for	the	project	using
ProjectModel.ClassificationManager.

Create	the	new	file	using
ClassificationManager.CreateFeatureDefinitionFile()

Note	that	the	current	user	must	have	administrative	privileges	in	the	Map
session.	To	check,	test
ClassificationManager.CanCurrentUserAlterSchema.

Dim	classMgr	As	Classification.ClassificationManager

classMgr	=	activeProj.ClassificationManager

If	(classMgr.CanCurrentUserAlterSchema)	Then

			classMgr.CreateFeatureDefinitionFile(filename)

Else

			'	Error

End	If

Attaching	and	Detaching	Feature	Definition	Files

To	attach	a	feature	definition	file,	call
ClassificationManager.AttachFeatureDefinitionFile().

To	detach	the	current	file,	call



ClassificationManager.DetachCurrentFeatureDefinitionFile()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Creating	Feature	Class	Definitions
	
	
	

Feature	class	definitions	are	composed	of	properties	that	define	how	classified
objects	will	appear.	Each	feature	class	definition	can	only	be	used	with	certain
types	of	drawing	objects.

To	create	a	feature	class	definition,	start	with	a	drawing	object	to	use	as	a
template.	Get	the	properties	of	the	drawing	object	using
ClassificationManager.GetProperties().	The	current	values	of
the	drawing	object	become	the	default	property	values.

Determine	the	list	of	object	types	that	the	feature	class	definition	can	be	used
with.	This	list	can	be	expressed	as	a	string	collection	or	a	collection	of	AutoCAD
RXClass	objects.	Create	the	empty	feature	class	definition	using
ClassificationManager.CreateFeatureClassDefinition().
Set	a	drawing	object	type	to	use	for	creating	new	instances	of	the	class	using
FeatureClassDefinition.SetCreateMethod().

Dim	classMgr	As	Classification.ClassificationManager

Dim	newDef	As	Classification.FeatureClassDefinition

classMgr	=	activeProj.ClassificationManager

	

Dim	trans	As	Transaction	=	Nothing

Dim	obj	As	DBObject	=	Nothing

Dim	cls	As	RXClass	=	Nothing

Try

			trans	=	_

						MdiActiveDocument.TransactionManager.StartTransaction()

			obj	=	trans.GetObject(objId,	OpenMode.ForRead)

			cls	=	obj.GetRXClass()

			trans.Commit()

Finally

			trans.Dispose()

End	Try

Dim	entType	As	System.String	=	System.String.Copy(cls.Name)

Dim	entTypesCol	As	StringCollection	=	New	StringCollection()

entTypesCol.Add(entType)

newDef	=	classMgr.CreateFeatureClassDefinition(	_



			defName,	Nothing,	entTypesCol,	Nothing,	False)

newDef.SetCreateMethod(entType,	"")

Use	the	FeatureClassPropertyCollection	as	an	initial	set	of
properties	for	the	feature	class	definition.	Modify	it	as	needed	by	setting	range
and	default	values	for	the	properties	in	the	collection.	Create	a	new
FeatureClassPropertyCollection	with	the	updated	properties.	Save
the	feature	definition	file.

Dim	classProp	As	Classification.FeatureClassProperty

Dim	propCollection	As	_

			Classification.FeatureClassPropertyCollection

propCollection	=	_

			New	Classification.FeatureClassPropertyCollection

classMgr.GetProperties(classPropCollection,	Nothing,	objId)

	

For	Each	classProp	In	classPropCollection

			'	Modify	the	property	if	necessary

			newDef.AddProperty(classProp)

Next

		

classMgr.SaveCurrentFeatureDefinitionFile()

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Classifying	Objects
	
	
	

To	classify	a	drawing	object,	call
ClassificationManager.Classify().	This	tags	the	object	with	the
name	of	the	feature	definition	file	and	the	feature	class	name.	If	the	feature
definition	file	is	detached,	the	classification	tag	remains.

A	single	object	may	be	classified	more	than	once,	by	using	feature	classes	from
different	feature	definition	files.	To	get	a	list	of	all	classifications	for	an	object,
call	ClassificationManager.GetAllTags().

To	unclassify	an	object,	call	ClassificationManager.Unclassify().

To	get	a	list	of	all	objects	in	a	drawing	that	have	not	been	classified,	call
ClassificationManager.GetUnclassifiedEntities().	The
result	of	this	can	be	used	to	find	and	classify	missing	objects.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Filters
	
	
	

Topics	in	this	section

Overview
Basic	Filters
Custom	Filters

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Filters	provide	a	simple	mechanism	for	selecting	drawing	objects	that	meet
certain	criteria.	In	the	AutoCAD	Map	3D	UI,	a	basic	filter	can	be	used	to	select
drawing	objects	for	an	export	operation.

A	basic	filter	has	options	for	filtering	based	on	combinations	of	layer	names,
object	classification,	and	block	names.	Custom	filters	can	filter	based	on	other
criteria.	Both	types	are	based	on	the	Filters.ObjectFilter	class.

An	ObjectFilterGroup	can	combine	multiple	filters	into	a	single	filter
operation.

Objects	for	working	with	filters	are	in	the	Autodesk.Gis.Map.Filters
namespace.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Basic	Filters
	
	
	

The	FilterObjects()	method	for	any	filter	takes	a	list	of	drawing	objects
to	be	filtered	and	returns	a	list	of	drawing	objects	that	meet	the	filtering	criteria.

To	create	a	basic	filter,	call	the	constructor	with	a	list	of	layer	names,	feature
class	names,	and	block	names.	Separate	multiple	values	with	commas.	An
asterisk	(“*”)	wild	card	selects	all	objects	matching	the	criterion.

Dim	newFilter	As	Autodesk.Gis.Map.Filters.BasicFilter

newFilter	=	New	Autodesk.Gis.Map.Filters.BasicFilter

			("Parcels,	Lots",	"*",	"*"))

To	run	a	filter,	call	its	FilterObjects()	method	with	the	output	and	input
ObjectIdCollection	objects.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Custom	Filters
	
	
	

Custom	filters	can	implement	additional	filtering	capabilities.	To	create	a	custom
filter,	define	a	new	class	based	on	the	ObjectFilter	class.	At	a	minimum,
the	custom	filter	must	define	a	FilterObjects()	method.	It	can	define	any
other	methods	needed	for	creating	and	modifying	the	filter.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Import/Export
	
	
	

Topics	in	this	section

Overview
Importing
Exporting

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

The	AutoCAD	Map	3D	application	maintains	lists	of	available	import	and
export	formats.	It	is	not	possible	to	modify	these	lists	using	the	API.	The
application	Importer	and	Exporter	classes	can	import	and	export	data
using	these	formats.

Any	import	or	export	procedure	requires	the	following:

Selecting	the	external	file	format	and	location

Mapping	attribute	data	from	the	external	file	to	object	data

Setting	any	necessary	driver	options

Importing	or	exporting

The	particular	options	will	vary	depending	on	the	type	of	data	being	imported	or
exported,	but	the	overall	procedure	is	the	same.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Importing
	
	
	

The	import	procedure	brings	in	objects	from	external	files	and	creates	new
drawing	objects.	Some	external	files	have	a	single	layer,	while	others	have	more
than	one.

To	start	an	import	process,	get	the	Importer	object	for	the	application	and
initialize	it	with	the	import	format	name	and	the	location	of	the	file	or	files	to
import.	For	example::

myImporter.Init("SHP",	fileName)

This	sets	up	the	available	layers	for	the	import.	Iterate	through	the	layers.	For
each	layer,	determine	if	objects	from	the	layer	will	be	imported.	Set
InputLayer.ImportFromInputLayerOn.

Any	attribute	data	attached	to	objects	in	the	layers	can	be	brought	into	the
drawing	as	object	data.	Each	attribute	in	the	source	file	corresponds	to	a	column
in	the	input	layer.	These	columns	can	be	mapped	to	fields	in	object	data	tables.

To	map	input	columns,	set	the	object	data	table	name	using
InputLayer.SetDataMapping().	Then	iterate	through	each	column,
setting	the	mapping	for	the	column	using
Column.SetColumnDataMapping().

Different	import	drivers	will	have	different	options.	The	default	options	are
stored	in	MapImport.ini.	To	modify	the	options,	get	the	options	using
Importer.DriverOptions().	This	returns	a	name-value	collection.
Modify	the	options	in	the	collection	and	call
Importer.SetDriverOptions().

Some	drivers	also	have	an	options	dialog.	For	those	drivers,	call
Importer.InvokeDriverOptionsDialog()	to	have	the	user	set	the
options.



When	all	the	mappings	and	driver	options	have	been	set	up	properly,	call
Importer.Import().	This	returns	an	ImportResults	object,	which
contains	details	of	the	import.

Import	Events

The	RecordReadyForImport	event	handler	can	be	used	to	control	which
records	are	imported.	The	handler	is	fired	for	every	record,	before	the	import	has
been	completed.	To	stop	the	import	for	a	record,	set
RecordReadyForImportEventArgs.ContinueImport	to	false.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Exporting
	
	
	

Exporting	is	similar	to	importing,	with	some	small	differences.

To	select	which	drawing	objects	should	be	exported,	call
Exporter.SetSelectionSet().	To	export	all	drawing	objects,	set
Exporter.ExportAll	to	true.	To	filter	the	list	of	objects,	set	the
Exporter.FeatureClassFilter	or	Exporter.LayerFilter
properties.

The	Exporter	object	does	not	have	a	property	corresponding	to
InputLayer.	The	mappings	for	attribute	data	are	set	using
Exporter.SetExportDataMappings().	This	requires	an
ExpressionTargetCollection	parameter	as	input.

Items	in	an	ExpressionTargetCollection	object	are	name-value	pairs,
where	the	name	corresponds	to	an	object	data	expression	and	the	value	is	the
attribute	name	in	the	exported	file.	For	details	about	object	data	expressions	see
Expressions	in	Annotations	or	the	Map	3D	Help.

Export	Events

The	RecordReadyForExport	event	handler	is	similar	to
RecordReadyForImport.	To	stop	the	export	of	a	record,	set
RecordReadyForExport.ContinueExport	to	false.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Topology
	
	
	

Topics	in	this	section

Overview
Drawing	Cleanup
Creating	Topologies
Node	Topology
Network	Topology
Polygon	Topology

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

A	network	topology	contains	a	set	of	edges	or	links.	Each	link	has	a	node	at	each
end.	Multiple	links	can	intersect	at	a	single	node.

A	polygon	topology	represents	an	area	coverage.

Topologies	describe	relationships	between	drawing	objects.	There	are	three	types
of	topology:

Node,	also	called	point

Network

Polygon

A	node	topology	contains	a	set	of	points.

A	network	topology	contains	a	set	of	edges	or	links.	Each	link	has	a	node	at	each
end.	Multiple	links	can	intersect	at	a	single	node.

A	polygon	topology	represents	an	area	coverage.	The	borders	of	polygons	are
represented	by	edges.	The	polygons	in	a	polygon	topology	cannot	overlap,	but
adjacent	polygons	share	edges.

Each	object	in	the	topology	(node,	link,	or	polygon	centroid)	has	an	ID	number
that	is	unique	within	the	topology.

Note The	topology	is	related	to	drawing	objects,	but	it	is	stored	independently.	It
is	possible	to	have	a	topology	where	the	nodes	do	not	correspond	to	drawing
objects.

Internally,	the	relationship	between	drawing	objects	and	topologies	is
implemented	using	object	data	tables.	For	a	topology	named	topol_name,	the
following	tables	are	used:

TMPCNTR_topol_name



TPMDESC_topol_name

TPMID_topol_name

TPMLINK_topol_name

TPMNODE_topol_name

TPMDESC	and	TPMID	are	not	attached	to	any	drawing	objects.	They	are	used	to
store	information	about	the	topology	itself.	TPMDESC	contains	the	parameters
used	to	create	the	topology,	such	as	topology	type,	colors,	and	layer	names.
TPMID	contains	a	single	value	for	the	last	id	assigned	for	the	topology.

TPMNODE	data	is	attached	to	nodes	in	the	topology.	Each	node	has	an	ID	and	a
resistance	value.

TPMLINK	data	is	attached	to	links	between	nodes.	For	network	topologies	the
link	has	values	for	the	ID,	start	and	end	node,	direction	of	the	link,	and	resistance
values	for	traversing	the	link	in	each	direction.	For	polygon	topologies	the	link
also	has	values	for	the	polygons	on	either	side	of	the	link.

TPMCNTR	data	is	attached	to	the	centroids	of	polygons	in	a	polygon	topology.
Each	centroid	has	values	for	the	ID,	area,	perimeter,	and	number	of	links	that
form	the	edges	of	the	polygon.

In	most	cases,	applications	do	not	need	to	manage	the	object	data	directly.	The
topology	API	calls	perform	all	the	necessary	updates.	An	application	needing	to
know	which	topologies	have	been	defined	in	the	drawing,	however,	should
check	the	object	data	tables	for	names	beginning	with	“TMPDESC_”.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Drawing	Cleanup
	
	
	

Drawing	cleanup	is	essential	for	polygon	and	network	topologies.	It	ensures	that
the	objects	in	the	topology	can	be	connected	properly.	For	more	details	about	the
various	types	of	cleanup	actions,	refer	to	the	UI	documentation.

A	drawing	cleanup	operation	involves	combining	one	or	more	cleanup	actions.
Each	action	is	identified	by	an	action	number.	Many	of	the	actions	have
additional	settings.

Action Description Settings

1 Erase	Short
Objects

CLEAN_TOL

2 Break
Crossing
Objects

	

4 Extend
Undershoots

CLEAN_TOL
??	break	target

8 Delete
Duplicates

CLEAN_TOL
INCLUDE_LINEAROBJS
INCLUDE_POINTS
INCLUDE_BLOCKS
INCLUDE_TEXT
INCLUDE_MTEXT
INCLUDE_ROTATION
INCLUDE_ZVALUES

16 Snap
Clustered

CLEAN_TOL
INCLUDE_POINTS



Nodes INCLUDE_BLOCKS
SNAP_TO_NODE

32 Dissolve
Pseudo
Nodes

	

64 Erase
Dangling
Objects

CLEAN_TOL

128 Simplify
Objects

CLEAN_TOL
???create	arcs

256 Zero	Length
Objects

	

512 Apparent
Intersection

CLEAN_TOL

1024 Weed
Polylines

WEED_DISTANCE
WEED_ANGLE
WEED_SUPPLEMENT_DISTANCE
WEED_SUPPLEMENT_BULGE

The	same	class,	Topology.Variable,	is	used	for	both	actions	and	settings.
To	create	a	drawing	cleanup	action,	create	a	settings	variable	and	set	its	values:

Dim	toleranceVal	As	New	DatabaseServices.TypedValue	_

(Autodesk.AutoCAD.DatabaseServices.DxfCode.Real,	25.5)

Dim	toleranceSetting	As	New	DatabaseServices.ResultBuffer

toleranceSetting.Add(toleranceVal)

	

Dim	blocksVal	As	New	DatabaseServices.TypedValue	_

(Autodesk.AutoCAD.DatabaseServices.DxfCode.Int16,	1)

Dim	blocksSetting	As	New	DatabaseServices.ResultBuffer

blocksSetting.Add(blocksVal)

	

Dim	settings	As	New	Topology.Variable

settings.Set("CLEAN_TOL",	toleranceSetting)

settings.Set("INCLUDE_BLOCKS",	blocksSetting)



Create	an	action	variable	and	add	the	action	and	its	settings:

Dim	action	As	New	Topology.Variable

action.InsertActionToList(-1,	8,	settings)

If	the	operation	will	include	more	than	one	action,	repeat	the	process	and	insert
more	actions	and	their	corresponding	settings	into	the	same	action	variable.

To	perform	the	cleanup,	create	a	TopologyClean	object	and	initialize	it	with
the	action	variable	and	a	set	of	drawing	objects	to	clean.

Dim	cleanObj	As	New	Topology.TopologyClean

cleanObj.Init(action,	Nothing)

Each	individual	action	in	the	action	variable	is	a	cleanup	group.	Start	the	cleanup
and	go	through	the	groups	until	all	actions	have	been	completed.	Commit	the
changes	using	TopologyClean.End().

cleanObj.Start()

cleanObj.GroupNext()

Do	While	Not	cleanObj.Completed

			cleanObj.GroupFix()

			cleanObj.GroupNext()

Loop

cleanObj.End()

For	finer	control	over	the	objects	being	cleaned,	step	through	the	errors	in	a
group	using	TopologyClean.ErrorCur().	Fix	or	ignore	each	one
individually.	Set	TopologyClean.ErrorPoint	to	change	the	location	for
the	fix.

To	save	a	profile	for	later	use,	call	Variable.SaveProfile()	using	an
action	variable	object.	To	reload	the	profile,	call
Variable.LoadProfile().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Creating	Topologies
	
	
	

To	create	a	new	topology,	get	the	Topologies	object	for	the	project.	Select	the
drawing	objects	to	include	in	the	topology.	Call	Topologies.Create().
Get	a	reference	to	the	newly	created	topology	using	Topologies.Item(),
which	takes	a	string	parameter.

Once	a	topology	has	been	created,	it	must	be	opened	using
TopologyModel.Open().	When	the	topology	is	no	longer	needed,	close	it
with	TopologyModel.Close().

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Node	Topology
	
	
	

A	node	topology	represents	a	group	of	related	points.	Node	topologies	are	often
used	as	part	of	network	or	polygon	topologies,	to	represent	the	endpoints	of	the
links	in	the	topology.

TopologyModel.GetNodes()	returns	the	collection	of	nodes.	For	each
node,	Node.Entity	returns	the	associated	drawing	object.	If	the	node	does
not	have	a	drawing	object	associated	with	it,	Node.Entity	throws	a
MapException.

Note Do	not	update	items	in	a	NodeCollection	object	using	methods	like
Add(),	Insert(),	and	Remove().	Instead,	call	the	appropriate	methods	for
the	TopologyModel	object,	like	AddPointObject().

Call	NodeCollection.Dispose()	when	the	object	is	no	longer	needed.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Network	Topology
	
	
	

A	network	topology	represents	a	group	of	related	nodes	and	the	connections
between	the	nodes.	The	connections	between	nodes	are	links	or	edges	in	the
topology.

Each	full	edge	is	composed	of	two	half	edges,	representing	travel	in	opposite
directions	between	the	nodes.	Each	half	edge	can	have	its	own	resistance	value,
which	is	used	in	certain	types	of	network	analysis.

TopologyModel.GetFullEdges()	returns	the	collection	of	full	edges.
For	each	edge,	FullEdge.Entity	returns	the	associated	drawing	object.	If
the	edge	does	not	have	a	drawing	object	associated	with	it,
FullEdge.Entity	throws	a	MapException.

FullEdge.GetHalfEdge	returns	a	half	edge,	in	either	the	forward	or
backward	direction.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Polygon	Topology
	
	
	

A	polygon	topology	represents	an	area	coverage,	with	polygons	inside	the	area
bounded	by	edges.	Any	polygon	in	the	topology	must	be	entirely	enclosed
within	its	edges.

Each	polygon	must	have	a	centroid.

TopologyModel.GetPolygons()	returns	the	collection	of	polygons.	For
each	edge,	FullEdge.Entity	returns	the	associated	drawing	object.	If	the
edge	does	not	have	a	drawing	object	associated	with	it,	FullEdge.Entity
throws	a	MapException.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Display	Manager
	
	
	

Topics	in	this	section

Overview
Elements
Data	Source	Descriptors
Style

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

Display	Manager	provides	a	way	to	organize	and	style	layers	in	AutoCAD	Map
3D.

Note The	Display	Manager	API	only	manages	layers	that	contain	drawing
objects.	To	manage	layers	containing	FDO	data	use	the	Geospatial	Platform	API.
See	the	Geospatial	Platform	Developer’s	Guide	and	the	Geospatial	Platform	API
Reference	for	details.

Each	project	has	its	own	map	manager,	which	is	represented	by	a
DisplayManagement.MapManager	object.	To	get	the	map	manager	for	a
project,	perform	the	following	steps:

trans	=	activeDoc.TransactionManager.StartTransaction()

Dim	managerId	As	ObjectId

Dim	manager	As	MapManager	=	Nothing

	

managerId	=	DisplayManager.Create(activeProject).MapManagerId(	_

		activeProject,	True)

manager	=	trans.GetObject(managerId,	OpenMode.ForRead)

A	single	project	can	contain	multiple	maps.
MapManager.GetEnumerator()	returns	an	enumerator	that	steps	through
the	maps	in	the	project.	The	properties	MapManager.CurrentMapId	and
MapManager.Current	get	or	set	the	current	map.

A	map	(DisplayManagement.Map	object)	is	sub-classed	from
DisplayManagement.Group,	which	represents	any	group	of	elements	in
Display	Manager.	Maps	can	contain	layers	and	more	groups.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Elements
	
	
	

Display	Manager	elements	represent	the	different	layers	in	the	map.	Elements
can	be	of	the	following	types,	all	subclassed	from
DisplayManagement.Element:

DisplayManagement.BaseElement

DisplayManagement.LayerElement

DisplayManagement.AttachedDwgsQueryElement

DisplayManagement.TopologyElement

DisplayManagement.TopologyQueryElement

DisplayManagement.FeatureElement

DisplayManagement.RasterElement

The	following	iterates	through	the	elements	in	a	map:

Dim	iterator	As	IEnumerator	=	currentMap.NewIterator(True,	True)

	

Dim	elementType	As	Type	=	GetType(DisplayManagement.Element)

Dim	groupType	As	Type	=	GetType(DisplayManagement.Group)

	

Do	While	(iterator.MoveNext())

		Dim	itemId	As	ObjectId	=	iterator.Current

		Dim	thisItem	As	Object	=	_

				trans.GetObject(itemId,	OpenMode.ForRead)

		If	(thisItem.GetType().Equals(elementType)	Or	_

						thisItem.GetType().IsSubclassOf(elementType))	Then

				Dim	mapElement	As	Item	=	thisItem

				'	Process	element	(layer)

		ElseIf	(thisItem.GetType().Equals(groupType))	Then

				Dim	thisGroup	As	DisplayManagement.Group	=	thisItem

				'	Process	group

		Else

				'	Not	a	Display	Manager	object,	probably	contains	FDO	data



		End	If

Loop

The	BaseElement	layer	represents	the	Map	Base.

LayerElement	objects	display	drawing	objects	from	an	AutoCAD	layer.

AttachedDwgsQueryElement	objects	represent	layers	containing	data
queried	in	from	attached	drawings.

TopologyElement	objects	represent	Display	Manager	layers	that	contain
topology	from	the	current	drawing.	TopologyQueryElement	objects
represent	layers	that	contain	topology	queried	from	attached	drawings.

FeatureElement	objects	represent	layers	that	contain	classified	drawing
objects.

RasterElement	objects	are	not	generally	used.	Instead,	use	FDO	data	with
the	Geospatial	Platform	API.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Data	Source	Descriptors
	
	
	

DisplayManagement.Element	has	two	properties	to	describe	the	data
source	for	the	element:

AcquisitionCriteriaString

AcquisitionCriteria

AcquisitionCriteriaString	contains	a	string	representation	of	the	data
source,	as	described	in	the	following	table:

Element	type AcquisitionCriteriaString	value

LayerElement AutoCAD	layer	name

FeatureElement Object	classification	class	name

TopologyElement Topology	name

AttachedDwgsQueryElement 	

TopologyQueryElement 	

AcquisitionCriteria	is	of	type
DisplayManagement.DataSourceDescriptor.	It	contains	additional
data	about	the	source.	Each	element	type	has	a	corresponding	data	source
descriptor	type,	subclassed	from	DataSourceDescriptor.	For	example,	the
AcquisitionCriteria	property	for	a	LayerElement	is	of	type
LayerDataSourceDescriptor.

For	LayerElement,	FeatureElement,	and	TopologyElement,
AcquisitionCriteria.AcquisitionStatement	is	the	same	as
AcquisitionCriteriaString.



AttachedDwgsQueryDataSourceDescriptor	and
TopologyQueryDataSourceDescriptor	define	additional	methods	and
properties,	as	described	in	the	following	table.

Method	or
property Description

GetDrawingList() Gets	the	list	of	attached	drawings	used	in	the	query

SetDrawingList() Sets	the	list	of	attached	drawings	used	in	the	query

Query A	result	buffer	containing	the	query	definition,	from
the	QueryModel.FileOut	property

TopologyName For	TopologyQueryDataSourceDescriptor
only,	the	topology	name	used	in	the	query

To	add	a	new	element,	create	the	element	and	its	associated	data	source
descriptor,	then	add	it	to	the	map.	The	following	example	adds	a
LayerElement	that	references	an	AutoCAD	layer	named	“Layer1”.	For	other
element	types,	create	the	appropriate	data	source	descriptor.

Dim	activeProject	As	Project.ProjectModel	=	_

	HostMapApplicationServices.Application.ActiveProject

Dim	docs	As	DocumentCollection	=	Application.DocumentManager

Dim	activeDoc	As	Document	=	docs.MdiActiveDocument

Dim	trans	As	Transaction	=	Nothing

	

Try

		trans	=	activeDoc.TransactionManager.StartTransaction()

	

		'	Get	the	Object	Id	for	the	current	Map

		Dim	managerId	As	ObjectId

		managerId	=	_

				DisplayManager.Create(activeProject).MapManagerId(	_

				activeProject,	True)

		Dim	manager	As	MapManager	=	trans.GetObject(managerId,	_

				OpenMode.ForRead)

		Dim	currentMapId	=	manager.CurrentMapId

		Dim	currentMap	As	Map	=	trans.GetObject(currentMapId,	_

				OpenMode.ForWrite)

	

		'	Create	the	Layer	element	and	set	its



name

		Dim	element	As	LayerElement	=	LayerElement.Create()

		element.Name	=	"NewLayer"

	

		'	Create	the	Layer	Descriptor

		Dim	descriptor	As	LayerDataSourceDescriptor	=	Nothing

		descriptor	=	LayerDataSourceDescriptor.Create()

		descriptor.AcquisitionStatement	=	"Layer1"

	

		'	Now	Add	the	new	element	to	the	current

Map

		Dim	iterator	As	IEnumerator	=	_

				currentMap.NewIterator(True,	True)

		Dim	elementId	As	ObjectId	=	_

				currentMap.AddItem(element,	iterator)

		trans.AddNewlyCreatedDBObject(element,	True)

	

		element	=	trans.GetObject(elementId,	OpenMode.ForWrite)

		element.AcquisitionCriteria	=	descriptor

	

		trans.Commit()

		trans	=	Nothing

Catch	e	As	Autodesk.AutoCAD.Runtime.Exception

		'	Handle	exception

Finally

		If	Not	trans	Is	Nothing	Then

				trans.Abort()

				trans	=	Nothing

		End	If

End	Try

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Style
	
	
	

Display	Manager	elements	can	have	style	associated	with	them.

DisplayManagement.Style	is	the	base	class	for	all	the	style	classes.	It	is
based	on	AutoCAD.DatabaseServices.DBObject,	so	it	must	be
managed	using	AutoCAD	transactions.	The	available	style	classes	are:

DefaultStyle

EntityStyle

StylizationEntityAnnotationStyle

StylizationEntityHatchStyle

StylizationEntityTextStyle

RasterStyle

ThematicStyle

Element.AddStyle()	creates	a	reference	from	the	element	to	the	style
object	in	the	database.	Multiple	elements	can	refer	to	the	same	style	object.

To	create	a	new	style,	call	its	Create()	method.	Set	the	appropriate	properties
for	the	style	type.	Save	the	style	in	the	database	and	add	it	to	an	element.	For
example,	the	following	creates	a	new	entity	style	and	assigns	it	to	a	layer
element:

Try

		trans	=	activeDoc.TransactionManager.StartTransaction()

	

		'	Open	the	element	for	write,	so	the	style	can	be	added

		Dim	layer	As	Element	=	trans.GetObject(layerId,	_

				OpenMode.ForWrite)

	

		'	Pass	0.0	for	the	current	scale

		Dim	styleRefIterator	As	StyleReferenceIterator	=	_



				layer.GetStyleReferenceIterator(0.0,	True,	True)

	

		'	Add	the	style

		Dim	styleEntity	As	EntityStyle	=	EntityStyle.Create()

	

		'	Set	style	properties

		Dim	color	As	Autodesk.AutoCAD.Colors.Color	=	_

		color.FromColorIndex(	_

				Autodesk.AutoCAD.Colors.ColorMethod.None,	5)

		styleEntity.Color	=	color

		styleEntity.Name	=	styleName

	

		Dim	id	As	ObjectId

		id	=	layer.AddStyle(styleEntity,	styleRefIterator)

		trans.AddNewlyCreatedDBObject(styleEntity,	True)

	

		trans.Commit()

		trans	=	Nothing

Catch	e	As	System.Exception

		'	Process	exception

Finally

		If	Not	trans	Is	Nothing	Then

				trans.Abort()

				trans	=	Nothing

		End	If

End	Try

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


MapBook
	
	
	

Topics	in	this	section

Overview
MapBook	Templates
Creating	a	Map	Book

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Overview
	
	
	

A	Map	Book	is	a	way	to	divide	a	large	map	into	smaller	tiles,	by	creating	a
separate	layout	for	each	tile.

Each	project	has	its	own	MapBook	manager.	Call
MapApplication.GetBookManager()	to	get	the	book	manager	for	a
database.

A	Map	Book	requires	a	template	file	that	defines	the	layout	for	each	sheet	in	the
book.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


MapBook	Templates
	
	
	

A	Map	Book	template	is	an	AutoCAD	template	(.dwt)	file	with	some	special
characteristics.

The	template	file	must	define	at	least	one	layout.	The	layout	can	contain
viewports	for	the	following	purposes:

Map	view,	which	displays	the	map	for	the	area	covered	by	a	particular
sheet

Key	view,	which	displays	a	small	image	of	the	entire	map,	outlining	the
area	covered	by	the	map	sheet

Map	legend,	which	displays	the	map	legend

The	layout	can	also	contain	special	blocks	that	show	links	to	adjacent	map
sheets.	Within	AutoCAD	Map	3D	or	a	DWF	file,	the	links	can	be	used	to	jump
directly	to	an	adjacent	sheet.

The	layout	can	also	contain	a	title	block.

To	identify	objects	in	the	template	as	any	of	the	special	views	or	blocks,	call	the
static	function	MapBook.SheetTemplate.MarkElement()	with	the
object	id	and	element	type.	For	example,	to	mark	an	object	as	the	map	view,	call

MapBook.SheetTemplate.MarkElement(objId,	_

			MapBook.TemplateElementType.MapView)

Adjacent	Map	Sheets

The	arrows	pointing	to	adjacent	map	sheets	are	AutoCAD	block	references.
Each	block	can	have	an	attribute	that	defines	the	direction	of	the	arrow	and
creates	a	link	to	the	adjacent	sheet.

To	create	an	arrow	to	an	adjacent	map	sheet,	place	a	block	reference	of	the



desired	shape	and	orientation	into	the	map.	The	block	reference	should	have	an
attribute	named	TAG.	Set	the	text	string	of	the	attribute	to	an	expression	that
defines	the	adjacent	sheet.	This	expression	is	of	the	form:

%<\AcSm	Sheet.direction	>%

where	direction	is	one	of	the	following:

Top

Bottom

Right

Left

TopRight

TopLeft

BottomRight

BottomLeft

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');


Creating	a	Map	Book
	
	
	

To	create	a	Map	Book,	define	the	book	settings	using	TileGenerator	and
TileNameGenerator	objects.	Call
BookManager.GenerateMapBook()	to	create	the	new	book.

Please	send	us	your	comment	about	this	page

javascript:doComments('./html/ac.cmtdialog.htm');

	Overview
	Introduction
	Using the API Reference
	Setting Up Visual Studio
	AutoCAD
	Session and Project
	Overview
	Drawing Objects
	Object Data
	Introduction
	Creating a Table
	Attaching Object Data
	Getting Object Data
	Updating and Deleting Records
	Data Connect
	Overview
	Setting Up Visual Studio
	Creating the Plugin
	Annotation
	Overview
	Annotation Templates
	Expressions in Annotations
	Inserting Annotations
	Updating and Refreshing Annotations
	Annotation Overrides
	Events
	Overview
	Events in the API Reference
	List of Events
	Drawing Sets
	Overview
	Drive Aliases
	Attaching and Detaching Drawings
	Queries and Save Sets
	Overview
	Queries
	Query Libraries
	Save Sets
	Classification
	Overview
	Managing Feature Definition Files
	Creating Feature Class Definitions
	Classifying Objects
	Filters
	Overview
	Basic Filters
	Custom Filters
	Import/Export
	Overview
	Importing
	Exporting
	Topology
	Overview
	Drawing Cleanup
	Creating Topologies
	Node Topology
	Network Topology
	Polygon Topology
	Display Manager
	Overview
	Elements
	Data Source Descriptors
	Style
	MapBook
	Overview
	MapBook Templates
	Creating a Map Book

